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Tomáš Masopust
Faculty of Information Technology, Brno University of Technology
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Abstract
In this paper, we discuss pushdown automata which can make a nondeterministic decision only
if the pushdown content forms a string that belongs to a given control language. We prove that
if the control language is linear and non-regular, then the computational power of pushdown
automata regulated in this way is increased to the power of Turing machines. Naturally, from
the practical point of view, checking the pushdown content in each computational step is not
efficient. Therefore, we prove that two checks of the form of the pushdown content during any
computation are sufficient enough for these automata to be computationally complete. Based
on this observation, a new model is discussed. Finally, some descriptional complexity results
are presented.

1. Introduction

While finite automata are of great interest in the theory and applications of regular expres-
sions and languages, pushdown automata (PDAs) play an important role in the analysis of
programming and natural languages. However, it is well-known that both programming and
natural languages have some features that are not context-free, which means that they cannot
be recognized by ordinary pushdown automata. For that reason, there are some attempts to
introduce regulating mechanisms to increase the computational power of pushdown automata
so that they are able to handle these features without loss of the practical efficiency.

Motivated by some types of regulations of grammars in the field of regulated rewriting (see
[3, 4] for more information), so-called regulated pushdown automata have been introduced and
studied in [7]. These automata have an additional control language over the alphabet of transi-
tions regulating the applications of transitions so that an input string is accepted whenever it is
accepted by the pushdown automaton by a sequence of transitions that forms a string belonging
to the given control language. It has been shown that while regulated pushdown automata with
regular control languages are equivalent to ordinary pushdown automata, regulated pushdown
automata with non-regular, linear control languages are computationally complete (the reader
is referred to [11] for more results).

Another variant of pushdown automata with some type of regulation is discussed in [8]. Instead
of a control language over the alphabet of transitions, these automata are given a control
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language over the alphabet of pushdown symbols. Then, an input string is accepted whenever
it is accepted by the pushdown automaton by a computation where the pushdown content of
each computational step forms a string that belongs to the given control language. It is proved in
[8] that if the control language is regular, then the computational power of pushdown automata
regulated in this way is the same as the computational power of ordinary pushdown automata.
On the other hand, an example showing that non-regular, linear control languages increase
the computational power of these automata is presented as well. Nevertheless, the question
concerning the precise computational power of these automata with non-regular, linear control
languages is left open.

Recently, considering the nondeterminism in pushdown automata, the previous modification
of pushdown automata has been generalized, and so-called R-PDAs have been introduced and
studied in [9, 10]. Specifically, given a control language R, an R-PDA is a pushdown automa-
ton which makes a nondeterministic step whenever the pushdown content forms a string that
belongs to the control language R, and makes a deterministic step whenever the pushdown
content forms a string that does not belong to the control language R. Thus, R-PDAs behave
nondeterministically if and only if their pushdown content forms a string that belongs to the
control language R. It has been shown (see [9, 10]) that regular control languages do not change
the computational power of pushdown automata with this type of regulation, while non-regular,
linear control languages increase their computational power. For further results and properties
concerning R-PDAs, where R is a regular control language, the reader is referred to [9]; there,
the case of the precise computational power of R-PDAs with non-regular control languages is
formulated as an open problem.

In this paper, we answer this question. More specifically, we prove that R-PDAs are compu-
tationally complete even if the control language R is a very simple non-regular language, i.e.
a linear language. In addition, we demonstrate that it is sufficient to check the form of the
pushdown content no more than twice during any computation, and that the number of states
and pushdown symbols can be bounded.

Naturally, from the practical point of view, to check the form of the pushdown content in
each computational step is not very effective. Therefore, we introduce and discuss so-called
state-controlled R-PDAs (R-sPDAs). Specifically, given a control language R, an R-sPDA is
a pushdown automaton which has a special set of distinguished states in which it makes a
computational step according to its transition function only if the pushdown content forms a
string that belongs to the control language R; in all other states, the automaton behaves as
an ordinary pushdown automaton. As a result, we prove that two checks of the form of the
pushdown content make R-sPDAs computationally complete. On the other hand, R-sPDAs
with only one pushdown content check are shown to be more powerful than pushdown automata.
However, their precise computational power is an open problem.

