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Two Power-Decreasing Derivation Restrictions in
Generalized Scattered Context Grammars®

Tomas Masopust! Alexander Meduna' and Jif{ Simacek!

Abstract

The present paper introduces and discusses generalized scattered context
grammars that are based upon sequences of productions whose left-hand sides
are formed by nonterminal strings, not just single nonterminals. It places two
restrictions on the derivations in these grammars. More specifically, let k£ be
a positive integer. The first restriction requires that all rewritten symbols
occur within the first k£ symbols of the first continuous block of nonterminals
in the sentential form during every derivation step. The other restriction de-
fines derivations over sentential forms containing no more than k occurrences
of nonterminals. As its main result, the paper demonstrates that both re-
strictions decrease the generative power of these grammars to the power of
context-free grammars.

Keywords: scattered context grammar; grammatical generalization; deriva-
tion restriction; generative power.

1 Introduction

Scattered context grammars are based upon finite sets of sequences of context-free
productions having a single nonterminal on the left-hand side of every production
(see [5]). According to a sequence of n context-free productions, these grammars
simultaneously rewrites n nonterminals in the current sentential form according to
the n productions in the order corresponding to the appearance of these productions
in the sequence. It is well-known that they characterize the family of recursively
enumerable languages (see [8]).

In this paper, we generalize these grammars so that the left-hand side of ev-
ery production may consist of a string of several nonterminals rather than a single
nonterminal. Specifically, we discuss two derivation restrictions in scattered con-
text grammars generalized in this way. To explain these restrictions, let k£ be a
constant. The first restriction requires that all simultaneously rewritten symbols
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occur within the first & symbols of the first continuous block of nonterminals in
the current sentential form during every derivation step. The other restriction de-
fines the grammatical derivations over sentential forms containing no more than
k occurrences of nonterminals. As the main result, this paper demonstrates that
both restrictions decrease the generative power of generalized scattered context
grammars to the generative power of context-free grammars. As ordinary scattered
context grammars represent special cases of their generalized versions, they also
characterize only the family of context-free languages if they are restricted in this
way.

This result concerning the derivation restrictions is of some interest when com-
pared to analogical restrictions in terms of other grammars working in a context-
sensitive way. Over its history, formal language theory has studied many restrictions
placed on the way grammars derive sentential forms and on the forms of produc-
tions. In [6], Matthews studied derivations of grammars in the strictly leftmost
(rightmost) way—that is, rewritten symbols are preceded (succeeded) only by ter-
minals in the sentential form during the derivation. Later, in [7], he combined
both approaches—leftmost and rightmost derivations—so that any sentential form
during the derivation is of the form Wy, where = and y are terminal strings, W
is a nonterminal string, and a production is applicable only to a leftmost or right-
most substring of W. In both cases, these restrictions result into decreasing the
generative power of type-0 grammars to the power of context-free grammars.

Whereas Matthews studied restrictions placed on the forms of derivations, other
authors studied the forms of productions. In [2], Book proved that if the left-hand
side of any non-context-free production contains besides exactly one nonterminal
only terminals, then the generative power of type-0 grammars decreases to the
power of context-free grammars. He also proved that if the left-hand side of any
non-context-free production has as its left context a terminal string and the left
context is at least as long as the right context, then the generative power of type-0
grammars decreases to the power of context-free grammars, too. In [4], Ginsburg
and Greibach proved that if the left-hand side of any production is a nonterminal
string and the right-hand side contains at least one terminal, then the generated
language is context-free. Finally, in [1], Baker proved a stronger result. This result
says that if any left-hand side of a production either has, besides terminals, only
one nonterminal, or there is a terminal substring, 8, on the right-hand side of
the production such that the length of § is greater than the length of any terminal
substring of the left-hand side of the production, then the generative power of type-
0 grammars decreases to the power of context-free grammars. For more details, see
page 198 in [9] and the literature cited there.

2 Preliminaries
In this paper, we assume that the reader is familiar with formal language theory

(see [10]). For a set @, |Q| denotes the cardinality of (). For an alphabet (finite
nonempty set) V., V* represents the free monoid generated by V. The identity of
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V* is denoted by e. Set VT = V* — {¢}. For w € V*, |w| and w® denote the
length and the mirror image of w, respectively, and sub(w) denotes the set of all
substrings of w. For W C V', occur(w, W) denotes the number of occurrences of
symbols from W in w.

