
Self-Regulating Finite Automata

Alexander Meduna and Tomáš Masopust

Department of Information Systems, Faculty of Information Technology,
Brno University of Technology, Božetěchova 2, Brno 61266, Czech Republic

meduna@fit.vutbr.cz, masopust@fit.vutbr.cz

Abstract: This paper introduces and discusses self-regulating finite automata. In essence, these
automata regulate the use of their rules by a sequence of rules applied during previous moves. A
special attention is paid to turns defined as moves during which a self-regulating finite automaton
starts a new self-regulating sequence of moves. Based on the number of turns, the present paper
establishes two infinite hierarchies of language families resulting from two variants of these au-
tomata. In addition, it demonstrates that these hierarchies coincide with the hierarchies resulting
from parallel right linear grammars and right linear simple matrix grammars, so the self-regulating
finite automata can be viewed as the automaton counterparts to these grammars. Finally, this paper
compares both infinite hierarchies. In addition, as an open problem area, it suggests the discussion
of self-regulating pushdown automata and points out that they give rise to no infinite hierarchy
analogical to the achieved hierarchies resulting from the self-regulating finite automata.

Keywords: regulated automata, self-regulation, infinite hierarchies of language families, parallel
right linear grammars, right linear simple matrix grammars

2000 Mathematics Subject Classification Number: 68Q45.

1 Introduction

Over its history, automata theory has modified and restricted classical automata in many ways
(see [3, 5, 6, 7, 8, 16, 22, 24, 26]). Recently, regulated automata have been introduced and
studied in [17, 18]. In essence, these automata regulate the use of their rules according to which
they make moves by control languages. In this paper, we continue with this topic by defining and
investigating self-regulating finite automata. Instead of prescribed control languages, however,
the self-regulating finite automata restrict the selection of a rule according to which the current
move is made by a rule according to which a previous move was made.

To give a more precise insight into self-regulating automata, consider a finite automaton,M ,
with a finite binary relation, R, over M ’s rules. Furthermore, suppose that M makes a sequence
of moves, ρ, that leads to the acceptance of a word, so ρ can be expressed as a concatenation of
n + 1 consecutive subsequences, ρ = ρ0ρ1 . . . ρn, |ρi| = |ρj|, 0 ≤ i, j ≤ n, in which rj

i denote
the rule according to which the ith move in ρj is made, for all 0 ≤ j ≤ n and 1 ≤ i ≤ |ρj| (as
usual, |ρj| denotes the length of ρj). If for all 0 ≤ j < n, (rj

1, r
j+1
1) ∈ R, then M represents an

n-turn first-move self-regulating finite automaton with respect to R. If for all 0 ≤ j < n and
all 1 ≤ i ≤ |ρi|, (rj

i , r
j+1
i) ∈ R, then M represents an n-turn all-move self-regulating finite

automaton with respect to R.
Based on the number of turns, we establish two infinite hierarchies of language families that

lie between the families of regular and context-sensitive languages. First, we demonstrate that

2

n-turn first-move self-regulating finite automata give rise to an infinite hierarchy of language
families coinciding with the hierarchy resulting from (n+1)-parallel right linear grammars (see
[20, 21, 27, 28]). Recall that n-parallel right linear grammars generate a proper language sub-
family of the language family generated by (n+1)-parallel right linear grammars (see Theorem
5 in [21]). As a result, n-turn first-move self-regulating finite automata accept a proper language
subfamily of the language family accepted by (n + 1)-turn first-move self-regulating finite au-
tomata, for all n ≥ 0. Similarly, we prove that n-turn all-move self-regulating finite automata
give rise to an infinite hierarchy of language families coinciding with the hierarchy resulting
from (n + 1)-right linear simple matrix grammars (see [4, 10, 28]). As n-right linear simple
matrix grammars generate a proper subfamily of the language family generated by (n+1)-right
linear simple matrix grammars (see Theorem 1.5.4 in [4]), n-turn all-move self-regulating finite
automata accept a proper language subfamily of the language family accepted by (n + 1)-turn
all-move self-regulating finite automata. Furthermore, since the families of right linear simple
matrix languages coincide with the language families accepted by multitape nonwriting au-
tomata (see [5]) and by finite-turn checking automata (see [24]), the all-move self-regulating
finite automata characterize these families, too. Finally, we summarize the results about both
infinite hierarchies.

In the conclusion of this paper, as an open problem area, we suggest the discussion of self-
regulating pushdown automata. Regarding self-regulating all-move pushdown automata, we
prove that they do not give rise to any infinite hierarchy analogical to the achieved hierarchies
resulting from the self-regulating finite automata. Indeed, zero-turn all-move self-regulating
pushdown automata define the family of context-free languages while one-turn all-move self-
regulating pushdown automata define the family of recursively enumerable languages. On the
other hand, as far as self-regulating first-move pushdown automata are concerned, the question
whether they define an infinite hierarchy or not is open.

2 Preliminaries

We assume that the reader is familiar with the theory of automata and formal languages (see
[1, 2, 9, 11, 12, 13, 15, 19, 25]). For a set Q, |Q| denotes the cardinality of Q. N = {1, 2, 3, . . .}
denotes the set of all natural numbers. For an alphabet V , V ∗ represents the free monoid gen-
erated by V under the operation of concatenation. The identity of V ∗ is denoted by ε. Set
V + = V ∗ − {ε}; algebraically, V + is thus the free semigroup generated by V under the
operation of concatenation. For w ∈ V ∗, |w| denotes the length of w. Let w ∈ V ∗; then,
alph(w) = {a ∈ V : a appears in w}. For every L ⊆ V ∗, alph(L) =

⋃
w∈L alph(w).

A finite automaton, M , is a quintuple M = (Q,Σ, δ, q0, F), where Q is a finite set of states,
Σ is a finite input alphabet, δ is a finite set of rules of the form qw → p, q, p ∈ Q, w ∈ Σ∗,
q0 ∈ Q is an initial state, and F is a set of final states. Let Ψ be an alphabet of rule labels such
that |Ψ | = |δ|, and ψ be a bijection from δ to Ψ . For simplicity, to express that ψ maps a rule
qw → p ∈ δ to r, where r ∈ Ψ , we write r.qw → p ∈ δ; in other words, r.qw → p means
ψ(qw → p) = r. A configuration of M is any word from QΣ∗. For any configuration qwy,
where y ∈ Σ∗, q ∈ Q, and any r.qw → p ∈ δ, M makes a move from configuration qwy to
configuration py according to r, written as qwy ⇒ py [r]. Let χ be any configuration of M . M
makes zero moves from χ to χ according to ε, written as χ⇒0 χ [ε]. Let there exist a sequence
of configurations χ0, χ1, . . . , χn, for some n ≥ 1, such that χi−1 ⇒ χi [ri], where ri ∈ Ψ ,
i = 1, . . . , n. Then, M makes n moves from χ0 to χn according to r1, . . . , rn, symbolically
written as χ0 ⇒n χn [r1 . . . rn]. We write ϕ⇒∗ κ [µ] if ϕ⇒n κ [µ] for some n ≥ 0. If w ∈ Σ∗

3

and q0w ⇒∗ f [µ], for f ∈ F , then w is accepted by M and q0w ⇒∗ f [µ] is an acceptance of
w in M . The language of M is defined as L(M) = {w ∈ Σ∗ : q0w ⇒∗ f [µ] is an acceptance
of w}.

