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Abstract

In this paper, we prove that the most important concept of supervisory control of discrete-event systems, the controllability property, is
undecidable for two deterministic context-free languages K and L, where L is prefix-closed, even though K is a subset of L. If K is not a
subset of L, the undecidability follows from the work by Sreenivas. However, the case where K is a subset of L does not follow from that
work because it is decidable whether K and L are equivalent as shown by Sénizergues. Thus, our result completes this study. The problem
is also mentioned as open in the PhD thesis by Griffin, who extended the supervisory control framework so that the specification language
is modelled as a deterministic context-free language (compared to the classical approach where the specification is regular) and the plant
language is regular. This approach is of interest because it brings an opportunity for more concise representations of the specification (as
discussed, e.g., in the work by Geffert et al.) and, therefore, in some sense it treats the most interesting problem of the current supervisory
control theory, the state-space explosion problem.

Key words: Discrete-event systems; Controllability; Deterministic Context-Free Systems; Decidability.

1 Introduction

In 1993, Sreenivas [11] has shown that the controllability
property is undecidable for any systems for which inclusion
is undecidable. However, it turned out later that there exist
systems, such as deterministic pushdown automata [9,10],
for which inclusion is undecidable, whereas equivalence is
decidable. For such systems, it is undecidable whether K⊆ L
(in what follows, we implicitly assume that K denotes a
specification language, and L denotes a plant language which
is prefix-closed by definition), however, if we have some
additional knowledge that the languages are given so that
K ⊆ L, then it follows from [11] that if controllability is
decidable, then so is decidable the question whether L⊆ K.
Since K ⊆ L is known, to decide whether L⊆K results in the
equivalence problem K = L, which is decidable. Thus, we
cannot use the results of [11] to solve the problem whether
controllability is decidable for two deterministic context-free
languages where the specification language K is included in
the plant language L.

Note that the inclusion may be known for many reasons.
For instance, the languages are of some special form and
the human operator is able to decide it (as in the case of
the languages from the proof of Theorem 1) or, more gener-
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ally, we can assume that there exists an oracle that decides
containment for two deterministic context-free languages.

The problem has not yet been discussed in the literature, and
it is also formulated as open in [4]. Therefore, this paper
completes the study discussed in [11] by solving this prob-
lem. More specifically, we prove that even though the equiv-
alence problem is decidable for deterministic context-free
languages, controllability is undecidable for two determin-
istic context-free languages even though the containment of
the specification language in the plant language is known.
This result means that the undecidability of controllability is
not just a by-product of the undecidability of containment as
one might infer from Theorem 2.1 and Corollary 2.1 of [11].

Because of these undecidability results, the only possibili-
ties which deserve consideration in supervisory control of
discrete-event systems are: (i) the specification language K
is regular and the plant language L is (deterministic) context-
free, or (ii) the specification language K is deterministic
context-free and the plant language L is regular. The later
case (ii) has recently been treated in [3–5] while, as far as
the author knows, the former approach (i) has not yet been
treated in the literature at all. For this reason, a brief discus-
sion concerning controllability can be found in the conclu-
sion.

These approaches are of interest because they present an
opportunity to treat the most interesting problem of the cur-
rent supervisory control theory of discrete-event systems,
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the state-space explosion problem, so that we can describe
the plant language or the specification language by a more
concise representation which is up to exponentially smaller
when using deterministic pushdown automata instead of
finite-state machines as discussed, e.g., in [2].

2 Preliminaries

In this paper, we assume that the reader is familiar with
the basic notions and concepts of supervisory control of
discrete-event systems based on the Ramadge-Wonham au-
tomata framework [1,7,12], and with the theory of automata
and formal languages [8].

Let Σ be an alphabet (a finite nonempty set of events). The
set Σ∗ consisting of all finite words over Σ denotes the free
monoid generated by Σ. The unit of Σ∗ (the empty word)
is denoted by ε . Any set L ⊆ Σ∗ is a language over Σ. The
prefix closure of a language L over Σ is defined as the set
L= {w∈Σ∗ | ∃u∈Σ∗,wu∈ L} of all prefixes of all its words.
The language L is prefix-closed if L = L.

The notion of a generator denotes a deterministic finite-state
machine with a partial transition function.

A generator G is a construct G = (Q,Σ, f ,q0,Qm), where
Q is the finite set of states, Σ is the input alphabet, f :
Q× Σ→ Q is a partial transition function, q0 ∈ Q is the
initial state, and Qm ⊆ Q is the set of marked states. In the
usual way, f can be extended to a function from Q×Σ∗ to
Q by induction. The behavior of G is described in terms of
languages. The language generated by G is defined as the set
L(G) = {s∈ Σ∗ | f (q0,s)∈Q}, and the language marked by
G as the set Lm(G) = {s∈ Σ∗ | f (q0,s)∈Qm}. By definition,
L(G) is always prefix-closed.