A pushdown automaton is a septuple M = (Q,X%,T,0, qo, Zo, F'), where Q is
a finite set of states, ¥ is an input alphabet, ¢y € @ is the initial state, I' is a
pushdown alphabet, § is a finite set of rules of the form Zga — ~p, where p,q € Q,
Z eTU{e},aeXU{e}, v €' Fis aset of final states, and Z is the initial
pushdown symbol. Let ¢ denote a bijection from ¢ to ¥ (¥ is an alphabet of rule
labels). We write r.Zga — ~p instead of ¥(Zqa — yp) = r.

A configuration of M is any word from ['*QX*. For any configuration xAqay,
where x € I, y € ¥* ¢ € @, and any r.Aga — ~p € §, M makes a move
from zAgay to zypy according to r, written as xAqay = xypy[r], or, simply,
rAqay = xypy. If x,y € T*QY* and m > 0, then x =™ y if and only if there exists
a sequence rg = T => - -+ = T, Where xg = x and x,,, = y. Then, we say x =T y
if and only if there exists m > 0 such that z =" y, and x =* yifand only if x = y or
x =71 y. The language of M is defined as L(M) = {w € ¥* : Zoqow =* f, f € F}.

A phrase-structure grammar or a grammar is a quadruple G = (V,T, P, S),
where V is a total alphabet, 7' C V is an alphabet of terminals, S € V — T is
the start symbol, and P is a finite relation over V*. Set N = V —T. Instead
of (u,v) € P, we write u — v € P throughout. We call v — v a production;
accordingly, P is G’s set of productions. If u — v € P, x,y € V*, then G makes a
derivation step from zuy to xvy, symbolically written as zuy = xvy. If z,y € V*
and m > 0, then x =™ y if and only if there exists a sequence g = 1 = -+ = Ty,
where g = z and z,, = y. We write =7 y if and only if there exists m > 0 such
that z =™ y, and x =* y if and only if x = y or x =T y. The language of G is
defined as L(G) ={w e T* : S =* w}.

3 Definitions

This section defines a new notion of generalized scattered context grammars. In
addition, it formalizes two derivation restrictions studied in this paper.

A generalized scattered context grammar, a SCG for short, is a quadruple G =
(V,T, P,S), where V is a total alphabet, T C V is an alphabet of terminals, S € N
(N =V —T) is the start symbol, and P is a finite set of productions such that
each production p has the form (o, ...,ay) — (B1,-- -, Bn), for some n > 1, where
a; € NT, 3, € V*, forall 1 <i < n. If each production p of the above form satisfies
|a;] = 1, for all 1 < ¢ < n, then G is an ordinary scattered context grammar. Set
m(p) = n. If m(p) > 2, then p is said to be a context-sensitive production. If
7w(p) = 1, then p is said to be context-free. If (aq,...,an) — (B1,...,0n) € P,
U = TeO1T] ...0nTy, and v = xof1x1 ... BTy, where x; € V*, 1 < i < n, then
u= v [(ar,...,an) = (B1,...,0:)] in G or, simply, u = v. Let =T and =*
denote the transitive and the reflexive and transitive closure of =, respectively.
The language of G is defined as £L(G) ={w € T* : § =* w}.
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For an alphabet T = {ay,...,a,}, there is an extended Post correspondence
problem, E, defined as

E= ({(ulvvl)a R (urvvr)}7 (Za17 R Za'n.)) )
where w;, v;, zq; € {0, 1}, for each 1 <4 <7, 1 < j < n. The language represented
by E is the set
LE)={by...bp €T* : exists s1,...,85 € {1,...,r},I1>1,
Usy - .- Us; = Usy - .. Us, Zb; - - - 2b, fOr some k > 0}.

It is well known that for each recursively enumerable language, L, there is an
extended Post correspondence problem, E, such that £(E) = L (see Theorem 1
in [3]).

Next, we define two derivation restrictions discussed in this paper.

Let k > 1. If there is (a1,...,a,) — (B1,--.,0n) € P, u = 2121 . .. Ty,
and v = xof121 ... Bpxn, where

1. 2o € T*N™,

2. x; € N*, forall 0 < i <mn,

3. x, € V*, and

4. occur(xoa1 2y - ..y, N) < K,
then u o= v [r] in G or, simply, u = v. Let ,o=" denote the n-fold product
of o=, where n > 0. Furthermore, let =" denote the reflexive and transitive
closure of o=. Set y_ie ;i L(G) ={w e T*: S =" w}.

Let m,h > 1. W(m) denotes the set of all strings x € V* satisfying 1 given
next. W(m, h) denotes the set of all strings x € V* satisfying 1 and 2 given next.