Finally, in the conclusion of the paper, we discuss R-PDAs and state-controlled R-PDAs, where
the core pushdown automata are deterministic. In addition, we also formulate some open
problems.
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2. Preliminaries and Definitions

In this paper, we assume that the reader is familiar with automata and formal language theory
(see [13, 14]). For a set A, |A| denotes the cardinality of A. For an alphabet (finite nonempty
set) V , V ∗ represents the free monoid generated by V , where the unit of V ∗ is denoted by λ.
Set V + = V ∗ \ {λ}. For a string w ∈ V ∗, |w| denotes the length of w, and wR denotes the
mirror image of w. For a language L ⊆ V ∗, LR = {wR : w ∈ L} denotes the mirror image of L.

A (phrase structure) grammar is a quadruple G = (N, T, P, S), where N is the alphabet of
nonterminals, T is the alphabet of terminals such that N ∩ T = ∅, V = N ∪ T is the total
alphabet, S ∈ N is the start symbol, and P is a finite set of productions of the form u → v,
where u ∈ V ∗NV ∗ and v ∈ V ∗. For any two strings x, y ∈ V ∗ and a production u → v ∈ P ,
define the relation xuy ⇒ xvy. The language of G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w},
where ⇒∗ is the reflexive and transitive closure of the relation ⇒. In addition, G is said to be
linear if each production u→ v ∈ P satisfies the conditions (i) u ∈ N is a nonterminal symbol
and (ii) v ∈ T ∗ ∪ T ∗NT ∗ is a string of symbols containing no more than one nonterminal
symbol. A language L is linear if there is a linear grammar G such that L = L(G).

A pushdown automaton (PDA) is a septuple M = (Q,Σ,Γ, δ, q0, Z0, F ), where Q is a finite set
of states, Σ is the input alphabet, Γ is the pushdown alphabet, δ is a transition function from
Q × (Σ ∪ {λ}) × Γ to the set of finite subsets of Q × Γ∗, q0 ∈ Q is the initial state, Z0 ∈ Γ is
the initial pushdown symbol, and F ⊆ Q is the set of accepting states. A configuration of a
pushdown automatonM is a triple (q, w, γ), where q is the current state, w is the unread part
of the input, and γ is the current content of the pushdown (the leftmost symbol of γ is the top
pushdown symbol). If p, q ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, γ, β ∈ Γ∗, Z ∈ Γ, and (p, β) ∈ δ(q, a, Z),
then M makes a move from (q, aw, Zγ) to (p, w, βγ), formally (q, aw, Zγ) `M (p, w, βγ). For
simplicity, the initial pushdown symbol appears only at the bottom of the pushdown during
any computation, i.e., if (p, β) ∈ δ(q, a, Z), then either β does not contain Z0, or β = β′Z0,
where β′ does not contain Z0 and Z = Z0. As usual, the reflexive and transitive closure of the
relation `M is denoted by `∗M. The subscript M is removed whenever the meaning is clear.
The language accepted by M is defined as

T (M) = {w ∈ Σ∗ : (q0, w, Z0) `∗M (q, λ, γ) for some q ∈ F and γ ∈ Γ∗} .

A pushdown automatonM = (Q,Σ,Γ, δ, q0, Z0, F ) is said to be deterministic (DPDA) if there
is no more than one move the automaton can make from any configuration, i.e., the following
two conditions hold:

1. |δ(q, a, Z)| ≤ 1, for all a ∈ Σ ∪ {λ}, q ∈ Q, and Z ∈ Γ, and

2. for all q ∈ Q and Z ∈ Γ, if δ(q, λ, Z) 6= ∅, then δ(q, a, Z) = ∅, for all a ∈ Σ.

In this case, δ(q, a, Z) = (p, γ) is written instead of δ(q, a, Z) = {(p, γ)}.
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The family of languages accepted by automata of type X is denoted by L (X). It is well-known
that L (DPDA) ⊂ L (PDA).

2.1. Pushdown Automata with Regulated Nondeterminism

In comparison with ordinary nondeterministic pushdown automata, a control language R is
given so that nondeterministic steps are allowed only if the current content of the pushdown
forms a string that belongs to R.

Formally, let M = (Q,Σ,Γ, δ, q0, Z0, F ) be a PDA and R ⊆ (Γ \ Z0)
∗ be a control language.