A language L is regular if there exists a generator G such
that Lm(G) = L.

Let G be a generator over an alphabet Σ, and let /0 6= K ⊆
Lm(G) be a language. Let Σu ⊆ Σ denote the set of uncon-
trollable events. Language K is controllable with respect to
L(G) and Σu if KΣu∩L(G)⊆ K.

Recall that the notion of controllability plays the central
role in supervisory control of discrete-event systems because
there exists a supervisor or controller if and only if the spec-
ification language K is controllable with respect to L(G) and
Σu (and is Lm(G)-closed if non-prefix-closed specifications
are considered, cf. [1]).

A projection P : Σ∗→Σ∗0, for alphabets Σ0 and Σ with Σ0⊆Σ,
is a homomorphism defined so that P(a) = ε , for a ∈ Σ\Σ0,
and P(a) = a, for a ∈ Σ0. The inverse image of P is denoted
by P−1 : Σ∗0→ 2Σ∗ , and defined so that P−1(y) = {x ∈ Σ∗ |
P(x) = y}. These definitions can naturally be extended to
languages.

The synchronous product of two languages L1⊆Σ∗1 and L2⊆
Σ∗2 is defined as L1 ‖ L2 = P−1

1 (L1)∩P−1
2 (L2)⊆ (Σ1∪Σ2)

∗,
where Pi : (Σ1∪Σ2)

∗→ Σ∗i , for i = 1,2, are projections.

To define deterministic context-free languages, we first need
the concept of a pushdown automaton, which is a finite-state
machine with a potentially infinite stack memory.

A pushdown automaton M is a construct M = (Q,Σ,Γ,δ ,
q0,Z0,F), where Q is the finite set of states, Σ is the input al-
phabet, Γ is the pushdown alphabet, δ is a transition function
from Q×(Σ∪{ε})×Γ to the set of finite subsets of Q×Γ∗,
q0 ∈Q is the initial state, Z0 ∈Γ is the initial pushdown sym-
bol, and F ⊆Q is the set of accepting states. A configuration
of M is a triple (q,w,γ), where q is the current state of M , w
is the unread part of the input, and γ is the current content of
the pushdown (the leftmost symbol of γ is the topmost push-
down symbol). If p,q ∈ Q, a ∈ Σ∪{ε}, w ∈ Σ∗, γ,β ∈ Γ∗,
Z ∈ Γ, and (p,β ) ∈ δ (q,a,Z), then M makes a move from
(q,aw,Zγ) to (p,w,βγ), formally (q,aw,Zγ) `M (p,w,βγ).
For simplicity, the initial pushdown symbol Z0 appears only
at the bottom of the pushdown during any computation, that
is, if (p,β ) ∈ δ (q,a,Z), then either β does not contain Z0,
or β = β ′Z0, where β ′ does not contain Z0 and Z = Z0. As
usual, the reflexive and transitive closure of the relation `M
is denoted by `∗M . The language accepted by M is defined
as T (M ) = {w ∈ Σ∗ : (q0,w,Z0) `∗M (q,ε,γ) for some q ∈
F and γ ∈ Γ∗}.

A pushdown automaton M = (Q,Σ,Γ,δ ,q0,Z0,F) is deter-
ministic if there is no more than one move the automaton
can make from any configuration, that is, the following two
conditions hold:

(1) |δ (q,a,Z)| ≤ 1, for all a ∈ Σ∪{ε}, q ∈ Q, and Z ∈ Γ,
and

(2) for all q ∈ Q and Z ∈ Γ, if δ (q,ε,Z) 6= /0, then
δ (q,a,Z) = /0, for all a ∈ Σ.

In this case, we simply write δ (q,a,Z) = (p,γ) instead of
δ (q,a,Z) = {(p,γ)}.

A language L is deterministic context-free if there exists a
deterministic pushdown automaton M such that T (M ) = L.

3 Main Result

This section presents the main result of this paper. It com-
pletes the investigation of [11] for the case of deterministic
context-free languages where the containment of the speci-
fication language K in the plant language L is known.

Theorem 1. Controllability is undecidable for two deter-
ministic context-free languages K and L, where L is prefix-
closed, even though K ⊆ L.
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PROOF. We prove the theorem by reduction of Post’s Cor-
respondence Problem (PCP) to the problem of controlla-
bility of two deterministic context-free languages K ⊆ L.
First, recall that PCP is the problem whether, given two fi-
nite sets A = {w1,w2, . . . ,wn} and B = {u1,u2, . . . ,un} of n
words over an alphabet Σ, there exists a sequence of indices
i1i2 . . . ik, for k ≥ 1, such that

wi1wi2 . . .wik = ui1ui2 . . .uik .