For n ≥ 1, an n-parallel right linear grammar, n-PRLG, is an (n + 3)-tuple G = (N1, . . .,
Nn, T, S, P), where Ni, 1 ≤ i ≤ n, are mutually disjoint nonterminal alphabets, T is a terminal
alphabet, S 6∈ N is an initial symbol, N = N1 ∪ . . . ∪ Nn, and P is a finite set of rules that
contains three kinds of rules:

1. S → X1 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n;
2. X → wY , X, Y ∈ Ni for some i, 1 ≤ i ≤ n, w ∈ T ∗;
3. X → w, X ∈ N , w ∈ T ∗.

For x, y ∈ (N ∪ T ∪ {S})∗, x⇒ y if and only if

1. either x = S and S → y ∈ P ,
2. or x = y1X1 . . . ynXn, y = y1x1 . . . ynxn, where yi ∈ T ∗, xi ∈ T ∗N ∪ T ∗, Xi ∈ Ni, and
Xi → xi ∈ P , 1 ≤ i ≤ n.

If x, y ∈ (N ∪ T ∪ {S})∗ and l > 0, then x ⇒l y if and only if there exists a sequence
x0 ⇒ x1 ⇒ . . . ⇒ xl, x0 = x, xl = y. Then, we say x ⇒+ y if and only if there exists l > 0
such that x ⇒l y, and x ⇒∗ y if and only if x = y or x ⇒+ y. The language generated by an
n-PRLG, G, is defined as L(G) = {w ∈ T ∗ : S ⇒+ w}. Language L ⊆ T ∗ is an n-parallel
right linear language, n-PRLL, if there is an n-PRLG, G, such that L = L(G). The family of
n-PRLLs is denoted by Rn.

For n ≥ 1, an n-right linear simple matrix grammar, n-RLSMG, is an (n + 3)-tuple G =
(N1, . . . , Nn, T, S, P), where Ni, 1 ≤ i ≤ n, are mutually disjoint nonterminal alphabets, T is
a terminal alphabet, S 6∈ N is an initial symbol, N = N1 ∪ . . . ∪ Nn, and P is a finite set of
matrix rules. A matrix rule can be in one of the following three forms:

1. [S → X1 . . . Xn], Xi ∈ Ni, 1 ≤ i ≤ n;
2. [X1 → w1Y1, . . . , Xn → wnYn], wi ∈ T ∗, Xi, Yi ∈ Ni, 1 ≤ i ≤ n;
3. [X1 → w1, . . . , Xn → wn], Xi ∈ Ni, wi ∈ T ∗, 1 ≤ i ≤ n.

Let m be a matrix, then m[i] denotes the ith rule of m. For x, y ∈ (N ∪ T ∪ {S})∗, x ⇒ y if
and only if

1. either x = S and [S → y] ∈ P ,
2. or x = y1X1 . . . ynXn, y = y1x1 . . . ynxn, where yi ∈ T ∗, xi ∈ T ∗N ∪ T ∗, Xi ∈ Ni,

1 ≤ i ≤ n, and [X1 → x1, . . . , Xn → xn] ∈ P .

We define x ⇒+ y and x ⇒∗ y as above. The language generated by an n-RLSMG, G, is
defined as L(G) = {w ∈ T ∗ : S ⇒+ w}. Language L ⊆ T ∗ is an n-right linear simple
matrix language, n-RLSML, if there is an n-RLSMG, G, such that L = L(G). The family of
n-RLSMLs is denoted by R[n].

Let G = (N1, . . . , Nn, T, S, P) be an n-PRLG, for some n ≥ 1, and 1 ≤ i ≤ n. By the ith
component of G we understand a 1-PRLG G = (Ni, T, S

′, P ′), where P ′ contains rules of the
following forms:

1. S ′ → Xi if S → X1 . . . Xn ∈ P , Xi ∈ Ni;
2. X → wY if X → wY ∈ P and X, Y ∈ Ni;
3. X → w if X → w ∈ P and X ∈ Ni.

4

The ith component of an n-RLSMG is defined analogously.
Finally, let REG, CF , and CS denote the families of regular, context-free, and context-

sensitive languages, respectively.

3 Definitions and Examples

In this section, we define and illustrate n-turn first-move self-regulating finite automata and
n-turn all-move self-regulating finite automata.

Definition 1 A self-regulating finite automaton, SFA, M , is a septuple

M = (Q,Σ, δ, q0, qt, F,R),

where

1. (Q,Σ, δ, q0, F) is a finite automaton,
2. qt ∈ Q is a turn state, and
3. R ⊆ Ψ × Ψ is a finite relation on the alphabet of rule labels.

In this paper, we consider two ways of self-regulation—first-move and all-move. According
to these two types of self-regulation, two types of n-turn self-regulating finite automata are
defined.

Definition 2 Let n ≥ 0 and M = (Q,Σ, δ, q0, qt, F,R) be a self-regulating finite automaton.
M is said to be an n-turn first-move self-regulating finite automaton, n-first-SFA, if M accepts
w in the following way. There is an acceptance of the form q0w ⇒∗ f [µ] such that

µ = r0
1 . . . r

0
kr

1
1 . . . r

1
k . . . r

n
1 . . . r

n
k ,

where k ∈ N, r0
k is the first rule of the form qx→ qt, for some q ∈ Q, x ∈ Σ∗, and

(rj
1, r

j+1
1) ∈ R

for all 0 ≤ j < n.
The family of languages accepted by n-first-SFAs is denoted by Wn.

Example 1 Consider a 1-turn first-move self-regulating finite automaton,M = ({s, t, f}, {a, b},
δ, s, t, {f}, {(1, 3)}), with δ containing rules 1.sa → s, 2.sa → t, 3.tb → f , and 4.fb → f
(see Fig. 1).

s t f
a b

a b

Fig. 1: 1-turn first-move self-regulating finite automaton M .

With aabb, M makes

saabb⇒ sabb [1] ⇒ tbb [2] ⇒ fb [3] ⇒ f [4].

In brief, saabb ⇒∗ f [1234]. Observe that L(M) = {anbn : n ≥ 1}, which belongs to CF −
REG.