Then, M is called an R-PDA if the following two conditions hold:

1. for all q ∈ Q, a ∈ Σ ∪ {λ}, and Z ∈ Γ, δ can be written as

δ(q, a, Z) = δd(q, a, Z) ∪ δnd(q, a, Z) ,

where (Q,Σ,Γ, δd, q0, Z0, F ) is a DPDA and (Q,Σ,Γ, δnd, q0, Z0, F ) is a (nondeterministic)
PDA, and

2. for all q, q′ ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, Z ∈ Γ, and γ ∈ Γ∗,

(q, aw, Zγ) `M (q′, w, γ′γ) if

(a) either (q′, γ′) ∈ δnd(q, a, Z), Zγ = γ′′Z0, and (γ′′)R ∈ R,

(b) or δd(q, a, Z) = (q′, γ′), Zγ = γ′′Z0, and (γ′′)R /∈ R.

Condition 2 says that whenever the pushdown content forms a string that does not belong to
the control language R, the automaton operates deterministically.

3. Results

This section presents the main results of this paper. The following theorem, proved in [9, 10],
shows that if R is a regular language, then each R-PDA can effectively be transformed to an
equivalent PDA.

Theorem 1 ([9, 10]). Let R be a regular language and M be an R-PDA. Then, an equivalent
PDA M′ can effectively be constructed.

Note that an analogous result is proved in [8] for a special variant of R-PDAs, where the control
language R is a regular language and the deterministic transition function δd is empty, i.e., the
pushdown content has to form a string that belongs to R in each computational step. Moreover,
it has been demonstrated (see [8, 9, 10]) that if R is a linear, deterministic context-free control
language, then there exists an R-PDA accepting a non-context-free language. This is also
demonstrated in the following example, where an {anbn : n ≥ 1}-PDA accepting the language
{anbncndn : n ≥ 1} is given.
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Example 2. Let R = {anbn : n ≥ 1} be a control language. Clearly, R is linear and de-
terministic context-free. Let M = ({qa, qb, qc, qd, qf}, {a, b, c, d}, {a, b, Z0}, δ, qa, Z0, {qf}) be an
R-PDA operating as follows:

• starting in qa,M deterministically reads a from the input and pushes a to the pushdown;

• reading the first b, M deterministically goes to state qb and pushes b to the pushdown,
i.e., the pushdown contains banZ0;

• being in qb, M deterministically reads b from the input and pushes b to the pushdown;

• reading the first c, M nondeterministically goes to state qc, checking that the content of
the pushdown is of the form bnanZ0, and removes b from the top of the pushdown;

• being in qc,M deterministically reads c from the input and removes b from the pushdown;

• being in qc and having a on the top of the pushdown, M deterministically goes to state
qd, reads d from the input, and removes a from the pushdown, i.e., cn has been read;

• being in qd,M deterministically reads d from the input and removes a from the pushdown;

• finally, being in qd and having Z0 on the top of the pushdown, M deterministically goes
to the only final state qf from which no other symbol can be read; moreover, nothing is
read from the input, and Z0 is removed from the pushdown.

It is not hard to see that T (M) = {anbncndn : n ≥ 1}, which is a non-context-free language.

In what follows, we prove that every recursively enumerable language is accepted by an R-PDA
M, for some convenient non-regular, linear control language R.

Theorem 3. Let L be a recursively enumerable language. Then, there exist a linear control
language R and an R-PDA M such that L = T (M).

To prove this, let L ⊆ T ∗ be a recursively enumerable language. Then, by [5, 6], it is known
that there is a phrase structure grammar G = ({S,A,B,C,D}, T, P ∪ {AB → λ,CD → λ}, S)
in Geffert normal form such that L = L(G) and P contains only context-free productions of
the following three forms:

• S → uSa,

• S → uSv,

• S → uv,
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where u ∈ {A,C}∗, v ∈ {B,D}∗, and a ∈ T . In addition, any successful derivation of G is
divided into the following two parts: the first part is of the form

S ⇒∗G w′1Sw
′
2w ⇒G w1w2w ,

generated only by context-free productions from P , where w1 ∈ {A,C}∗, w2 ∈ {B,D}∗, and
w ∈ T ∗, and the other part is of the form

w1w2w ⇒∗G w ,

generated only by erasing productions AB → λ and CD → λ. This immediately implies that
the second part of the successful derivation verifies that w1 = h(w2)

R, for a homomorphism
h : {B,D}∗ → {A,C}∗ defined as h(B) = A and h(D) = C.