1. z e (T*N*)™T*;

2. (y € sub(z) and |y| > h) implies alph(y) NT # 0.

If there is (a1,...,an) — (B1,...,0n) € P, u = zoay 21 ...anT,, and v =
xof121 - - . Bny, where

1. g € V¥,

2. x; € N*, for all 0 < i <n, and

3. xp €VF,

then u o= v [r] in G or, simply, u o= v. Let =" denote n-fold product of o=,
where n > 0. Furthermore, let c=* denote the reflexive and transitive closure of
o=.

Let u,v € V*, and u o= v.

if and only if u,v € W(m,h), and
U, = v

if and only if u,v € W(m). Set nonterL(G,m,h) = {w € T* : S lo=* w} and
nonterC(G,m) = {w eT*: S mO:}* w}
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3.1 Language Families

Let SCGs denote the family of generalized scattered context grammars. Define
these language families:

nonter9C(m,h) = {L:L = onterL(G,m,h),G € SCGs} for all m,h > 1
nonterSC(m) = {L:L = ponterL(G,m),G € SCGs} for all m > 1
h—leftSC = {L L= k:—left‘C(G)a G e SCGS} forall k>0

Let CF, CS, and RE denote the families of context-free, context-sensitive, and
recursively enumerable languages, respectively. For all & > 0, yCF denote the
family of languages generated by context-free grammars of index k.

4 Results

This section presents the main results of this paper. First, it demonstrates that,
for every k > 1, CF = _;e;+SC, then that RE = ,,54,5C(1), and, finally, that
for every m,h > 1, ,,CF = jonterSC(m, h).

Theorem 1. Let k be a positive integer. Then, CF = j_15:SC.

Proof. Let G = (V,T, P,S) be a generalized scattered context grammar. Consider
the following pushdown automaton

M = ({q,r, fEU{[v.s] -y €N W < k,s € {q,7}}, T,V U{Z},6,[5,4, Z,{f}),
where Z ¢ V., and § contains rules of the following forms:

L [BoA1Br ... AnBr,q) — (BoarPr ... cnfBn) e, 7]

if(Ah...,An)—>(C¥17...,Oln)GP; ﬂieN*,OS’LSTM
2. A[A1 ... An,r] — [Ar .. ARAT] ifn<k, A€ N;
3. [Al...Ak,T] — [Al...Ak,q];
4. alAy ... An, ] — a[Ay ... Ay, ] ifn<k, aeT;
5. Z[A1... An, 1] — Z[A1... Ay, q] if n < k;
6. ale,rla — [e, 7] ifaeT;
7. Z[e,r] — f.

We prove that L(M) = k_i1e1+1L(G).

(C:) By induction on the number of rules constructed in 1 used in a sequence of
moves, we prove the following claim.

Claim 2. If Za®[ByA161 ... AnBn, qlw =* f, then BoA1B1 ... ApfBra o= w.
Proof. Basis: Only one rule constructed in 1 is used. Then,

ZaR[BOAlﬂl e ApBn, qluw = Z(Boar B - - - anﬂna)R[s, rluw =* f,
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where (A41,...,4,) — (a1,...,a,) € P, n < k, and Boa1 31 ... a0, € T*.
Therefore, Gy = -+ =3, =¢, and a1 ...a,a = uw. Then,

A Apw o= .

Induction hypothesis: Suppose that the claim holds for all sequences of moves
containing no more than ¢ rules constructed in 1.

Induction step: Consider a sequence of moves containing ¢ + 1 rules constructed
in 1. Then,

ZQR[ﬁoAlﬁl e Alﬁla Q]w

= Zal'(Boarfr ... cuf)Ble, rw (by a rule constructed in 1)

=*  Zd[e,r]w’ (by rule constructed in 6)

=*  Zd"[B\B1S; ... Bnf,, rjw’ (by rule constructed in 2)

= Zd"[B{B1S; ... Bnf,, quw’ (by a rule constructed in 3, 4, or 5)
=* f

where o/ € V*N U {e}, v € T*, o'vF = o (Bpa1 81 ...y ), and vw’ = w. Then,
by the production (41,...,4;) = (a1,...,qp),

BoA1Br ... Aifio o= Boon B - .. cqfBia,

where |BpA151 ... AiBi| <k,

Bocr B - . arBia = v(a!)E = vBiB1B; ... B, (a”)E,

and, by the induction hypothesis,
VB, B1B} ... B, (/) o= v

Hence, the inclusion holds. A

(2:) First, we prove the following claim.
Claim 3. If 3 =" w, where 8 € NV*, then Z3%[e,rlw =~ f.
Proof. By induction on the length of derivations.