5

Definition 3 Let n ≥ 0 and M = (Q,Σ, δ, q0, qt, F,R) be a self-regulating finite automaton.
M is said to be an n-turn all-move self-regulating finite automaton, n-all-SFA, if M accepts w
in the following way. There is an acceptance q0w ⇒∗ f [µ] such that

µ = r0
1 . . . r

0
kr

1
1 . . . r

1
k . . . r

n
1 . . . r

n
k ,

where k ∈ N, r0
k is the first rule of the form qx→ qt, for some q ∈ Q, x ∈ Σ∗, and

(rj
i , r

j+1
i) ∈ R

for all 1 ≤ i ≤ k, 0 ≤ j < n.
The family of languages accepted by n-all-SFAs is denoted by Sn.

Example 2 Consider a 1-turn all-move self-regulating finite automaton, M = ({s, t, f}, {a, b},
δ, s, t, {f}, {(1, 4), (2, 5), (3, 6)}), with δ containing rules 1.sa → s, 2.sb → s, 3.s → t,
4.ta→ t, 5.tb→ t, and 6.t→ f (see Fig. 2).

s t f
ε ε

a, b a, b

Fig. 2: 1-turn all-move self-regulating finite automaton M .

With abab, M makes

sabab⇒ sbab [1] ⇒ sab [2] ⇒ tab [3] ⇒ tb [4] ⇒ t [5] ⇒ f [6].

In brief, sabab ⇒∗ f [123456]. Observe that L(M) = {ww : w ∈ {a, b}∗}, which belongs to
CS − CF .

4 Results

We prove that the family of languages accepted by n-first-SFAs coincides with the family of lan-
guages generated by (n+1)-PRLGs. Furthermore, we demonstrate that the family of languages
accepted by n-all-SFAs coincides with the family of languages generated by n-RLSMGs.

4.1 n-Turn First-Move Self-Regulating Finite Automata

Section 4.1 establishes the identity between the family of languages accepted by n-first-SFAs
and the family of languages generated by (n+1)-PRLGs. To do so, we need the following form
of parallel right linear grammars.

Lemma 4 For every n-PRLG G = (N1, . . . , Nn, T, S, P), there is an equivalent n-PRLG G′ =
(N ′

1, . . . , N
′
n, T, S, P

′) that satisfies:

1. if S → X1 . . . Xn ∈ P ′, then Xi does not occur on the right-hand side of any rule, for
1 ≤ i ≤ n;

2. if S → α, S → β ∈ P ′ and α 6= β, then alph(α) ∩ alph(β) = ∅.

6

Proof. If G does not satisfy conditions from the lemma, then we will construct a new n-PRLG
G′ = (N ′

1, . . . , N
′
n, T, S, P

′), where P ′ contains all rules of the form X → β ∈ P , X 6= S, and
Nj ⊆ N ′

j , 1 ≤ j ≤ n. For each rule S → X1 . . . Xn ∈ P , we add new nonterminals Yj 6∈ N ′
j

into N ′
j , and rules include S → Y1 . . . Yn and Yj → Xj in P ′, 1 ≤ j ≤ n. Clearly,

S ⇒G X1 . . . Xn if and only if S ⇒G′ Y1 . . . Yn ⇒ X1 . . . Xn.

Thus, L(G) = L(G′). ut

Lemma 5 LetG be an n-PRLG. Then, there is an (n−1)-first-SFA,M , such thatL(G) = L(M).

Proof. Informally, M is divided into n parts (see Fig. 3). The ith part represents a finite au-
tomaton accepting the language of G’s ith component, and R also connects the ith part to the
(i+ 1)st part as depicted in Fig. 3.

Formally, without loss of generality, we assume G = (N1, . . . , Nn, T, S, P) to be in the
form from Lemma 4. We construct an (n − 1)-first-SFA M = (Q, T, δ, q0, qt, F,R), where
Q = {q0, . . . , qn} ∪ N , N = N1 ∪ . . . ∪ Nn, {q0, q1, . . . , qn} ∩ N = ∅, F = {qn}, δ = {qi →
Xi+1 : S → X1 . . . Xn ∈ P, 0 ≤ i < n} ∪ {Xw → Y : X → wY ∈ P} ∪ {Xw → qi :
X → w ∈ P, w ∈ T ∗, X ∈ Ni, i ∈ {1, . . . , n}}, qt = q1, Ψ = δ with the identity map, and
R = {(qi → Xi+1, qi+1 → Xi+2) : S → X1 . . . Xn ∈ P, 0 ≤ i ≤ n− 2}.

Next, we prove L(G) = L(M). To prove L(G) ⊆ L(M), consider a derivation of w in G
and construct an acceptance of w in M depicted in Fig. 3. This figure clearly demonstrates the

S
⇓

X1
1 X2

1 . . . Xn
1

⇓
x1

1X
1
2 x2

1X
2
2 . . . xn

1Xn
2

⇓
...
⇓

x1
1 . . . x1

k−1X
1
k x2

1 . . . X2
k . . . xn

1 . . . Xn
k

⇓
w = x1

1 . . . x1
k x2

1 . . . x2
k . . . xn

1 . . . xn
k

in G

q0
ε ↓
X1

1
x1

1 ↓
X1

2
x1

2 ↓...
x1

k−1 ↓
X1

k
x1

k ↓
q1

ε ↓
X2

1
x2

1 ↓
X2

2
x2

2 ↓...
x2

k−1 ↓
X2

k
x2

k ↓
q2

...

ε ↓
Xn

1
xn

1 ↓
Xn

2
xn

2 ↓...
xn

k−1 ↓
Xn

k
xn

k ↓
qn

in M

Fig. 3: A derivation of w in G and the corresponding acceptance of w in M .

fundamental idea behind this part of the proof; its complete and rigorous version is lengthy and
left to the reader. Thus, for each derivation S ⇒∗ w, w ∈ T ∗, there is an acceptance of w in M .

To prove L(M) ⊆ L(G), let w ∈ L(M). Consider an acceptance of w in M . Observe
that the acceptance is of the form depicted on the right-hand side of Fig. 3. It means that the
number of steps M made from qi−1 to qi is the same as from qi to qi+1 since the only rule
in the relation with qi−1 → X i

1 is the rule qi → X i+1
1 . Moreover, M can never come back

to a state corresponding to a previous component. (By a component of M , we mean the finite
automaton Mi = (Q,Σ, δ, qi−1, {qi}), for 1 ≤ i ≤ n.) Now, construct a derivation of w in G.
By Lemma 4, we have |{X : (qi → X i+1

1 , qi+1 → X) ∈ R}| = 1, for all 0 ≤ i < n− 1. Thus,
S → X1

1X
2
1 . . . X

n
1 ∈ P . Moreover, if X i

jx
i
j → X i

j+1, we apply X i
j → xi

jX
i
j+1 ∈ P , and if

X i
kx

i
k → qi, we apply X i

k → xi
k ∈ P , 1 ≤ i ≤ n, 1 ≤ j < k.