Proof of Theorem 3. Let L ⊆ T ∗ be a recursively enumerable language. Then, there is a phrase
structure grammar G = ({S,A,B,C,D}, T, P ∪ {AB → λ,CD → λ}, S) in Geffert normal
form such that L = L(G). Let

G1 = (N1, T1, P1, S1)

be a linear grammar, where N1 = {S1, S}, T1 = T ∪ {A,B,C,D, $}, for $ being a new symbol,
and P1 = P ∪ {S1 → $S}. Then, it is not hard to see that the language generated by G1

satisfies

L(G1) ∩ {$, A,B,C,D}∗T ∗ = {$w1w2w : S ⇒∗G w′1Sw
′
2w ⇒G w1w2w} .

Let
G2 = (N2, T2, P2, S2)

be a linear grammar, where N2 = {S2, Y, Z}, T2 = T ∪ {A,B,C,D,@}, for @ being a new
symbol, and P2 = {S2 → @Y, Y → Z,Z → AZB,Z → CZD,Z → λ} ∪ {Y → Y a : a ∈ T}.
Then, the language generated by G2 is

L(G2) = {@w1w2w : w1 ∈ {A,C}∗, w2 ∈ {B,D}∗, w ∈ T ∗, w1 = h(w2)
R} ,

where h is the homomorphism from {B,D}∗ to {A,C}∗ defined before this proof, i.e., h(B) = A
and h(D) = C.

Let
R = L(G1)

R ∪ L(G2)
R ∪ ({A,B,C,D} ∪ T )∗

be the linear control language, and define the R-PDA M = (Q, T,Γ, δ, q0, Z0, F ) so that

• Q = {q0, q1, qf},

• Γ = T ∪ {A,B,C,D, $,@, Z0},

• F = {qf},
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and δ is defined as follows:

δnd(q0, λ,X) = {(q0, aX) : a ∈ T ∪ {A,B,C,D}}, X ∈ {A,B,C,D,Z0} ∪ T,
δnd(q0, λ,X) = {(q0, $X)}, X ∈ {A,B,C,D,Z0} ∪ T,
δnd(q0, λ, $) = {(q0,@)},
δnd(q0, λ,@) = {(q1, λ)},
δnd(q1, λ,X) = {(q1, λ)}, X ∈ {A,B,C,D},
δnd(q1, a, a) = {(q1, λ)}, a ∈ T,
δnd(q1, λ, Z0) = {(qf , λ)} .

Finally, δd is empty.

Informally, M operates so that it first nondeterministically pushes symbols from the alphabet
T ∪ {A,B,C,D} onto its pushdown. This is possible because the pushdown content is of
the from ({A,B,C,D} ∪ T )∗. Then, when $ is pushed onto the pushdown, i.e., when the
configuration is of the form (q0, w, $γZ0), for some γ ∈ Γ∗, M verifies that $γ belongs to
L(G1). This means that γ = w1w2w such that there is a derivation S ⇒∗G w′1Sw

′
2w ⇒G w1w2w

in G. If so, $ is replaced with @, i.e., (q0, w, $γZ0) `M (q0, w,@γZ0), and M verifies that @γ
belongs to L(G2). If so, then we have that γ = w1w2w, where

• S ⇒∗ w′1Sw′2w ⇒ w1w2w in G,

• w1 ∈ {A,C}∗, w2 ∈ {B,D}∗, w ∈ T ∗, and

• w1 = h(w2)
R,

i.e., there is a derivation
w1w2w ⇒∗G w

in G. The automaton then finishes the computation by the following sequence of transitions:
(q0, w,@γZ0) `M (q1, w, w1w2wZ0) `∗M (q1, w, wZ0) `∗M (q1, λ, Z0) `M (qf , λ, λ).

Formally, to prove that L(G) ⊆ T (M), let S ⇒∗ w′1Sw′2w ⇒ w1w2w ⇒∗ w be a successful
derivation of G. Then, it is not hard to see that the corresponding computation ofM accepting
w is as follows:

(q0, w, Z0) `∗ (q0, w, wZ0)

`∗ (q0, w, w2wZ0)

`∗ (q0, w, w1w2wZ0)

` (q0, w, $w1w2wZ0)

` (q0, w,@w1w2wZ0)

` (q1, w, w1w2wZ0)

`∗ (q1, w, wZ0)

`∗ (q1, λ, Z0)

` (qf , λ, λ) .
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Thus, we have that w ∈ T (M).

