
BLACKHOLE STATE-CONTROLLED
REGULATED PUSHDOWN AUTOMATA

Erzsébet Csuhaj-Varjú1,2, Tomáš Masopust3,4

and György Vaszil1
1Computer and Automation Research Institute, Hungarian Academy of Sciences

Kende u. 13–17, 1111 Budapest, Hungary
Email: csuhaj@sztaki.hu, vaszil@sztaki.hu

2Dep. of Algorithms and Their Applications, Faculty of Informatics, Eötvös Loránd University
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary

3Institute of Mathematics, Czech Academy of Sciences
Žižkova 22, 61662 Brno, Czech Republic

Email: masopust@ipm.cz
4CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract
In this paper, we introduce and study a variant of regulated pushdown automata, called blackhole
state-controlled R-PDA where a symbol can always be pushed to the pushdown, but only a given
depth of the pushdown contents is remembered; the rest of the pushdown contents is lost. In
addition, the automaton can check the form of its pushdown contents according to a given
control language. We present characterizations of several language families in terms of these
constructs.

1. Introduction

Recently, regulated pushdown automata have obtained increased interest. In [2], a variant of
these accepting computational devices is discussed. There the automata are given a control
language over the alphabet of pushdown symbols, and an input string is accepted whenever
the pushdown automaton accepts it by a computation where the pushdown contents of each
step forms a string belonging to the given control language. It is known that if the control
language is regular, then the computational power is the same as that of ordinary pushdown
automata. On the other hand, an example is also presented showing that non-regular linear
control languages increase the computational power of these automata. The question concerning
the computational power of these automata with non-regular linear control languages has been
examined in [4].

Studying nondeterminism in pushdown automata, the previous modification has been general-
ized, and so-called R-PDA have been introduced in [3]. Given a control language R, an R-PDA
is a pushdown automaton which makes a nondeterministic step whenever the pushdown con-
tents forms a string belonging to R, and makes a deterministic step whenever the pushdown

2 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

contents forms a string that does not belong to R, i.e., R-PDA behave nondeterministically
if and only if their pushdown contents forms a string belonging to R. It has been shown in
[3] that regular control languages do not change the computational power, while non-regular,
linear control languages increase the power and make the R-PDA computationally complete
[4].

Motivated by R-PDA, which check the form of their pushdown contents in each computational
step, so-called state-controlled R-PDA (R-sPDA) have been introduced and studied in [4].
These automata check the form of their pushdown contents only in some special checking states.
Again, if R is regular, the computational power is unchanged, while if R is non-regular, linear,
the power is that of Turing machines. In addition, two checks of the form of the pushdown
contents are sufficient to accept any recursively enumerable language.

Continuing the previous research, in this paper we introduce the concept of a blackhole state-
controlled R-PDA (blackhole R-sPDA, for short), where a symbol can always be pushed to
the pushdown, but only a given depth of the pushdown contents is considered (the rest of the
pushdown contents is lost). Furthermore, in some special states the automaton can check the
form of its pushdown contents according to the given control language R. The notion was
motivated by an observation on the functioning of regulated pushdown automata, namely, that
in many cases, some parts of the pushdown contents are needed or are useful only during a
limited time period of the computation, but never later. This implies that this part of the
pushdown can be lost or forgotten.

We present the characterization of several language families accepted by blackhole R-sPDA. We
prove that any context-sensitive language can be accepted by a blackhole R-sPDA where the
control language is linear and the depth of the pushdown taken into consideration is a linear
function of the length of the input word. We also show that every context-free language can be
accepted by a blackhole R-sPDA with a regular control language and a linear depth function.
But, there exists a non-context-free language that can be accepted by a blackhole R-sPDA with
a regular control language and sub-logarithmic depth function. Finally, we raise open problems
for future research.

2. Preliminaries and Definitions

In this paper, we assume that the reader is familiar with automata and formal language theory
(see, e.g., [5, 6]). For a set A, |A| denotes the cardinality of A. For an alphabet (finite nonempty
set) V , V ∗ represents the free monoid generated by V , where the unit is denoted by λ. Set
V + = V ∗ \ {λ}. For a string w ∈ V ∗, the length of w is denoted as |w|, and the mirror image
of w as wR. For a language L ⊆ V ∗, the mirror image of L is the language LR = {wR : w ∈ L}.
The set of all natural numbers including zero is denoted by N.