Hence, Lemma 5 holds. ut

7

Lemma 6 Let M be an n-first-SFA. There is an (n+ 1)-PRLG, G, such that L(G) = L(M).

Proof. Let M = (Q,Σ, δ, q0, qt, F,R). Consider G = (N0, . . . , Nn, Σ, S, P), where Ni =
(QΣl ×Q× {i} ×Q) ∪ (Q× {i} ×Q), l = max{|w| : qw → p ∈ δ}, 0 ≤ i ≤ n, and

P = {S → [q0x0, q
0, 0, qt][qtx1, q

1, 1, qi1][qi1x2, q
2, 2, qi2] . . . [qin−1xn, q

n, n, qin] : r0.q0x0 →
q0, r1.qtx1 → q1, r2.qi1x2 → q2, . . ., rn.qin−1xn → qn ∈ δ,
(r0, r1), (r1, r2), . . . , (rn−1, rn) ∈ R, qin ∈ F}∪
{[px, q, i, r] → x[q, i, r]}∪
{[q, i, q] → ε : q ∈ Q}∪
{[q, i, p] → w[q′, i, p] : qw → q′ ∈ δ}.

Next, we prove L(G) = L(M). To prove L(G) ⊆ L(M), observe that we make n+1 copies
of M and go through them similarly to Fig. 3. Consider a derivation of w in G. Then, in greater
detail, this derivation is of the form

S⇒ [q0x
0
0, q

0
1, 0, qt][qtx

1
0, q

1
1, 1, qi1] . . . [qin−1x

n
0 , q

n
1 , n, qin]

⇒ x0
0[q

0
1, 0, qt]x

1
0[q

1
1, 1, qi1] . . . x

n
0 [qn

1 , n, qin]

⇒ x0
0x

0
1[q

0
2, 0, qt]x

1
0x

1
1[q

1
2, 1, qi1] . . . x

n
0x

n
1 [qn

2 , n, qin] (1)
...
⇒ x0

0x
0
1 . . . x

0
k[qt, 0, qt]x

1
0x

1
1 . . . x

1
k[qi1 , 1, qi1] . . . x

n
0x

n
1 . . . x

n
k [qin , n, qin]

⇒ x0
0x

0
1 . . . x

0
kx

1
0x

1
1 . . . x

1
k . . . x

n
0x

n
1 . . . x

n
k

and r0.q0x0
0 → q0

1 , r1.qtx1
0 → q1

1 , r2.qi1x
2
0 → q2

1, . . . , rn.qin−1x
n
0 → qn

1 ∈ δ, (r0, r1), (r1, r2), . . . ,
(rn−1, rn) ∈ R, and qin ∈ F .

Thus, the list of rules used in the acceptance of w in M is

µ = (q0x
0
0 → q0

1)(q
0
1x

0
1 → q0

2) . . . (q
0
kx

0
k → qt)

(qtx
1
0 → q1

1)(q
1
1x

1
1 → q1

2) . . . (q
1
kx

1
k → qi1)

(qi1x
2
0 → q2

1)(q
2
1x

2
1 → q2

2) . . . (q
2
kx

2
k → qi2) (2)

...
(qin−1x

n
0 → qn

1)(qn
1x

n
1 → qn

2) . . . (qn
kx

n
k → qin).

Now, we prove L(M) ⊆ L(G). Informally, the acceptance is divided into n+ 1 parts of the
same length. Grammar G generates the ith part by the ith component and records the state from
which the next component starts.

Let µ be a list of rules used in an acceptance of w = x0
0x

0
1 . . . x

0
kx

1
0x

1
1 . . . x

1
k . . . x

n
0x

n
1 . . . x

n
k

in M of the form (2). Then, the derivation of the form (1) is the corresponding derivation of w
in G since [qi

j, i, p] → xi
j[q

i
j+1, i, p] ∈ P and [q, i, q] → ε, for all 0 ≤ i ≤ n, 1 ≤ j < k.

Hence, Lemma 6 holds. ut

The first main result of this paper follows next.

Theorem 7 For all n ≥ 0, Wn = Rn+1.

Proof. This proof follows from Lemma 5 and 6. ut

Corollary 8 The following statements hold true.

1. REG = W0 ⊂ W1 ⊂ W2 ⊂ . . . ⊂ CS.

8

2. W1 ⊂ CF .
3. W2 6⊆ CF .
4. CF 6⊆ Wn for any n ≥ 0.
5. For all n ≥ 0, Wn is closed under union, finite substitution, homomorphism, intersection

with a regular language, and right quotient with a regular language.
6. For all n ≥ 1, Wn is not closed under intersection and complement.

Proof. Recall the following statements proved in [21]:

– REG = R1 ⊂ R2 ⊂ R3 ⊂ . . . ⊂ CS.
– R2 ⊂ CF .
– CF 6⊆ Rn, n ≥ 1.
– For all n ≥ 1, Rn is closed under union, finite substitution, homomorphism, intersection

with a regular language, and right quotient with a regular language.
– For all n ≥ 2, Rn is not closed under intersection and complement.

These statements and Theorem 7 imply statements 1, 2, 4, 5, 6 of Corollary 8. Moreover, observe
that {anbnc2n : n ≥ 0} ∈ W2 − CF , which proves 3. ut

Theorem 9 For all n ≥ 1, Wn is not closed under inverse homomorphism.

Proof. For n = 1, let L = {akbk : k ≥ 1}, and let the homomorphism h : {a, b, c}∗ → {a, b}∗
be defined as h(a) = a, h(b) = b, and h(c) = ε. Then, L ∈ W1, but

L′ = h−1(L) ∩ c∗a∗b∗ = {c∗akbk : k ≥ 1} 6∈ W1.

Assume that L′ is in W1. Then, by Theorem 7, there is a 2-PRLG G = (N1, N2, T, S, P)
such that L(G) = L′. Let k > |P | · max{|w| : X → wY ∈ P}. Consider a derivation of
ckakbk ∈ L′. The second component can generate only finitely many as; otherwise, it derives
{akbn : k < n}, which is not regular. Analogously, the first component generates only finitely
many bs. Therefore, the first component generates any number of as, and the second component
generates any number of bs. Moreover, there is a derivation of the form X ⇒m X , for some
X ∈ N2, and m ≥ 1, used in the derivation in the second component. In the first component,
there is a derivation A ⇒l asA, for some A ∈ N1, and s, l ≥ 1. Then, we can modify the
derivation of ckakbk so that in the first component, we repeat the cycleA⇒l asA (m+1)-times,
and in the second component, we repeat the cycle X ⇒m X (l + 1)-times. The derivations of
both components have the same length—the added cycles are of length ml, and the rest is of
the same length as in the derivation of ckakbk. Therefore, we have derived ckarbk, where r > k,
which is not in L′—a contradiction.