On the other hand, to prove the other inclusion, T (M) ⊆ L(G), consider a computation ofM
accepting w. Such a computation is of the form

(q0, w, Z0) `∗ (q0, w, γZ0)

` (q0, w, $γZ0) (1)

` (q0, w,@γZ0) (2)

` (q1, w, γZ0)

`∗ (q1, λ, Z0)

` (qf , λ, λ)

for some γ ∈ Γ∗. From (2), it follows that @γ ∈ L(G2), which means that

γ = w1w2w
′ ,

where w1 ∈ {A,C}∗, w2 ∈ {B,D}∗, w′ ∈ T ∗, and w1 = h(w2)
R. Moreover, from (1), it follows

that there is a derivation
S ⇒∗ w′1Sw′2w′ ⇒ w1w2w

′

in G. As w1 = h(w2)
R, there is also a derivation

w1w2w
′ ⇒∗ w′

in G by productions AB → λ and CD → λ. It remains to prove that w′ = w. However,
examining the following part of the computation,

(q0, w,@w1w2w
′Z0) ` (q1, w, w1w2w

′Z0)

`∗ (q1, w, w2w
′Z0)

`∗ (q1, w, w
′Z0)

`∗ (q1, λ, Z0)

` (qf , λ, λ)

it immediately follows that w′ = w because the only input-reading transitions are of the form
δnd(q1, a, a) = {(q1, λ)}, for a ∈ T . Thus, we have that w ∈ L(G).

As an immediate corollary of the previous theorem, we have the following descriptional com-
plexity result.

Corollary 4. Let L be a recursively enumerable language. Then, there exist a linear language
R and an R-PDA M = (Q,Σ,Γ, δ, q0, Z0, F ) such that |Q| ≤ 3, |Γ| ≤ |Σ|+ 7, and L = T (M).

In general, the proof of Theorem 3 is based on the fact that for any recursively enumerable
language L, there exist a homomorphism h and two linear languages L1 and L2 such that
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LR = h(L1 ∩ L2). The automaton accepting L operates so that it first nondeterministically
pushes symbols onto its pushdown. Then, it checks that the form of its pushdown content, γ,
forms a string that belongs to L1 and L2, i.e., γ ∈ L1 ∩ L2. To do this, two checks of the form
of the pushdown content are sufficient. After that, the automaton reads X from the top of the
pushdown and h(X)R from the input tape. It is known that the languages L1 and L2 can be
of some special minimal forms that belong to some proper subfamilies of the family of linear
languages. For an overview of these forms, the reader is referred to Table 1 in [12].

In addition, the following result can be achieved by simple modifications of grammars G1 and
G2 from Theorem 3 so that each production S → α ∈ P1 of G1 is replaced with S → αci,
where ci is a new symbol, for each 1 ≤ i ≤ |P1|; G2 is modified in a corresponding way. Then,
it is not hard to see that L(G1)

R is deterministic context-free, since for S → (civiSui)
R ∈ P1,

ci says that vR
i is read from the input, and uR

i is pushed to the pushdown.

Corollary 5. Let L be a recursively enumerable language. Then, there exist two linear, deter-
ministic context-free languages L1, L2, a regular language R, and an (L1 ∪ L2 ∪ R)-PDA M
such that L = T (M).

Using the definitions and results of [12], we immediately have the following corollary. First,
however, recall that a linear language L ⊆ T ∗ is said to be minimal linear if it is generated by a
linear grammar G = (N, T, P, S), where N = {S} is a singleton set and G has a unique terminal
production S → c, where c ∈ T appears only in this production. In addition, G = ({S}, T, P, S)
is said to be (1, 1)-minimal linear if it is minimal linear and for each production S → αSβ ∈ P ,
where α, β ∈ T ∗, we have that |α| = |β| = 1. A language is said to be (1, 1)-minimal linear if
it is generated by a (1, 1)-minimal linear grammar G.

Corollary 6. Let L be a recursively enumerable language. Then, there exist a minimal linear
language L1 ⊆ Σ∗, a (1, 1)-minimal linear language L2 ⊆ Σ∗, a regular language R ⊆ Σ∗, and
an (c1L1 ∪ c2L2 ∪R)-PDA M, where c1 6= c2, c1, c2 /∈ Σ, such that L = T (M).