A pushdown automaton (PDA) is a septuple M = (Q,Σ,Γ, δ, q0, Z0, F), where Q is a finite set
of states, Σ is the input alphabet, Γ is the pushdown alphabet, δ is a transition function from
Q × (Σ ∪ {λ}) × Γ to the set of finite subsets of Q × Γ∗, q0 ∈ Q is the initial state, Z0 ∈ Γ is

Blackhole State-Controlled R-PDA 3

the initial pushdown symbol, and F ⊆ Q is the set of accepting states. A configuration of M
is a triple (q, w, γ), where q is the current state, w is the unread part of the input, and γ is the
current contents of the pushdown (the leftmost symbol of γ is the top pushdown symbol). If
p, q ∈ Q, a ∈ Σ∪ {λ}, w ∈ Σ∗, γ, β ∈ Γ∗, Z ∈ Γ, and (p, β) ∈ δ(q, a, Z), thenM makes a move
from (q, aw, Zγ) to (p, w, βγ), formally (q, aw, Zγ) `M (p, w, βγ). For simplicity, the initial
pushdown symbol appears only at the bottom of the pushdown during any computation, i.e.,
if (p, β) ∈ δ(q, a, Z), then either β does not contain Z0, or β = β′Z0, where β′ does not contain
Z0 and Z = Z0. As usual, the reflexive and transitive closure of the relation `M is denoted by
`∗M (the subscript M may be removed if no confusion arises). The language accepted by M is
defined as T (M) = {w ∈ Σ∗ : (q0, w, Z0) `∗M (q, λ, γ) for some q ∈ F and γ ∈ Γ∗}.

A pushdown automaton M = (Q,Σ,Γ, δ, q0, Z0, F) is deterministic (DPDA) if there is no
more than one move the automaton can make from any configuration, i.e., the following two
conditions are satisfied: (1) |δ(q, a, Z)| ≤ 1, for all a ∈ Σ ∪ {λ}, q ∈ Q, and Z ∈ Γ, and (2) for
all q ∈ Q and Z ∈ Γ, if δ(q, λ, Z) 6= ∅, then δ(q, a, Z) = ∅, for all a ∈ Σ. In this case, we write
δ(q, a, Z) = (p, γ) instead of δ(q, a, Z) = {(p, γ)}.

A context-free grammar is a quadruple G = (N, T, P, S), where N is the alphabet of nontermi-
nals, T is the alphabet of terminals such that N ∩ T = ∅, S ∈ N is the start symbol, and P is
a finite set of productions of the form u→ v, where u ∈ N and v ∈ (N ∪ T)∗. For two strings
x, y ∈ V ∗ and a production u → v ∈ P , define the relation xuy ⇒ xvy. The language of G is
defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}, where ⇒∗ is the reflexive and transitive closure of the
relation ⇒.

A language is context-free if and only if it can be accepted by a pushdown automaton. A
context-free language is called deterministic if it can be accepted by a deterministic pushdown
automaton, [5, 6].

A context-free grammar G is said to be in Greibach normal form if all of its productions are of
the form A→ bv, where b ∈ T and v ∈ N∗. If λ ∈ L(G) we also consider the rule S → λ.

A linear grammar is a context-free grammar G = (N, T, P, S), where all productions are of the
form u→ v, where u ∈ N and v ∈ T ∗∪ T ∗NT ∗, i.e., v is a string containing not more than one
nonterminal. A language L is linear if there exists a linear grammar G such that L = L(G).

2.1. Blackhole State-Controlled R-PDA

In the following we define the notion of a blackhole state-controlled regulated pushdown au-
tomaton. A quadruple M = (M′, Qc, R, f) is called a blackhole state-controlled R-PDA (a
blackhole R-sPDA, for short), if M′ = (Q,Σ,Γ, δ, q0, Z0, F) is a PDA, Qc ⊆ Q is a subset of
states called the set of checking states, R ⊆ (Γ\Z0)∗ is a control language, and f : N→ N∪{∞}
is a function called the depth function.