It is also well-known that PCP is undecidable [6].

Let A = {w1,w2, . . . ,wn} and B = {u1,u2, . . . ,un} be an in-
stance of PCP over an alphabet Σ such that for all i =
1,2, . . . ,n, we have wi 6= ui. We define an alphabet Σ1 = {ci |
i = 1,2, . . . ,n} of new symbols, that is, ci 6= c j, for i 6= j,
and Σ∩Σ1 = /0, and two languages K and L as follows. The
specification language K is defined as the set of all inverse
projections of words and their mirror images (the notation
wR denotes the mirror image of a word w ∈ Σ∗)

K =
⋃

w∈Σ∗
#P−1(w)$wR#

where $,# /∈ Σ∪Σ1, and P : (Σ∪Σ1)
∗→ Σ∗ is a projection.

The plant language L is defined as a prefix-closure of the
language

L′ = (Σ∪Σ1∪{$,#})∗·
{#ci1ui1ci2ui2 . . .cik uik $wR

ik . . .w
R
i2wR

i1#@ |
k ≥ 1, ui ∈ B, and wi ∈ A}

defined as a concatenation of the regular language (Σ∪
Σ1 ∪ {$,#})∗ with the deterministic context-free language
{#ci1 ui1ci2ui2 . . .cik uik $wR

ik . . .w
R
i2wR

i1 #@ | k ≥ 1, ui ∈ B, and
wi ∈ A}, where @ is a new symbol.

As, obviously, K ⊆ (Σ∪Σ1∪{$,#})∗, K is also included in
the language L = L′ as required.

It is not hard to construct a deterministic pushdown au-
tomaton for K. Considering a word #v$u#, the pushdown
automaton reads v symbol by symbol from the input and
pushes each symbol from the alphabet Σ to the pushdown
store, until it reads symbol $. Then, it reads a symbol from
the input, compares it with the symbol stored on the top of
the pushdown store, and if they match, it pops the top of
the pushdown and continues; otherwise, it rejects. Thus, the
word stored in the pushdown store says the automaton what
should be read from the input in the next computational step.
Hence, the pushdown automaton is deterministic.

Similarly, we can construct a deterministic pushdown au-
tomaton for the plant language L = L′. However, this con-
struction is a bit tricky. The main idea is that the automa-
ton always tries to verify that the word between two sym-
bols # is of the form ci1 ui1ci2ui2 . . .cik uik $wR

ik . . .w
R
i2wR

i1 . If it

fails to check this property, it changes its mind and consid-
ers the read part of the input as a prefix from the language
(Σ∪Σ1∪{$,#})∗. More specifically:

(1) The automaton reads the input until it reads the first
symbol #.

(2) Then, it verifies that the subword between two #’s is
of the form ci1ui1ci2ui2 . . .cik uik $wR

ik . . .w
R
i2wR

i1 . This is
done so that (because # has already been read from the
input in step 1)

(*) the automaton must now read ci ∈ Σ1, for some
i, from the input. If so, it stores ci to the pushdown
store, and verifies that ui follows on the input. This
verification can be done using only the finite state
control (i.e., the pushdown store is not used). This
is repeated until the symbol $ is read. After that, it
pops ck ∈ Σ1 from the top of the pushdown store
and reads wR

k from the input (again, this can be done
using only the finite state control). This procedure is
repeated until the next symbol # is read.

If there is no inconsistency discovered in the procedure
(*) and the pushdown store is empty (but the initial
pushdown symbol), then if the automaton reads @ from
the input, it halts if the whole input has been read;
otherwise, it goes to a rejecting state (because @ is not
the last symbol of the input word) and reads the rest
of the input. If the automaton does not read @ after
#, it empties its pushdown store so that only the initial
pushdown symbol is left in the pushdown store, and
continues as in the procedure (*). This corresponds to
the situation where the read part of the input belongs
to the prefix (Σ∪Σ1∪{$,#})∗.

(3) On the other hand, as soon as an inconsistency is dis-
covered in the procedure (*), the automaton keeps read-
ing (without checking any properties) the input sym-
bols from the language (Σ∪Σ1∪{$,#})∗ until it reads
the next symbol #. If the next symbol behind # on the
input is @, the automaton halts and rejects because the
suffix #w̃#@ has to be of the required form. Otherwise,
as above, it empties its pushdown store (but the ini-
tial pushdown symbol) and goes to step 2. This again
corresponds to the situation where the read part of the
input belongs to the prefix (Σ∪Σ1∪{$,#})∗.