Proof. It is proved in [12] that for every recursively enumerable language L, there exist a min-
imal linear language L1 ⊆ Σ∗, a (1, 1)-minimal linear language L2 ⊆ Σ∗, and a homomorphism
h : Σ∗ → Σ∗ such that L = h(L1 ∩L2). Let R = Σ∗ be a regular language, let c1, c2 /∈ Σ be two
different symbols, and let (c1L1 ∪ c2L2 ∪ R)-PDA M be constructed by the method discussed
above. Then, L = T (M).

Note that it is an open problem whether the two languages L1 and L2 from Corollary 6 can, in
addition, be deterministic context-free.

4. State-Controlled R-PDAs

Naturally, from the practical point of view, to check the form of the pushdown content in each
computational step is not very effective. Fortunately, taking a careful look at the proof of
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Theorem 3, the reader can see that only two checks of the form of the pushdown content are
needed; the first check of the pushdown content is made when $ is pushed to the pushdown,
and the other check is made when $ is replaced with @ on the top of the pushdown. This
observation leads to the following definition of state-controlled R-PDAs.

Let M = (Q,Σ,Γ, δ, q0, Qc, Z0, F ) be a PDA, where Qc ⊆ Q is a set of checking states, and
all other symbols are as in an ordinary pushdown automaton. Let R ⊆ (Γ \ Z0)

∗ be a control
language. Then, M is called a state-controlled R-PDA (R-sPDA) if for all q, q′ ∈ Q, a ∈
Σ ∪ {λ}, w ∈ Σ∗, Z ∈ Γ, and γ ∈ Γ∗,

(q, aw, Zγ) `M (q′, w, γ′γ)

if (q′, γ′) ∈ δ(q, a, Z) and

1. either q ∈ Q \Qc,

2. or q ∈ Qc, Zγ = γ′′Z0, and (γ′′)R ∈ R.

The reader can imagine R-sPDAs as pushdown automata with an oracle, which is able to answer
the questions of whether the current content of the pushdown forms a string that belongs to
the given control language R.

The following theorem can be proved by the same technique used in case of R-PDAs, see [9, 10].

Theorem 7. Let R be a regular language and M be an R-sPDA. Then, an equivalent PDA
M′ can effectively be constructed.

Now, we can prove the following result.

Theorem 8. Let L be a recursively enumerable language. Then, there exist a linear language
R and an R-sPDA M such that L = T (M). In addition, M checks the form of its pushdown
content no more than twice during any computation.

Proof. Consider the construction from the proof of Theorem 3. Let R = L(G1)
R ∪ L(G2)

R

be the linear control language, and let the transition function δ be modified so that for all
X ∈ {A,B,C,D,Z0} ∪ T , Y ∈ {A,B,C,D}, and a ∈ T ,

• δ(q0, λ,X) = {(q0, aX) : a ∈ T ∪ {A,B,C,D}},

• δ(q0, λ,X) = {(qc, $X)},

• δ(qc, λ, $) = {(qc,@)},

• δ(qc, λ,@) = {(q1, λ)},



Regulated Nondeterminism in PDAs: The Non-Regular Case 11

• δ(q1, λ, Y ) = {(q1, λ)},

• δ(q1, a, a) = {(q1, λ)},

• δ(q1, λ, Z0) = {(qf , λ)},

where qc is the only state in which M checks the form of the pushdown content. The proof
now follows from the proof of Theorem 3.

As an immediate corollary, we have the following descriptional complexity result.

Corollary 9. Let L be a recursively enumerable language. Then, there exist a linear language R
and an R-sPDA M = (Q,Σ,Γ, δ, q0, Qc, Z0, F ) which checks the form of the pushdown content
no more than twice during any computation, such that |Q| ≤ 4, |Qc| = 1, |Γ| ≤ |Σ| + 6, and
L = T (M).

Proof. Clearly, only one of the pushdown symbols $ and @ is necessary to distinguish between
the two linear languages L(G1)

R and L(G2)
R. Thus, @ can be removed. As the checks are

made only in state qc, Q = {q0, qc, q1, qf} and Qc = {qc}.

The following result follows from Corollary 5.

Corollary 10. Let L be a recursively enumerable language. Then, there exist two linear,
deterministic context-free languages L1, L2, and an (L1 ∪ L2)-sPDA M which checks the form
of the pushdown content no more than twice during any computation, such that L = T (M).