For n > 1, the proof is analogous and left to the reader. ut

Corollary 10 For all n ≥ 1, Wn is not closed under concatenation. Therefore, it is not closed
under Kleene closure either.

Proof. For n = 1, let L1 = {c}∗ and L2 = {akbk : k ≥ 1}. Then, L1L2 = {c∗akbk : k ≥ 1}.
Analogously, prove this corollary for n > 1. ut

9

4.2 n-Turn All-Move Self-Regulating Finite Automata

This section discusses n-turn all-move self-regulating finite automata. It proves that the family
of languages accepted by n-all-SFAs coincides with the family of languages generated by n-
RLSMGs.

Lemma 11 For every n-RLSMG, G = (N1, . . . , Nn, T, S, P), there is an equivalent n-RLSMG,
G′, that satisfies:

1. if [S → X1 . . . Xn], then Xi does not occur on the right-hand side of any rule, 1 ≤ i ≤ n;
2. if [S → α], [S → β] ∈ P and α 6= β, then alph(α) ∩ alph(β) = ∅;
3. for any two matrices m1,m2 ∈ P , if m1[i] = m2[i], for some 1 ≤ i ≤ n, then m1 = m2.

Proof. The first two conditions can be proved analogously to Lemma 4. Suppose that there are
matrices m and m′ such that m[i] = m′[i], for some 1 ≤ i ≤ n. Let m = [X1 → x1, . . . , Xn →
xn], m′ = [Y1 → y1, . . . , Yn → yn]. Replace these matrices with matrices m1 = [X1 →
X ′

1, . . . , Xn → X ′
n], m2 = [X ′

1 → x1, . . . , X
′
n → xn], and m′

1 = [Y1 → Y ′′
1 , . . . , Yn → Y ′′

n],
m′

2 = [Y ′′
1 → y1, . . . , Y

′′
n → yn], where X ′

i, Y
′′
i are new nonterminals for all i. These new

matrices satisfy condition 3. Repeat this replacement until the resulting grammar satisfies the
properties of G′ given in this lemma. ut

Lemma 12 Let G be an n-RLSMG. There is an (n− 1)-all-SFA, M , such that L(G) = L(M).

Proof. Without loss of generality, we assume that G = (N1, . . . , Nn, T, S, P) is in the form
described in Lemma 11. We construct (n− 1)-all-SFA M = (Q, T, δ, q0, qt, F,R), where Q =
{q0, . . . , qn} ∪N , N = N1 ∪ . . . ∪Nn, {q0, q1, . . . , qn} ∩N = ∅, F = {qn}, δ = {qi → Xi+1 :
[S → X1 . . . Xn] ∈ P, 0 ≤ i < n} ∪ {Xiwi → Yi : [X1 → w1Y1, . . . , Xn → wnYn] ∈ P, 1 ≤
i ≤ n} ∪ {Xiwi → qi : [X1 → w1, . . . , Xn → wn] ∈ P, wi ∈ T ∗, 1 ≤ i ≤ n}, qt = q1, Ψ = δ
with the identity map, and R = {(qi → Xi+1, qi+1 → Xi+2) : [S → X1 . . . Xn] ∈ P, 0 ≤ i ≤
n − 2} ∪ {(Xiwi → Yi, Xi+1wi+1 → Yi+1) : [X1 → w1Y1, . . . , Xn → wnYn] ∈ P, 1 ≤ i <
n} ∪ {(Xiwi → qi, Xi+1wi+1 → qi+1) : [X1 → w1, . . . , Xn → wn] ∈ P, wi ∈ T ∗, 1 ≤ i < n}.

We next prove L(G) = L(M). The proof of L(G) ⊆ L(M) is very similar to the proof of
the same inclusion of Lemma 5, so it is left to the reader.

To prove L(M) ⊆ L(G), consider w ∈ L(M) and an acceptance of w in M . As in Lemma
5, the derivation looks like the one depicted on the right-hand side of Fig. 3. Next, we generate
w in G as follows. By Lemma 11, there is matrix [S → X1

1X
2
1 . . . X

n
1] in P . Moreover, if

X i
jx

i
j → X i

j+1, 1 ≤ i ≤ n, then (X i
j → xi

jX
i
j+1, X

i+1
j → xi+1

j X i+1
j+1) ∈ R, for 1 ≤ i < n, 1 ≤

j < k. We apply [X1
j → x1

jX
1
j+1, . . . , X

n
j → xn

jX
n
j+1] from P . If X i

kx
i
k → qi, 1 ≤ i ≤ n, then

(X i
k → xi

k, X
i+1
k → xi+1

k) ∈ R, for 1 ≤ i < n, and we apply [X1
k → x1

k, . . . , X
n
k → xn

k] ∈ P .
Thus, w ∈ L(G).

Hence, Lemma 12 holds. ut

Lemma 13 Let M be an n-all-SFA. There is an (n+ 1)-RLSMG, G, such that L(G) = L(M).

Proof. Let M = (Q,Σ, δ, q0, qt, F,R). Consider G = (N0, . . . , Nn, Σ, S, P), where Ni =
(QΣl ×Q× {i} ×Q) ∪ (Q× {i} ×Q), l = max{|w| : qw → p ∈ δ}, 0 ≤ i ≤ n, and

P = {[S → [q0x0, q
0, 0, qt][qtx1, q

1, 1, qi1] . . . [qin−1xn, q
n, n, qin]] :

r0.q0x0 → q0, r1.qtx1 → q1, . . . , rn.qin−1xn → qn ∈ δ,
(r0, r1), . . . , (rn−1, rn) ∈ R, qin ∈ F}∪
{[[p0x0, q0, 0, r0] → x0[q0, 0, r0], . . . , [pnxn, qn, n, rn] → xn[qn, n, rn]]}∪

10

{[[q0, 0, q0] → ε, . . . , [qn, n, qn] → ε] : qi ∈ Q, 0 ≤ i ≤ n}∪
{[[q0, 0, p0] → w0[q

′
0, 0, p0], . . . , [qn, n, pn] → wn[q′n, n, pn]] : rj.qjwj → q′j ∈ δ, 0 ≤ j ≤

n, (ri, ri+1) ∈ R, 0 ≤ i < n}.