A blackhole R-sPDA M functions as follows. Let w0 ∈ Σ∗ be an input word, q, q′ ∈ Q,

4 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

a ∈ Σ ∪ {λ}, w ∈ Σ∗, Z ∈ Γ, and γ ∈ Γ∗. Then

(q, aw, Zγ) `M (q′, w, trimf(|w0|)(γ
′γ))

provided that (q′, γ′) ∈ δ(q, a, Z) and

1. either q ∈ Q \Qc,

2. or q ∈ Qc, Zγ = γ′′Z0, and γ′′ ∈ R,

where trimf(|w0|) : Γ∗ → Γ∗, for f(|w0|) ∈ N, is a function defined as follows:

trimf(|w0|)(αZ0) =

{
αZ0 if |α| ≤ f(|w0|)
α′Z0 if |α| > f(|w0|), α = α′β, |α′| = f(|w0|), β ∈ Γ∗ .

If f(|w0|) = ∞, then f is said to be unbounded. In this case trimf(|w0|)(αZ0) = αZ0 for any
α ∈ Γ∗, i.e., the length of the pushdown contents taken into consideration while M makes
a move is irrelevant, it can be arbitrarily large. This particular case of blackhole R-sPDA
coincides with R-sPDA introduced and investigated in [4].

Note that if q ∈ Qc and γ′′ /∈ R, then `M, called a move of M, is not defined.

Informally, the blackhole state-controlled R-PDA works in such way that it can always push a
string to its pushdown, but only the topmost f(|w0|) symbols are left in the pushdown. The
other symbols at positions greater than f(|w0|) are lost.

Analogously to pushdown automata, the language accepted by M is defined as T (M) = {w ∈
Σ∗ : (q0, w, Z0) `∗M (q, λ, γ) for some q ∈ F and γ ∈ Γ∗}.

As we mentioned in the Introduction, the main motivation to introduce these variants of au-
tomata comes from the investigation of regulated pushdown automata where it turns out that in
many cases, certain parts of the pushdown contents are needed or are useful only during a lim-
ited time period of the computation, but never later. Therefore, this part of the pushdown can
be lost or forgotten. For instance, to accept the language {w1w1w2w2 . . . wnwn : wi ∈ {a, b}∗},
there is a blackhole R-sPDA requiring only maxi=1,...,n(2|wi|+1) pushdown cells as demonstrated
in Example 9.

3. An Introductory Example

In this example, we consider the case of sub-logarithmic (sub-linear) depth functions.

Example 1. Let L ⊆ {a, b}∗, and let us consider the language

L′ =
⋃
w∈L

22|w|−1⋃
i=0

{a(22|w|
+i−(|w|+1))cw} .

Blackhole State-Controlled R-PDA 5

We can construct a blackhole R-sPDAM = (M′, Qc, R, f) with a sub-logarithmic depth func-
tion f(n) = blog log nc+ 1 accepting L′.

Note first that any string w′ ∈ L′ can be written as w′ = akcw where if |w| = l, then 22l−(l+1) ≤
k ≤ 22l+1− 1− (l+ 1). To check if w′ ∈ L′, the automaton reads the input w′ = akcw until the
symbol c, then c and the rest of the input is copied to the pushdown.

Now the automaton performs a pushdown check verifying whether (cw)R = wRc ∈ LR{c}
where the presence of c ensures that the prefix consisting of all a’s is of sufficient length. To
see this, note that the presence of c implies that f(|w′|) = blog log |w′|c + 1 ≥ |w| + 1, that is,
blog log(k + l + 1)c+ 1 ≥ l + 1 which means that k ≥ 22l − (l + 1).

On the other hand, if w′ ∈ L′, then k ≤ 22l+1−(l+2). Since |w′| = k+l+1, and log log(k+l+1) ≤
log log(22l+1−1) < l+ 1, we have that f(|w′|) = blog log(|w′|)c+ 1 < l+ 2. As |cw| = l+ 1, this
means that the symbol c occupies the last available position on the bottom of the pushdown:
if one more symbol is pushed to the pushdown, c disappears from the bottom.