Using the results of [12], we have the following consequence.

Corollary 11. Let L be a recursively enumerable language. Then, there exist a minimal linear
language L1 ⊆ Σ∗, a (1, 1)-minimal linear language L2 ⊆ Σ∗, c /∈ Σ, and an (cL1 ∪ L2)-sPDA
M which checks the form of the pushdown content no more than twice during any computation,
such that L = T (M).

Proof. It is proved in [12] that for every recursively enumerable language L, there exist a min-
imal linear language L1 ⊆ Σ∗, a (1, 1)-minimal linear language L2 ⊆ Σ∗, and a homomorphism
h : Σ∗ → Σ∗ such that L = h(L1 ∩ L2). Let c /∈ Σ be a new symbol, and let (cL1 ∪ L2)-sPDA
M be constructed by the method discussed above Corollary 5. Then, L = T (M).

Note that it is an open problem whether the two languages L1 and L2 from Corollary 11 can,
in addition, be deterministic context-free.
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By a simple modification of the definition of R-sPDAs, we can obtain automata which are able
to check, according to the current checking state, whether the pushdown content forms a string
that belongs to either L1 or L2. The advantage of this modification is a question of the further
research and/or practical applications.

Furthermore, Example 1 demonstrates that there is an R-sPDA M, where R is a simple
linear, deterministic context-free control language, which recognizes a non-context-free language
{anbncndn : n ≥ 1} with only one check of the form of the pushdown content. However, the
question of the computational power of R-sPDAs making no more than one check of the form
of their pushdown content during any computation is an open problem.

5. Conclusion

In this paper, we have shown that every recursively enumerable language can be accepted by
an R-PDA, where R is a non-regular, linear control language. In addition, no more than two
checks of the form of the pushdown content are needed during any computation. Then, a new
type of R-PDAs has been introduced and discussed, so-called state-controlled R-PDAs. As
an immediate consequence of the previous results, it follows that every recursively enumerable
language can be accepted by an R-sPDA which makes no more than two checks of the form
of the pushdown content during any computation. On the other hand, it has been shown that
R-sPDAs with no more than one check of the form of the pushdown content during any com-
putation are able to accept non-context-free languages. However, their precise computational
power is an open problem.

Furthermore, from the practical point of view, it seems to be of some interest to study the
deterministic variant of R-sPDAs, so-called R-sDPDAs. Clearly, Example 1 illustrates that
there are non-context-free languages that can be accepted by R-sDPDAs with only one check
of the form of the pushdown content. Again, the precise computational power as well as all
other properties are open.

Of some interest is also the above mentioned modification of the definition of (L1 ∪L2)-sPDAs
using two (or more) control languages, whereby we can obtain automata which are able to
check, according to the current checking state, whether the pushdown content forms a string
that belongs to either L1 or L2. Clearly, this modification makes it possible to use deterministic
PDAs to check the form of the pushdown content even if both L1 and L2 are deterministic
context-free, but their union is not. However, this modification is a question of the further
research and/or practical applications.

Another interesting variant seems to be so-called visibly (also called input-driven) R-sPDAs,
where the pushdown operations are driven by the input symbols (see [1, 2] for more information).

Finally, in [9], an infinite hierarchy of language families is obtained by using some specific
regular control languages. Can an analogous infinite hierarchy be also achieved using linear,
non-regular control languages?
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In addition, another open problem is the following question: fixing the control language R and
considering two R-PDAs M1 and M2, are the languages T (M1) ∪ T (M2), T (M1) ∩ T (M2),
T (M1)·T (M2), T (M1)

∗, etc. also accepted by an R-PDA? Are the problems that are decidable
for R-PDAs, where R is a regular control language, decidable also in case R is a linear, non-
regular control language (for the automata discussed in this section)?
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[11] A. Meduna and D. Kolář. One-turn regulated pushdown automata and their reduction. Funda-
menta Informaticae, 51(4):399–405, 2002.



14 T. Masopust

[12] S. Okawa and S. Hirose. Homomorphic characterizations of recursively enumerable languages
with very small language classes. Theoretical Computer Science, 250(1-2):55–69, 2001.

[13] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[14] A. Salomaa. Computation and Automata. Cambridge University Press, Cambridge, 1985.