The only rejecting states of the pushdown automaton are
those states the automaton goes to when the input contains
the symbol @ which is not the last symbol of the input, or
when the suffix in step 3 is not of the correct form. In all
other cases, the automaton is in accepting states. Thus, the
automaton rejects if and only if the input is not correct (it
contains @ but not as the last symbol), or the suffix #w̃#@ /∈
{#ci1ui1ci2ui2 . . .cik uik $wR

ik . . .w
R
i2 wR

i1#@ | k ≥ 1, ui ∈ B, and
wi ∈ A}. Moreover, note that the pushdown automaton is
deterministic.

Now, let Σu = {@}. We prove that K{@}∩L ⊆ K (that is,
K is controllable with respect to L and Σu) if and only if the
instance (A,B) of PCP has no solution.
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If K{@}∩ L ⊆ K, then the instance of PCP has no solu-
tion. To prove this, assume, for the sake of contradiction,
that the instance of PCP has a solution i1i2 . . . ik, for some
k ≥ 1, that is, wi1wi2 . . .wik = ui1ui2 . . .uik . But this means
that the word #ci1ui1ci2ui2 . . .cik uik $wR

ik . . .w
R
i2wR

i1# ∈ K be-
cause P(ci1ui1ci2ui2 . . .cik uik) = ui1 ui2 . . .uik = wi1wi2 . . .wik .
Moreover, #ci1ui1ci2ui2 . . .cik uik $wR

ik . . .wR
i2wR

i1#@∈ L, which
then implies that

#ci1ui1ci2 ui2 . . .cik uik $wR
ik . . .w

R
i2wR

i1#@ ∈ K

by the controllability property. However, no word of K ends
with (even contains) symbol @, which is a contradiction.
Thus, the instance of PCP has no solution.

On the other hand, assume that the instance of PCP has no
solution. We show that then K{@}∩L⊆ K. Again, for the
sake of contradiction, assume that K{@}∩L 6⊆ K. Then, it
means that there exists a word w ∈ K such that w@ ∈ L and
w@ /∈ K. However, any word w@ of L ending with @ is of
the form

ϒ
∗#ci1ui1ci2ui2 . . .cik uik $wR

ik . . .w
R
i2wR

i1#@

for k≥ 1, where ϒ=Σ∪Σ1∪{$,#}, which means that it ends
with #@. Moreover, because of this and the assumption that
w ∈ K, it begins and ends with # and, therefore, w ∈ K. This
implies that w@ = #ci1ui1ci2ui2 . . .cik uik $wR

ik . . .w
R
i2wR

i1#@ ∈
K{@}∩L. In addition, since we have that w∈K, we get that
P(ci1ui1ci2ui2 . . .cik uik) = ui1ui2 . . .uik = wi1wi2 . . .wik . This
means that the instance (A,B) of PCP has a solution, namely
i1i2 . . . ik, which is a contradiction.

4 Conclusion

In this paper, we have shown that controllability is unde-
cidable for two deterministic context-free languages even
though the specification language is known to be included in
the plant language. This result shows that the undecidability
of controllability is not just a by-product of the undecidabil-
ity of containment as one might infer from Theorem 2.1 and
Corollary 2.1 of [11]. Moreover, this result also opens up the
possibility that there might exist modeling paradigms where
containment might be decidable, yet controllability remains
undecidable.

In addition, note that the languages constructed in the proof
of the main result are also linear [8], so the theorem proves
that controllability is undecidable even for linear, determin-
istic context-free languages.

Recall that the case where one of the languages is rep-
resented by a deterministic pushdown automaton deserves
more attention because it is able to treat the state-space
explosion problem, which is the most interesting question
of the current supervisory control theory. Unfortunately, as

shown in this paper and in [11], it is not possible, in gen-
eral, to represent both languages as deterministic pushdown
automata because of the undecidability issues.

Finally, we briefly discuss the decidability of controllabil-
ity for the case the specification language K is regular and
the plant language L is (deterministic) context-free. By the
closure properties of regular and context-free languages, the
language KΣu is regular, and KΣu∩L is context-free. Since
the controllability property KΣu∩L⊆ K is equivalent to the
emptiness problem (KΣu ∩ L)∩ (Σ∗ \K) = /0, and the lan-
guage (KΣu∩L)∩ (Σ∗ \K) is context-free, the decidability
of controllability follows from the decidability of the empti-
ness problem for context-free languages [8]. Note that if L
is deterministic context-free, it is decidable whether K ⊆ L.
However, if L is not deterministic, it is (in general) undecid-
able whether K ⊆ L.
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