Thus, the automaton can not only check if the prefix of a’s is too short by checking the presence
of c as described above, but it can also check that the sequence of a’s is not too long as follows:
if c can be removed by pushing another symbol to the pushdown, say $, then it accepts. The
disappearance of the symbol c can be detected by checking the pushdown contents according
to the regular language {$}{a, b}∗. Summarized, R = LR{c} ∪ {$}{a, b}∗.

Note that if L is non-recursive, then L′ is non-recursive (and also R is non-recursive). Note
also that if we set L to be the regular language {a, b}∗, then L′ is not context-free. To see this,
assume that L′ is context-free. Then, as context-free languages are closed under intersection
with regular languages and also under right quotient with regular languages, the language

(L′ ∩ a∗c(bb)∗)/cb∗ = {a(22n
+i−(n+1)) : n = 2k, k ≥ 0, 0 ≤ i ≤ 22n+1 − 1} should be context-free,

but it is not, as can be shown by using the pumping lemma. Thus, we obtain the following
result.

Proposition 2. There exists a non-context-free language accepted by a blackhole R-sPDA with
a regular control language and with depth function f(n) = o(log n).

The computational power presented in this proposition comes from the fact that the value of
the depth function is known to the automaton without using any of its computational resources.
The computation of the depth function, which is necessary for its correct functioning, and which
in general could use more workspace than allowed, is not done by the automaton, but it can
still use its value during the computation. If, on the other hand, we required that the machine
computes the available space itself, that is, we considered a so-called strongly sub-logarithmic
space bounded machine according to the terminology of [7], then the computing power would
be reduced to the power of finite automata because strongly space-bounded one-way Turing
machines accept only regular languages when no more than sub-logarithmic space is used, see
[7, Theorem 5.2.1].

6 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

4. Regular Control Languages, Constant Depth Functions, and Con-
text-free Languages

State-controlled R-PDA, introduced in [4], can also be considered as blackhole R-sPDA where
the depth of the pushdown is unbounded, i.e., the depth function f is defined as f(n) =∞, for
all n ∈ N. As it is known that every state-controlled R-PDA with a regular control language
can effectively be transformed to an equivalent pushdown automaton, we obtain the following
result.

Proposition 3. If a language L is accepted by a blackhole R-sPDA with a regular control
language and an unbounded depth function, then L is context-free.

If the depth of the pushdown is bounded by a constant, i.e., f(n) = k, for some k ∈ N and
for all n ∈ N, then the accepted language is regular. To see this, note that a pushdown of
constant depth, say k, can have at most a finite number of different configurations, |Γ|k if Γ is
the pushdown alphabet. Therefore, if Q is the set of states of the pushdown automaton M,
we can construct a finite automaton with the set of states Q× Γk which can keep track of the
contents of the pushdown, and thus, simulate the functioning of M.

In this case, increasing the complexity of the control language R cannot increase the accepting
power of the automaton since only a finite subset consisting of strings of length at most k is of
interest, thus, we have the following statement.

Proposition 4. If a language L is accepted by a blackhole R-sPDA with a recursively enumer-
able control language and with depth function f(n) = O(1), then L is regular.

Furthermore, for any context-free language L, there is a context-free grammar in Greibach
normal form generating L. As the grammar in Greibach normal form contains no erasing
productions and the right-hand side of every rule starts with a terminal symbol, using the
standard technique for the construction of pushdown automata based on context-free grammars,
we obtain that there is a pushdown automaton M accepting L requiring not more than linear
space.

Proposition 5. Every context-free language can be accepted by a blackhole R-sPDA with a
regular control language and with a linear depth function.

Moreover, since there exist context-free languages which cannot be accepted by a one-way
Turing machine in less than linear space, see [1, Theorem 11.4], it is obvious that there also
exist context-free languages which cannot be accepted by any blackhole R-sPDA with a regular
control language and a sub-linear depth function f(n) = o(n). We can even formulate the
following result.