Next, we prove L(G) = L(M). To prove L(G) ⊆ L(M), consider a derivation of w
in G. Then, the derivation is of the form (1) and there are rules r0.q0x0

0 → q0
1, r1.qtx

1
0 →

q1
1, . . . , rn.qin−1x

n
0 → qn

1 in δ such that (r0, r1), . . . , (rn−1, rn) ∈ R. Moreover, (rl
j, r

l+1
j) ∈ R,

where rl
j.q

l
jx

l
j → ql

j+1 ∈ δ, and (rl
k, r

l+1
k) ∈ R, where rl

k.q
l
kx

l
k → qil ∈ δ, 0 ≤ l < n, 1 ≤ j < k,

qi0 denotes qt, and qin ∈ F . Thus, M accepts w with the list of rules µ of the form (2).
To prove L(M) ⊆ L(G), let µ be a list of rules used in an acceptance of

w = x0
0x

0
1 . . . x

0
kx

1
0x

1
1 . . . x

1
k . . . x

n
0x

n
1 . . . x

n
k

in M of the form (2). Then, the derivation is of the form (1) because

[[q0
j , 0, qt] → x0

j [q
0
j+1, 0, qt], . . . , [q

n
j , n, qin] → xn

j [qn
j+1, n, qin]] ∈ P,

for all qi
j ∈ Q, 1 ≤ i ≤ n, 1 ≤ j < k, and [[qt, 0, qt] → ε, . . . , [qin , n, qin] → ε] ∈ P .

Hence, Lemma 13 holds. ut

The second main result of this paper follows next.

Theorem 14 For all n ≥ 0, Sn = R[n+1].

Proof. This proof follows from Lemma 12 and 13. ut

Corollary 15 The following statements hold:

1. REG = S0 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ CS.
2. S1 6⊆ CF .
3. CF 6⊆ Sn, for every n ≥ 0.
4. For all n ≥ 0, Sn is closed under union, concatenation, finite substitution, homomorphism,

intersection with a regular language, and right quotient with a regular language.
5. For all n ≥ 1, Sn is not closed under intersection, complement, and Kleene closure.

Proof. Recall the following statements proved in [28]:

– REG = R[1] ⊂ R[2] ⊂ R[3] ⊂ . . . ⊂ CS.
– For all n ≥ 1, R[n] is closed under union, finite substitution, homomorphism, intersection

with a regular language, and right quotient with a regular language.
– For all n ≥ 2, R[n] is not closed under intersection and complement.

Furthermore, recall these statements proved in [23] and [24]:

– For all n ≥ 1, R[n] is closed under concatenation.
– For all n ≥ 2, R[n] is not closed under Kleene closure.

These statements and Theorem 14 imply statements 1, 4, and 5 of Corollary 15. Moreover,
observe that {ww : w ∈ {a, b}∗} ∈ S1 − CF (see Example 2), which proves 2. Finally, let
L = {wcwR : w ∈ {a, b}∗}. In [4, Theorem 1.5.2], there is a proof that L 6∈ R[n], for any
n ≥ 1. Thus, 3 follows from Theorem 14. ut

Theorem 16, given next, follows from Theorem 14 and from Corollary 3.3.3 in [24]. How-
ever, Corollary 3.3.3 in [24] is not proved effectively. We next prove Theorem 16 effectively.

11

Theorem 16 Sn is closed under inverse homomorphism, for all n ≥ 0.

Proof. For n = 1, let M = (Q,Σ, δ, q0, qt, F,R) be a 1-all-SFA, and let h : ∆∗ → Σ∗ be
a homomorphism. Next, we construct 1-all-SFA M ′ = (Q′, ∆, δ′, q′0, q

′
t, {q′f}, R′) accepting

h−1(L(M)) as follows. Denote k = max{|w| : qw → p ∈ δ} + max{|h(a)| : a ∈ ∆}. Let
Q′ = q′0 ∪ {[x, q, y] : x, y ∈ Σ∗, |x|, |y| ≤ k, q ∈ Q}. Initially, set δ′ and R′ to ∅. Then, extend
δ′ and R′ by performing 1 through 5:

1. For y ∈ Σ∗, |y| ≤ k, add
(q′0 → [ε, q0, y], q

′
t → [y, qt, ε]) to R′;

2. For A ∈ Q′, q 6= qt, add
([x, q, y]a→ [xh(a), q, y], A→ A) to R′;

3. For A ∈ Q′, add
(A→ A, [x, q, ε]a→ [xh(a), q, ε]) to R′;

4. For (qx→ p, q′x′ → p′) ∈ R, q 6= qt, add
([xw, q, y] → [w, p, y], [x′w′, q′, ε] → [w′, p′, ε]) to R′;

5. For qf ∈ F , add
([y, qt, y] → q′t, [ε, qf , ε] → q′f) to R′.

In essence, M ′ simulates M in the following way. In a state of the form [x, q, y], the three
components have the following meaning:

– x = h(a1 . . . an), where a1 . . . an is the input string that M ′ has already read;
– q is the current state of M ;
– y is the suffix remaining as the first component of the state that M ′ enters during a turn; y is

thus obtained when M ′ reads the last symbol right before the turn occurs in M ; M reads y
after the turn.

More precisely, h(w) = w1yw2, where w is an input string, w1 is accepted by M before making
the turn, i.e. from q0 to qt, and yw2 is accepted by M after making the turn, i.e. from qt to
qf ∈ F . A rigorous version of this proof is left to the reader.

For n > 1, the proof is analogous and left to the reader. ut

4.3 Language Families Accepted by n-first-SFAs and n-all-SFAs

In this section, we compare the family of languages accepted by n-first-SFAs with the family of
languages accepted by n-all-SFAs.

Theorem 17 For all n ≥ 1, Wn ⊂ Sn.

Proof. In [21] and [28], it is proved that for all n > 1, Rn ⊂ R[n]. The proof of Theorem 17
thus follows from Theorem 7 and 14. ut

Theorem 18 Wn 6⊆ Sn−1, n ≥ 1.

Proof. It is easy to see that L = {ak
1a

k
2 . . . a

k
n+1 : k ≥ 1} ∈ Wn = Rn+1. However, L 6∈ Sn−1 =

R[n] (see Lemma 1.5.6 in [4]). ut

Lemma 19 For each regular language, L, language {wn : w ∈ L} ∈ Sn−1.

12

Proof. Let L = L(M), where M is a finite automaton. Make n copies of M . Rename their
states so all the sets of states are pairwise disjoint. In this way, also rename the states in the
rules of each of these n automata; however, keep the labels of the rules unchanged. For each
rule label r, include (r, r) into R. As a result, we obtain an n-turn all-move self-regulating finite
automaton that accepts {wn : w ∈ L}. A rigorous version of this proof is left to the reader. ut

Theorem 20 Sn −W 6= ∅, for all n ≥ 1, where W =
⋃∞

m=1Wm.

