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Abstract. We study the state complexity of the reverse of acyclic min-
imal deterministic finite automata, and the computational complexity of
the following problem: Given an acyclic minimal DFA, is the minimal
DFA for the reverse also acyclic? Note that we allow self-loops in acyclic
automata. We show that there exists a language accepted by an acyclic
minimal DFA such that the minimal DFA for its reverse is exponential
with respect to the number of states, and we establish a tight bound
on the state complexity of the reverse of acyclic DFAs. We also give a
direct proof of the fact that the minimal DFA for the reverse is acyclic if
and only if the original acyclic minimal DFA satisfies a certain structural
property, which can be tested in quadratic time.

1 Introduction

The reverse of a machine or of a language is one of the classical operations
in automata and formal language theory. However, in comparison with other
operations, such as the boolean operations, the descriptional complexity of the
reverse of regular languages is exponential in the worst case with respect to
the number of states of minimal deterministic finite automata (DFAs). This
paper demonstrates that this also holds true for a subclass of regular languages
accepted by acyclic minimal DFAs. To prevent confusion with DFAs accepting
only finite languages, it is important to explain here that we allow self-loops
in acyclic automata. Thus, the notion of acyclic stands for automata without
cycles of length two or more. This definition is adapted from the literature [7,
15, 16, 18].

The first part of this paper studies the state complexity of the reverse of
acyclic minimal DFAs, and proves that the tight bound for this subclass is 2n−1,
where n is the number of states of the input acyclic DFA. This bound can be met
by an acyclic DFA over a ternary alphabet with a dead state, or by an acyclic
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DFA over a growing alphabet without the dead state. It remains open whether
or not the upper bound can be met by an acyclic DFA over a binary alphabet
independently on the presence of the dead state, as well as by an acyclic DFA
over a fixed alphabet that has no dead state.

The exponential blow-up of states for this operation motivates the following
computational complexity problem: Given an acyclic minimal DFA accepting a
regular language, is the minimal DFA for the reverse of the language also acyclic?
Surprisingly, the answer to this question depends only on a certain structural
property of the input automaton which can be tested by a known algorithm with
a quadratic-time complexity with respect to the size of the input automaton. This
means that we do not need to compute the whole automaton for the reverse to
answer the question. Although this result can be derived from other results
concerning piecewise testable languages, as discussed in the conclusions, as far
as the authors know it has never been proved directly in this context. Therefore,
in the second part of this paper, we prefer to present a direct proof of the fact
that the reverse is acyclic if and only if the original minimal acyclic automaton
satisfies a structural property discussed below.

This problem can be generalized to many other operations and types of au-
tomata. It deserves attention especially in the case of operations that are of
interest in practical applications and have exponential state complexity, such as
projections or abstractions for DFAs [1, 6, 8, 9].

2 Preliminaries and Definitions

The cardinality of a set Σ is denoted by |Σ|. An alphabet is a finite non-empty
set. The free monoid generated by an alphabet Σ is denoted by Σ∗. A string
over Σ is any element of Σ∗. The empty string (the identity of Σ∗) is denoted
by ε. The length of a string w is denoted by |w|. A language over Σ is any subset
of Σ∗.

A nondeterministic finite automaton (NFA) is a 5-tuple N = (Q,Σ, δ,Q0, F ),
where Q is a finite non-empty set of states, Σ is an input alphabet, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is the set of final states, and δ : Q×Σ → 2Q is a
transition function which can be inductively extended to the domain 2Q × Σ∗.
The language accepted by N is defined as the set L(N) = {w ∈ Σ∗ | δ(Q0, w) ∩
F 6= ∅}.

An NFA N = (Q,Σ, δ,Q0, F ) is a complete deterministic finite automaton
(DFA) if |Q0| = 1, and |δ(q, a)| = 1 for each state q in Q and each input symbol
a in Σ. In that case, we identify singleton sets of states with their elements,
that is, we write q for a singleton set {q}. Moreover, we consider the transition
function δ to be a total mapping from Q×Σ to Q that can be extended to the
domain Q×Σ∗.

Two states of a DFA are distinguishable if there exists a string w which is
accepted from one of the states and rejected from the other one. Otherwise, the
two states are equivalent. A DFA is minimal if all its states are reachable from
the initial state, and no two different states are equivalent. A DFA is acyclic if all
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strongly connected components [4] of the directed graph of the DFA are trivial,
that is, they consist only of one element [7, 15, 16, 18]. Note that this definition
allows self-loops.

The subset automaton corresponding to an NFA N = (Q,Σ, δ,Q0, F ) is
the DFA N ′ = (2Q, Σ, δ′, Q0, F

′), in which F ′ = {R ⊆ Q | R ∩ F 6= ∅} and
δ′(R, a) = δ(R, a) for each set R in 2Q and each symbol a in Σ. The subset
automaton N ′ accepts the same language as the automaton N , but it need not
be minimal since some of its states may be unreachable or equivalent.

The reverse wR of a string w is inductively defined as follows: εR = ε and
(va)R = avR for a string v in Σ∗ and a symbol a in Σ. The reverse of a language
L is the language LR = {wR | w ∈ L}. The reverse of a DFA M = (Q,Σ, δ, q0, F )
is the NFA MR obtained from M by reversing all the transitions and by swap-
ping the role of the initial and final states, that is, MR = (Q,Σ, δR, F, {q0}),
where δR(q, a) = {p ∈ Q | δ(p, a) = q}. It is known that the states of the subset
automaton corresponding to the reverse of a minimal DFA are pairwise distin-
guishable [2, 3, 11]. For the sake of completeness, we give a short proof of this
fact here.