Proposition 6. There is a context-free language L, such that no blackhole R-sPDA with an
arbitrary recursively enumerable control language can accept L with a depth function f(n) =
o(n).

Blackhole State-Controlled R-PDA 7

This can be seen similarly to the proof of [1, Theorem 11.4]. Consider the context-free language
L = {wcwR | w ∈ {a, b}∗}. If L can be accepted by a blackhole R-sPDAM, then after reading
the prefix wc of a word wcwR, M has to be able to reach 2l different configurations where
l = |w|. This is impossible since, if Q is the set of states and Γ is the pushdown alphabet, then
the number of different configurations is |Q| · |Γ|f(2l+1) which is not sufficient if f is sub-linear.

5. Linear Control Languages and Linear Depth Functions

As already mentioned in Subsection 2.1, if the depth function is unbounded, then blackhole R-
sPDA coincide with state-controlled R-PDA which accept any recursively enumerable language
with linear control languages and no more than two checks of the pushdown contents (cf. [4]).
Thus, the following statement immediately follows.

Theorem 7. Let L be a recursively enumerable language. Then, there exists a blackhole R-
sPDA M with a linear control language and with an unbounded depth function such that L =
T (M).

In the sequel, we consider blackhole R-sPDA with linear control languages and with linear depth
functions. We show that these automata characterize the family of context-sensitive languages.
First, however, two examples demonstrating the main idea of the proof of the statement are
presented.

Example 8. Let L = {ww : w ∈ {a, b}∗}. We construct a blackhole R-sPDA M with a
linear control language R and with a linear depth function f accepting L. To do this, let
M = (M′, Qc, R, f) be defined so that M′ = ({q0, q1, qc, q2, qf}, {a, b}, {a, b, $}, δ, q0, Z0, {qf})
is a PDA, Qc = {qc} is the set of checking states, R = {w$wR : w ∈ {a, b}∗}, and f(n) = n+ 1
is the (linear) depth function.

Given an input string w′, the automaton, assuming that the input is of the form w′ = ww,
nondeterministically copies symbols of the input string to the pushdown and guesses the state
when the prefix w has been copied, i.e., the pushdown contents is wR read from top to down.
Then, it pushes $ to the top of the pushdown, changes from state q0 to state q1, and nondeter-
ministically generates (pushes) some symbols to the pushdown. After that phase, it enters state
qc and verifies that the pushdown contents is of the form w$wR, i.e., it belongs to R. If this
is the case, then the automaton enters state q2 and compares the string w from the pushdown
top against the rest of the input. The automaton accepts if and only if the input is of the form
ww.

Repeating the main cycle from Example 8 several times, a similar automaton can accept more
complicated languages.

Example 9. As in the previous example and the discussion above, we can accept a language
L2 = {w1w1w2w2 . . . wkwk : wi ∈ {a, b}∗, i = 1, 2, . . . , k, k ≥ 1} by a blackhole R-sPDA. In this
case, the maximal depth of the pushdown which is considered during the computation is not
more than maxi=1,2,...,k(2|wi|+ 1).

8 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

Before stating the next theorem, we need the notion of a linear bounded automaton (an LBA)
which is a construct M = (Q,Σ,Γ, δ, q0, qacc,B,C) where Q is a finite set of states, Σ ⊆ Γ is
the input alphabet, Γ is the tape alphabet, δ : Q× Γ → 2Q×Γ×{L,R} is the transition function,
q0 ∈ Q is the initial state, qacc is the accepting state, and B,C∈ Σ are the left and right end
markers, respectively.

The transition function δ is defined in such a way that it never moves the head to the left or
to the right of the left and right end markers, respectively, neither replaces them with another
symbol. In accordance with the definition, however, we can assume that the LBA uses a linear
number of cells with respect to the length of the input since one symbol can represent the
contents of more than one cell of the tape.