Proof. By induction on n ≥ 1, we prove that language L = {(cw)n+1 : w ∈ {a, b}∗} 6∈ W .
From Lemma 19, L ∈ Sn.

Basis: For n = 1, let G be an m-PRLG generating L, for some positive integer m. Consider a
sufficiently large string cw1cw2 ∈ L such that w1 = w2 = an1bn2 , n2 > n1 > 1. Then, there is
a derivation of the form

S ⇒p

x1A1x2A2 . . . xmAm ⇒k x1y1A1x2y2A2 . . . xmymAm (3)

in G, where cycle (3) generates more than one a in w1. The derivation continues as

x1y1A1x2y2A2 . . . xmymAm ⇒r

x1y1z1B1x2y2z2B2 . . . xmymzmBm ⇒l x1y1z1u1B1x2y2z2u2B2 . . . xmymzmumBm (4)
(cycle (4) generates no as) ⇒s cw1cw2.

Next, modify the left derivation, the derivation in components generating cw1, so that the a-
generating cycle (3) is repeated (l+ 1)-times. Similarly, modify the right derivation, the deriva-
tion in the other components, so that the no-a-generating cycle (4) is repeated (k + 1)-times.
Thus, the modified left derivation is of length p+k(l+1)+ r+ l+s = p+k+ r+ l(k+1)+s,
which is the length of the modified right derivation. Moreover, the modified left derivation gen-
erates more as in w1 than the right derivation in w2—a contradiction.

Induction step: Suppose that the theorem holds for all n ≤ k, for some k ≥ 1. Consider
n + 1 and let {(cw)n+1 : w ∈ {a, b}∗} ∈ Wl, for some l ≥ 1. As Wl is closed under the
right quotient with a regular language, and language {cw : w ∈ {a, b}∗} is regular, we obtain
{(cw)n : w ∈ {a, b}∗} ∈ Wl ⊆ W—a contradiction. ut

Fig. 4 summarizes the language families discussed in this paper.

5 Conclusion and Discussion

This paper has discussed self-regulating finite automata. As demonstrated next, we can analog-
ically introduce and discuss self-regulating pushdown automata.

Recall that a pushdown automaton (see [15]), M , is a septuple M = (Q,Σ, Γ, δ, q0, Z0, F),
where Q, Σ, q0 ∈ Q, F are as in a finite automaton, Γ is a finite pushdown alphabet, δ is a finite
set of rules of the form Zqw → γp, q, p ∈ Q, Z ∈ Γ , w ∈ Σ∗, γ ∈ Γ ∗, and Z0 is an initial
pushdown symbol. Again, let ψ denote the bijection from δ to Ψ , and write r.Zqw → γp instead
of ψ(Zqw → γp) = r. A configuration of M is any word from Γ ∗QΣ∗. For any configuration
xAqwy, where x ∈ Γ ∗, y ∈ Σ∗, q ∈ Q, and any r.Aqw → γp ∈ δ, M makes a move from
xAqwy to xγpy according to r, written as xAqwy ⇒ xγpy [r]. As usual, we define closure ⇒∗.
If w ∈ Σ∗ and Z0q0w ⇒∗ f [µ], f ∈ F , then w is accepted by M and Z0q0w ⇒∗ f [µ] is an
acceptance of w in M . The language of M is defined as L(M) = {w ∈ Σ∗ : Z0q0w ⇒∗ f [µ]
is an acceptance of w}.

13

CS

W

S

CF REG W1

S1

. . .Wn

Sn

Fig. 4: The hierarchy of languages.

Definition 21 A self-regulating pushdown automaton, SPDA, M , is a nonuple

M = (Q,Σ, Γ, δ, q0, qt, Z0, F,R),

where

1. (Q,Σ, Γ, δ, q0, Z0, F) is a pushdown automaton,
2. qt ∈ Q is a turn state, and
3. R ⊆ Ψ × Ψ is a finite relation, where Ψ is an alphabet of rule labels.

Definition 22 Let n ≥ 0 and M = (Q,Σ, Γ, δ, q0, qt, Z0, F,R) be a self-regulating pushdown
automaton. M is said to be an n-turn first-move self-regulating pushdown automaton, n-first-
SPDA, if M accepts w in the following way. There is an acceptance Z0q0w ⇒∗ f [µ] such
that

µ = r0
1 . . . r

0
kr

1
1 . . . r

1
k . . . r

n
1 . . . r

n
k ,

where k ∈ N, r0
k is the first rule of the form Zqx → γqt, for some Z ∈ Γ , q ∈ Q, x ∈ Σ∗,

γ ∈ Γ ∗, and
(rj

1, r
j+1
1) ∈ R

for all 0 ≤ j < n.
The family of languages accepted by n-first-SPDAs is denoted by L(n-first-SPDA).

Definition 23 Let n ≥ 0 and M = (Q,Σ, Γ, δ, q0, qt, Z0, F,R) be a self-regulating pushdown
automaton. M is said to be an n-turn all-move self-regulating pushdown automaton, n-all-
SPDA, if M accepts w in the following way. There is an acceptance Z0q0w ⇒∗ f [µ] such
that

µ = r0
1 . . . r

0
kr

1
1 . . . r

1
k . . . r

n
1 . . . r

n
k ,

where k ∈ N, r0
k is the first rule of the form Zqx → γqt, for some Z ∈ Γ , q ∈ Q, x ∈ Σ∗,

γ ∈ Γ ∗, and
(rj

i , r
j+1
i) ∈ R

for all 1 ≤ i ≤ k, 0 ≤ j < n.
The family of languages accepted by n-all-SPDAs is denoted by L(n-all-SPDA).

14

5.1 n-Turn All-Move Self-Regulating Pushdown Automata

It is easy to see that an n-turn all-move self-regulating pushdown automaton without any turn
state is exactly a common pushdown automaton. Therefore, L(0-all-SPDA) = CF . Moreover,
if we consider 1-turn all-move self-regulating pushdown automata, their power is that of the
Turing machines.

Theorem 24 L(1-all-SPDA) = RE.

Proof. For any L ∈ RE, L ⊆ ∆∗, there are context-free languages L(G) and L(H) and
a homomorphism h : Σ∗ → ∆∗ such that L = h(L(G) ∩ L(H)) (see Theorem 1.12 in
[14]). Suppose that G = (NG, Σ, PG, SG), H = (NH , Σ, PH , SH) are in the Greibach nor-
mal form, i.e. all rules are of the form A → aα, where A is a nonterminal, a is a termi-
nal, and α is a (possibly empty) string of nonterminals. Let us construct 1-all-SPDA M =
({q0, q, qt, p, f}, ∆,Σ ∪ NG ∪ NH ∪ {Z}, δ, q0, Z, {f}, R), Z 6∈ Σ ∪ NG ∪ NH , with R made
as follows:

1. add (Zq0 → ZSGq, Zqt → ZSHp) to R
2. add (Aq → Bn . . . B1aq, Cp→ Dm . . . D1ap) to R if
A→ aB1 . . . Bn ∈ PG and
C → aD1 . . . Dm ∈ PH

3. add (aqh(a) → q, ap→ p) to R
4. add (Zq → Zqt, Zp→ f) to R

Moreover, δ contains only the rules from the definition of R.
Now, we prove w ∈ h(L(G) ∩ L(H)) if and only if w ∈ L(M).