Basis: Let Ar... Ayw ;0= a1...00w (a1...0, = ), where aw € p_1.1L(G),
and (A1,...,A4,) — (a1,...,a,) € P, 1 <n < k. M simulates this derivation step
as follows.

ZwlA, ... Aie, rlaw
=" Zwl[A; ... A, r)ow (by rule constructed in 2)
= Zwl[A; ... A, qlaw (by a rule constructed in 4 or 5)
= Zwlale, rlaw (by a rule constructed in 1)
=lawl Zle 7] (by rule constructed in 6)
= f (by the rule constructed in 7)
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Induction hypothesis: Suppose that the claim holds for all derivations of length i
or less.

Induction step: Consider a derivation of length ¢ + 1. Let

BoB1Bu - .. Bifry o= BoaifBi ... cufy yo=" pw,

Where pw S k—left‘c(G)7 ﬂQB1ﬂ1 .. .Blﬂl S N+, and either |BOBlﬂ1 . ~-Bl6l| = /{1,
or |BoBy ... Bifi| < k, Boarf1-..aqBy = o, where p € T* ¢ € NV* U {e}, and
v € TV*U{e}. Then,

Z(BoB1fi ... BifBiy) e, rlow

=*  ZyE[BoB1 S ... Bif, rlpw (by rule constructed in 2)
= ZVR[ﬁoBlﬁ .. BB, qlpw (by a rule constructed in 3 or 4)
= Z(pypy)Ble, rlpw (by a rule constructed in 1)
=* Z(y) e, rlw (by a rule constructed in 6)
=* f (by the induction hypothesis)
Hence, the claim holds. A

Now, if S = ua =* ww, where u € T* and a € NV*, then Z[S,qluw =
Z(ua)Be,rJuw =* Zalle,rJlw =* f, by rules constructed in 1 and 6 and the
previous claim. For a = ¢, Z[S, qlu = Zu®[e,rJu =* f. Hence, the other inclusion
holds. O

Theorem 4. RE = ;51 SC(1).

Proof. Let L C {ay,...,a,}* be a recursively enumerable language. There is an
extended Post correspondence problem,

E= ({(ulvvl)a ) (uravr)}v (zaw' - 7Zan))7

where u;, v;, 24, € {0,1}%, for each 1 <4 <r, 1 < j <n, such that L(E) = L; that
is, w=1"0y...by € Lif and only if w € L(E). Set V = {S5,4,0,1,8} UT. Define
the SCG G = (V, T, P, S) with P constructed as follows:

1. For every a € T, add

() = ((24)"Sa), and
(S) = ((2a)"Aa) to P;

a

o

)
)
2. a) For every (u;,v;) € B, 1 <i<r,add (4) — ((u;)®Av;) to P;
b) Add (4) — (%) to P;
3. Add
a) (0,%,8,0) — (3,¢,¢,9),
$,8,1

) (7 s Dy ) ($,€,€,$),and
c) (8) — (e) to P.
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Claim 5. Let wi,ws € {0,1}*. Then, wi$$ws =5 € if and only if wy = (w2)".

Proof. If: Let wy = (w2)® = by ...bg, for some k > 0. By productions (3a) and
(3b) followed by two applications of (3c), we obtain

bk...b2b1$$b1b2...bk = bkbg$$b2bk
=* bk$$bk
= $$=8=-

Therefore the if-part of the claim holds.

Only if: Suppose that |w;| < |ws|. We demonstrate that

w1 $Swe =7 € implies wy = (wy)"

by induction on k = |wy|.

Basis: Let k = 0. Then, w; = ¢ and the only possible derivation is

$$wo = Sws [(3¢)] = w2 [(3¢)].

Hence, we can derive € only if w; = (w2)® = ¢.

Induction Hypothesis: Suppose that the claim holds for all w; satisfying |w;| < k
for some k > 0.