A configuration of M is a string of the form w1qw2, where the current contents of the tape is
represented by w1w2 ∈ {B}(Γ∗ \ {C,B})∗{C}, and q ∈ Q is the current state of the machine.
Given an input string w0, the initial configuration is q0Bw0C. The transition function δ can
be rewritten so that if (q, b, L) ∈ δ(p, a), then we write xpa → qxb, for all x ∈ Σ, and if
(q, b, R) ∈ δ(p, a), then we write pa → bq, i.e., the symbol read by the head is the symbol
to the right of the state. For a configuration w1xpaw2 and a rule xpa → qxb, we define the
computational step relation ` so that w1xpaw2 ` w1qxbw2. Similarly, for a rule pa → qp, we
obtain w1xpaw2 ` w1xbqw2.

An accepting computation on the input string w0 is a sequence of computational steps u0 ` u1 `
· · · ` un, for some n ≥ 1, such that u0 is the initial configuration q0Bw0C, ui are configurations
for all i = 1, 2, . . . , n−1, and un is a configuration of the form w1qaccw2 containing the accepting
state. An input string w0 is accepted if there is an accepting computation on w0.

A language is context-sensitive if and only if it is accepted by an LBA (see, for example, [5, 6])).

Theorem 10. A language L is context-sensitive if and only if there exist a blackhole R-sPDA
M with a linear control language and with a linear depth function such that L = T (M) holds.

Proof. Let L ⊆ Σ∗ be a context-sensitive language. Then, there exists a linear bounded au-
tomaton K = (Q,Σ,Γ, δ, q0, qacc,B,C) accepting L. We present a blackhole R-sPDA M =
(M′, Qc, R, f) with a linear control language R and a linear depth function f such that
L = T (M) holds.

We first construct the control language R. Let G1 = ({S, S ′, S ′′},Σ, P, S) be a linear grammar,
where the production set P contains productions of the form S → Sx, S → $S ′$, S ′ → xS ′x,
S ′′ → xS ′′x, S ′′ → $, for all x ∈ Σ, and for each transition rule of the form α → β of the
LBA K, a production S ′ → βRS ′′α. Then, the language generated by G1, denoted as L1, is
L1 = {wRw′$: w′ `K w}Σ∗. Similarly, we construct a linear grammar G2 so that its language
is L2 = {$$wwR : w ∈ Σ∗}Σ∗, and a linear grammar G3 generating L3 = {$$$wR$w′$: w′ `K
w,w = w1qaccw2}Σ∗. We set R = L1 ∪ L2 ∪ L3 which is the linear control language of M.

The blackhole R-sPDAM with input alphabet Σ and tape alphabet Γ∪Q∪{$,B,C} simulates

Blackhole State-Controlled R-PDA 9

K by reproducing configurations of K in its pushdown and simulating the transitions of K by
rewriting these configurations. In the following we describe the functioning of M, the precise
construction of the state and transition sets are left to the reader.

We first show how a move in K is simulated inM. The simulation of a configuration change is
done in several steps. Assume that the LBA K performs a move w′ `K w. Then, M simulates
this step as follows. Assume that M is in some state q and its pushdown contents is of the
form

$w′$γ

for some γ ∈ Γ∗. Then M, without reading any input symbol, nondeterministically pushes
symbols to the pushdown, and then enters a checking state in which it verifies that the pushdown
contents forms a string from L1, i.e., whether or not the obtained pushdown contents is of the
form

wRw′$γ′

for some γ′ ∈ Γ∗ such that γ′ is a prefix of γ. If this is the case, then the above step of K has
been simulated on the pushdown in a correct manner, otherwiseM is not able to continue the
computation. It remains to reverse wR on the top of the pushdown. This is done in similar
way, i.e., by a nondeterministic push of symbols to the pushdown and checking whether or not
the resulting pushdown contents forms a string from R; more specifically, from L2. If it does,
then the pushdown contents is

$$wwRγ′′,

and thus the simulation of the above move of K is finished.

The simulation of the start of a computation in K is as follows. First,M pushes one symbol $
into the pushdown, then two symbols q0,C, and then it reads the input and meanwhile copies
the letters of the input word to the pushdown. Finally it adds a symbol B and one more $
as the topmost symbol. The obtained word is of the form $BwRCq0$Z0. Then, as above, M
nondeterministically pushes symbols to the pushdown and checks whether or not the resulting
pushdown contents forms a string of the form $$q0BwC$BwRCq0$Z0. If it is the case, then the
simulation of a computation in K may start.