Only if Part: Let w ∈ h(L(G) ∩ L(H)). There are a1, a2, . . . , an ∈ Σ such that a1a2 . . . an ∈
L(G) ∩ L(H) and w = h(a1a2 . . . an), for some n ≥ 0. There are leftmost derivations SG ⇒n

a1a2 . . . an and SH ⇒n a1a2 . . . an of length n in G and H , respectively, because in every
derivation step exactly one terminal element is derived. Thus, M accepts h(a1)h(a2) . . . h(an)
as

Zq0h(a1)h(a2) . . . h(an) ⇒ ZSGqh(a1)h(a2) . . . h(an), . . . , Zanqh(an) ⇒ Zq, Zq ⇒ Zqt,

Zqt ⇒ ZSHp, . . . , Zanp⇒ Zp, Zp⇒ f.

In state q, by using its pushdown, M simulates G’s derivation of a1 . . . an but reads h(a1) . . .
h(an) as the input. In p, M simulates H’s derivation of a1a2 . . . an but reads no input. As
a1a2 . . . an can be derived in both G and H by making the same number of steps, the automaton
can successfully complete the acceptance of w.

If Part: Notice that in one step, M can read only h(a) ∈ ∆∗, for some a ∈ Σ. Let w ∈ L(M),
then w = h(a1)h(a2) . . . h(an), for some a1, a2, . . . , an ∈ Σ. Consider M ’s acceptance of w

Zq0h(a1)h(a2) . . . h(an) ⇒ ZSGqh(a1)h(a2) . . . h(an), . . . , Zanqh(an) ⇒ Zq, Zq ⇒ Zqt,

Zqt ⇒ ZSHp, . . . , Zanp⇒ Zp, Zp⇒ f.

As stated above, in q, M simulates G’s derivation of a1a2 . . . an, and then in p, M simulates
H’s derivation of a1a2 . . . an. It successfully completes the acceptance of w only if a1a2 . . . an

can be derived in both G and H . Hence, the if part holds, too. ut

15

5.2 Open Problems

Although the fundamental results about self-regulating automata have been achieved in this
paper, there still remain several open problems concerning them. Perhaps most importantly,
these open problem areas include 1 through 3 given next:

1. What is the language family accepted by n-turn first-move self-regulating pushdown au-
tomata, when n ≥ 1 (see Definition 22)?

2. By analogy with the standard deterministic finite and pushdown automata (see page 145 and
page 437 in [15]), introduce the deterministic versions of self-regulating automata. What is
their power?

3. Discuss the closure properties of other language operations, such as the reversal.

Acknowledgements

The authors would like to thank both anonymous referees for their suggestions. This work was
supported by the GAČR 201/07/0005, 102/05/H050, and FR762/2007/G1 grants.

References

1. A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Compiling, Volume I: Parsing.
Prentice Hall, Englewood Cliffs, New Jersey, 1972.

2. J. M. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, Word Language
Grammar, pages 111–174. Springer-Verlag, Berlin, 1997.

3. B. Courcelle. On jump deterministic pushdown automata. Math. Systems Theory, 11:87–109, 1977.
4. J. Dassow and Gh. Păun. Regulated Rewriting in Formal Language Theory. Springer-Verlag, Berlin,

1989.
5. P. C. Fischer and A. L. Rosenberg. Multitape one-way nonwriting automata. J. Comput. System

Sci., 2:38–101, 1968.
6. S. Ginsburg, S. A. Greibach, and M. A. Harrison. One-way stack automata. J. ACM, 14:389–418,

1967.
7. S. Ginsburg and E. Spanier. Finite-turn pushdown automata. SIAM J. Control, 4:429–453, 1968.
8. S. A. Greibach. Checking automata and one-way stack languages. J. Comput. System Sci., 3:196–

217, 1969.
9. M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, Mas-

sachusetts, 1978.
10. O. H. Ibarra. Simple matrix languages. Inform. and Control, 17:359–394, 1970.
11. M. Ito. Algebraic Theory of Automata and Languages. World Scientific, Singapore, 2004.
12. H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, En-

glewood Cliffs, 1981.
13. J. C. Martin. Introduction to Languages and the Theory of Computation. McGraw-Hill, New York,

1991.
14. A. Mateescu and A. Salomaa. Aspects of classical language theory. In G. Rozenberg and

A. Salomaa, editors, Handbook of formal languages, volume 1, Word Language Grammar, pages
175–251. Springer-Verlag, Berlin, 1997.

15. A. Meduna. Automata and Languages: Theory and Applications. Springer, London, 2000.
16. A. Meduna. Simultaneously one-turn two-pushdown automata. Int. J. Comp. Math., 80:679–687,

2003.
17. A. Meduna and D. Kolář. Regulated pushdown automata. Acta Cybernet., 14:653–664, 2000.

16

18. A. Meduna and D. Kolář. One-turn regulated pushdown automata and their reduction. Fund. In-
form., 51:399–405, 2002.

19. G. E. Revesz. Introduction to Formal Languages. McGraw-Hill, New York, 1983.
20. R. D. Rosebrugh and D. Wood. A characterization theorem for n-parallel right linear languages. J.

Comput. System Sci., 7:579–582, 1973.
21. R. D. Rosebrugh and D. Wood. Restricted parallelism and right linear grammars. Util. Math.,

7:151–186, 1975.
22. J. Sakarovitch. Pushdown automata with terminating languages. Languages and Automata Sympo-

sium, RIMS 421, Kyoto University, pages 15–29, 1981.
23. R. Siromoney. Studies in the Mathematical Theory of Grammars and its Applications. PhD thesis,

University of Madras, Madras, India, 1969.
24. R. Siromoney. Finite-turn checking automata. J. Comput. System Sci., 5:549–559, 1971.
25. T. A. Sudkamp. Languages and Machines. Addison-Wesley, Reading, Massachusetts, 1988.
26. L. Valiant. The equivalence problem for deterministic finite turn pushdown automata. Inform. and

Control, 81:265–279, 1989.
27. D. Wood. Properties of n-parallel finite state languages. Technical report, McMaster University,

1973.
28. D. Wood. m-parallel n-right linear simple matrix languages. Util. Math., 8:3–28, 1975.