Induction Step: Counsider wia$$bws with a # b, a,b € {0,1}. If wy = wiibwia,
w1, w1z € {0,1}*, then either (3a) or (3b) can be used. In either case, we obtain

w1 a$$bw2 = W11 $w12aw21 $w22 R

where bwy = wa1bwaz, war, wes € {0,1}*, and wizaws; € NT cannot be removed
by any production from the sentential form. The same is true when wy = wh; awl,,
why, why € {0,1}*. Therefore, the derivation proceeds successfully only if a = b.
Thus,

wia$$bws = w1 $Sws =" €,
and from the induction hypothesis,

w1 = (wg)R.
Analogously, the same result can be proved for |w;| > |ws|, which implies that the
only-if part of the claim holds.
Therefore, the claim holds. A
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Examine the introduced productions to see that G always generates by ...b; €
L(E) by a derivation of this form:

S = (Zbk)RSbk
= (26,) (2, ) Sl 1 by
=* (Zbk)R.. (ZbZ)RSbQ. bk
= (Zbk)R .. (Zb2)R(Zbl)RAb1b2 . by
= (20,) % (2 us, ) P Avg by .. by,
= (20) 7 (20) us ) B (us, ) B Avs, oo ovg by Dy
= 2o ) (2 ) B (us)) T (us, ) B8Svs, - v, by .. by
= (Ugy -+ Usy 2, - - - 20y, ) F8S0s, o v by . b
=* b b

Productions introduced in steps 1 and 2 of the construction find nondeterminis-
tically the solution of the extended Post correspondence problem which is sub-
sequently verified by productions from step 3. Therefore, w € L if and only if
w € L(G) and the theorem holds. O

Theorem 6. Let m and h be positive integers. Then, ,,CF = onterSC(m,h).

Proof. Obviously, ,,CF C ,onterSC(m, h).

We prove that ponterSC(m,h) C ,,CF. Let a = xoy121...YnTy, where z; €
T*, y; € Nt for 0 < i < n, and for all 0 < i < n, 2; # €. Define f(a) =
2o(y1)x1 . . . (Yn)xn, where (y;) is a new nonterminal, for all 0 < i < n. Let Ggo =
(V,T, P,S) be a generalized scattered context grammar. Introduce a context-free
grammar Gop = (V/,T,P’,(S)), where V' = {{y) : y€ N*,1 < |y| <h}UT and
P’ is constructed as follows:

1. for each v = woa1 71 ... apTy,, where ; € N*, a; € NT, 1 < || < h, and
(Oél,.-.,Oén) - (ﬂla" '7ﬂn) € P7 add <’Y> - f(xoﬂlxl 67133”) to P'.

Claim 7. Let S 'o=F w in Gsc, where w € V*, k > 0. Then, (S) ,,=F f(w) in
Ger.

Proof. By induction on k =0,1,....

Basis: Let k = 0, thus S "o=% S in Ggc. Then, (S) ,,=° (S) in Gor. As
f(S) = (S), the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 < m < k, where k is
a non-negative integer.

Induction step: Let S lo=* ¢yip Mo ¢v'1) in Gge, and the last production
applied during the derivation is (aq,...,ay) — (B1,...,0,), where ¢ € V*T U{e},
Y = Ty ...QnTy, Y € TV U {e}, v = zofix1...Lln%n, aj,x; € N*, and
B; € V*. By the induction hypothesis,

(S) =" flo).



10 Tomés Masopust, Alexander Meduna and Jiff Simécek

By the definition of f, ¢, and ¢, f(éyw) = f(@){y)f(¢). Hence, we can use the
production (y) — f(v') € P’ introduced in 1 in the construction to obtain

FOYN @) = F(@) (V) f ().
By the definition of f, ¢, and ¥, f(&)f(¥")f(¥) = f(¢y'1). As a result,

(S) =" FO)YN (W) = f(67'0)
and, therefore, (S) ,,=**! f(¢7'¢) and the claim holds for k + 1. A

Claim 8. Let (S) =" w in Gop, where w € V'*, k > 0. Then, S lo=F f~1(w)
mn Gsc.

Proof. By induction on k =0,1,....

Basis: Let k = 0, thus (S) ,,=° (S) in Gop. Then S o= S in Ggeo. As
FY((S)) = S, the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 < m < k, where k is
a non-negative integer.

Induction step: Let (S) =" ¢(7)¢ ,,= #7'% in Gor, and the last production ap-
plied during the derivation is (y) — ~/, where ¢ € V*T U{e}, v = zpa121 . .. pp,
v e TV*U{e}, v = flzofix1...0nTn), aj,x; € N* and 3; € V*. By the
induction hypothesis,

S mo=t fTH oY)

By the definition of f, ¢, and v, f~1(¢(y)) = f~1(p)vf (). There exists
(alw"aan)*> (ﬂlaﬂwﬁn) pry 1, thus

FHOVF W) o= FTHO TN W).
By the definition of f, ¢, and ¥, f~1(¢)f~ (v )f~ (W) = f~ (Y %). As a result
S mo=F O THW) o= fTH (')
and, therefore, S o=F*+1 f=1(44/¢)) and the claim holds for k + 1.

Hence, the theorem holds. O
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