To complete the proof, we show how acceptance in K is simulated inM. Suppose thatM is in
some state q, up to this point a computation in K is correctly simulated, and the contents of the
pushdown of M is of the form $w′$γ. We guess that K enters the accepting state by the next
move w′ `K w. Then,M simulates this move as written above, but instead of introducing $ as
the topmost symbol, it pushes the symbols $$$ to the pushdown. Thus, the obtained word is of
the form $$$wR$w′$γ′. If the move in K leads to acceptance, then wR contains qacc, therefore
$$$wR$w′$γ′ has to be an element of L3. Thus, M checks whether or not $$$wR$w′$γ′ ∈ R
(i.e., L3) holds, and if this is the case, then enters its final state.

As w is at most of the same length as the input, and we need five $ signs, four end markers,
and two state symbols to represent the configurations in the pushdown, f(n) = 2n+ 5 + 4 + 2
is a suitable depth function.

10 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

Consider now a blackhole R-sPDA M = (M′, Qc, R, f) where R is a linear control language
and f is a linear depth function. To see that the language T (M) is context-sensitive, note that
M uses only linear space. Thus, as membership in a linear language can also be checked using
linear space by a Turing machine, there is an LBA which simulates M.

Note that if the core pushdown automaton of the blackhole R-sPDA is deterministic and R is
linear, deterministic context-free, then L is deterministic context-sensitive. On the other hand,
if the LBA is deterministic, then R is linear, deterministic context-free. Thus, we have the
following corollary.

Corollary 11. Let L be a deterministic context-sensitive language. Then, there is a blackhole
R-sPDA M with a linear and deterministic context-free control language and with a linear
depth function such that L = T (M).

Note, however, that the core PDA of M is nondeterministic in this construction.

5.1. Deterministic Blackhole R-sPDA

A blackhole R-sPDA M = (M′, Qc, R, f) is deterministic if M′ is a deterministic pushdown
automaton.

It is known [1, Lemma 12.1] that for every DPDA M1, there is an equivalent DPDA M2 such
that M2 neither loops infinitely nor its pushdown contents grows infinitely while reading no
input. Thus, there exists a constant k such that M2 increases its pushdown of not more than
k symbols while reading no input. In addition, let r denote the maximal length of strings M2

can push to the pushdown in one step reading the input, i.e., reading the input, the automaton
cannot increase the pushdown of more than r− 1 symbols in one step. Considering an input of
length n, M2 can increase the length of its pushdown of no more than n · (r − 1) + (n+ 1) · k
symbols, which is linear with respect to the input.

Moreover, as the automata M1 and M2 are equivalent, i.e., accept the same language, and
going through a loop containing a checking state is possible only if the pushdown contents
forms a string from R, the automata (M1, Qc, R, f) and (M2, Qc, R, f) are equivalent as well.
As a consequence, we obtain the following statement.

Proposition 12. For every blackhole R-sDPDA M with a linear control language there is a
blackhole R-sDPDA M′ whose depth function is linear and T (M) = T (M′) holds.

Obviously, by Theorem 10, languages accepted by these automata are context-sensitive.

The following examples demonstrate blackhole R-sDPDA with linear control languages and
a linear depth functions accepting non-context-free languages. For instance, the language
{anbncn : n ≥ 1} can be accepted by such an automaton. The automaton stores all a’s and b’s

Blackhole State-Controlled R-PDA 11

read. When reading the first c, it checks that the pushdown contents is of the form bnan, for
some n ≥ 1, which is linear (even deterministic context-free), i.e., R = {bnan : n ≥ 1}. If so,
the number of c’s is compared with the number of b’s stored in the pushdown.

In the following example, more complicated languages of deterministic blackhole R-sPDA with
regular control languages and linear depth functions are presented.

Example 13. Let Lk = {(wc)k : w ∈ {a, b}∗} for k ≥ 1. Then, for every k ≥ 1, there is
a blackhole R-sDPDA Mk with a linear depth function f and a regular control language R
accepting Lk. Note that for all k ≥ 2, Lk are not context-free.

Let f(n) = n
k

+ 1. First, Mk copies the prefix wc of the input to the pushdown. Then,
it reads the next symbol, pushes it to the pushdown, and checks that the first and the last
symbols are the same, i.e., the pushdown contains a string from the regular control language
R = { x{a, b, c}∗x : x ∈ {a, b, c} }. According to f , only wcx, for some x ∈ {a, b, c}, can be
stored in the pushdown. For instance, if w = abc, then the pushdown contents is cba. Reading
the next input symbol, x, and pushing it to the pushdown, xcba is stored. The computation
continues if and only if x = a. Then, another symbol, say y, is read and pushed to the
pushdown, i.e., the pushdown contains yxcb. This implies y = b. It means that if the next c is
read and pushed to the pushdown, then the string stored in the pushdown will be cbac. The
cycle is repeated until the whole input is read. As k is a constant, the number of c’s can be
counted using the internal states of Mk.

Note that similarly to Example 1, the power ofMk is provided by the depth function which is
known to the automaton without using any of its computational resources. This is in accordance
with the fact that, by Proposition 3, there is no blackhole R-sPDA with a regular control
language and an unbounded depth function accepting Lk, for k ≥ 2.

6. Conclusions and Open Problems

In this paper, we introduced and examined a variant of regulated pushdown automata, the so-
called blackhole state-controlled R-PDA where a symbol can always be pushed to the pushdown,
but only a given depth of the pushdown contents is considered; the rest of the pushdown contents
is lost. In addition, in some special states, the automaton can check the form of its pushdown
contents according to a given control language. We provided the characterization of several
language families, we proved that these constructs with linear control languages and linear
depth functions characterize the context-sensitive language class.

There have remained several open problems to study. In [4], state-controlled R-PDA with
linear control languages were shown to be able to accept any recursively enumerable language
checking the pushdown only twice during any computation. Obviously, the same number of
checks is needed to obtain this accepting power in the case of blackhole R-sPDA with linear
control languages and unbounded depth functions as well. However, it is an open question
whether or not for any natural number k, there exists a language that cannot be accepted

12 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil

by a blackhole R-sPDA with linear control language and linear depth function checking the
pushdown contents less than k times.

We have shown that deterministic context-sensitive languages can be accepted by blackhole
R-sPDA with linear and deterministic context-free control languages and with a linear depth
function. A challenging question is to relate the well-known LBA problem to blackhole R-sPDA.

Another important problem area concerns the accepting power of blackhole R-sPDA with linear
control languages and sub-linear depth functions.

Acknowledgments

T. Masopust has been supported by the Czech Academy of Sciences, Institutional Research
Plan no. AV0Z10190503.

References

[1] HOPCROFT, J.E., ULLMAN, J.D., Formal Languages and Their Relation to Automata,
Addison-Wesley, Reading, Massachusetts 1969.

[2] KŘIVKA, Z., Rewriting Systems with Restricted Configurations, PhD thesis, Faculty of Infor-
mation Technology, Brno University of Technology, Brno 2008.

[3] KUTRIB, M., MALCHER, A., WERLEIN, L., Regulated nondeterminism in pushdown au-
tomata. Theoretical Computer Science 410 (37) (2009), 3447–3460.

[4] MASOPUST, T., Regulated nondeterminism in PDAs: The non-regular case, in H. Bordihn,
R. Freund, M. Holzer, M. Kutrib, F. Otto (Eds.), Proceedings of the Workshop on Non-Classical
Models of Automata and Applications (NCMA 2009), books@ocg.at, band 256, Austrian Com-
puter Society, 2009, 181–194.

[5] SALOMAA, A., Formal Languages, Academic Press, New York 1973.

[6] SALOMAA, A., Computation and Automata, Cambridge University Press, Cambridge 1985.

[7] SZEPIETOWSKI, A., Turing Machines with Sublogarithmic Space, Springer, Berlin 1994.