Lemma 1 ([2, 3, 11]). All distinct states of the subset automaton correspond-
ing to the reverse of a minimal DFA are pairwise distinguishable.

Proof. Let MR be the reverse of a minimal DFA M . Let q be an arbitrary state
of the NFA MR. Since state q is reachable in M , there exists a string wq accepted
by MR from q. Furthermore, the string wq is not accepted from any other state
of MR; otherwise, there would be two distinct computations of the DFA M on
the string wR

q . It follows that the states of the subset automaton corresponding

to MR are pairwise distinguishable since two distinct subsets of the state set of
MR must differ in a state q, and therefore the two subsets are distinguished by
the string wq. ut

3 Main Results

This section presents the main results of this paper. First, we show that the
worst-case state complexity of the reverse of a language represented by a minimal
acyclic DFA is exponential in the number of states of the DFA. As a consequence
of this result, we get that the direct construction of the minimal automaton
for the reverse may be computationally unfeasible. This motivates the study of
structural properties that would be helpful in deciding the question whether or
not the minimal DFA for the reverse of a language is acyclic, if the language
is represented by a minimal acyclic DFA. We prove that the acyclicity of the
minimal DFA for the reverse is equivalent to a structural property testable in
quadratic time.

Recall that in the general case, the worst-case state complexity of the reverse
of a language represented by an n-state DFA is 2n [5, 10–12, 19]. Our next result
shows that for acyclic DFAs, the upper bound on the state complexity of the
reverse is 2n−1.
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Fig. 1. The minimal acyclic DFA with the exponential reverse.

Lemma 2. Let M be an acyclic minimal DFA with n states. Then the minimal
DFA accepting the reverse of the language L(M) has no more than 2n−1 states.

Proof. Let M = (Q,Σ, δ, q0, F ) be an n-state acyclic minimal DFA, and con-
struct the NFA MR for the reverse by swapping the role of the initial and final
states, and by reversing all transitions. As M is acyclic, we can topologically
order its states from left to right so that no transition goes from right to left.
Let q be the rightmost state in this order. Since M is complete, q has self-loops
under all symbols from Σ. If q is not final, it is the dead state of M , and we can
remove it before constructing MR, that is, the subset automaton corresponding
to MR has no more than 2n−1 states. On the other hand, if q is final, it ap-
pears because of the self-loops in all reachable states of the subset automaton
corresponding to MR. This again gives the upper bound 2n−1 on the number of
states. The proof is complete. ut

The following results show that the upper bound is tight.

Lemma 3. There exists an acyclic minimal DFA M with n states over the
alphabet {a, b, c} such that the minimal DFA accepting the reverse of the language
L(M) has 2n−1 states.

Proof. Consider the DFA shown in Fig. 1. To construct its reverse, omit the dead
state d, make state qn−2 initial and state q0 final, and reverse all the transitions.
To simplify the proof, rename the states of the resulting NFA as shown in Fig. 2.
We show that each subset of {0, 1, . . . , n− 2} is reachable in the corresponding
subset automaton.

Fig. 2. The reverse of the DFA shown in Fig. 1; states renamed for the simplicity of
the proof.
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Fig. 3. The minimal acyclic DFA without the dead state with the exponential reverse.

The proof is by induction on the size of subsets. Each singleton set {i} is
reached from the initial state {0} by ci. Each subset {i1, i2, . . . , ik} of size k,
where 2 ≤ k ≤ n− 1 and 0 ≤ i1 < i2 < · · · < ik ≤ n− 2, is reached from the set
{0, i3 − i2, i4 − i2, . . . , ik − i2} of size k − 1 by the string abi2−i1−1ci1 since

{0, i3 − i2, i4 − i2, . . . , ik − i2}
a−→

{0, 1, i3 − i2 + 1, i4 − i2 + 1, . . . , ik − i2 + 1} bi2−i1−1

−→

{0, i2 − i1, i3 − i1, i4 − i1, . . . , ik − i1}
ci1−→ {i1, i2, i3, i4, . . . , ik} .

This gives 2n−1 reachable states of the subset automaton, which are all pair-
wise distinguishable by Lemma 1. ut

Note that the bound 2n−1 in the previous lemma follows naturally from the
presence of the dead state, which is ignored in the construction of the reversed
automaton. The next lemma shows, however, that the bound 2n−1 can also be
met by an acyclic DFA without the dead state, but in this case we need an
alphabet of exponential cardinality in comparison with the number of states,
and it is not known whether the cardinality can be fixed.

Lemma 4. There exists an acyclic minimal n-state DFA M without the dead
state over a growing alphabet such that the minimal DFA accepting the reverse
of the language L(M) has 2n−1 states.

Proof. Let Σn = {a} ∪ {bS | S ⊆ {1, 2, . . . , n} and n ∈ S} be an alphabet con-
sisting of a symbol a, and 2n−1 symbols bS – one for each subset S of {1, 2, . . . , n}
with n ∈ S.

Define an n-state acyclic DFA M over Σn with the state set {1, 2, . . . , n},
where 1 is the initial state and n is the sole final state. By symbol a, state n goes
to itself, and every other state i goes to state i+ 1. By symbol bS , every state in
S goes to state n, and every other state goes to itself. Fig. 3 demonstrates this
construction for n = 3.

In the subset automaton corresponding to the reverse of the DFA M , each
subset S of {1, 2, . . . , n} containing state n is reached from the initial state {n}
by the symbol bS . By Lemma 1, all these states are pairwise distinguishable, and
the lemma follows. ut
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As a consequence of the previous three lemmata we get the following result.

Theorem 1. Let L be a language accepted by an acyclic minimal DFA with n
states. Then the minimal DFA accepting the reverse of the language L has at
most 2n−1 states. The bound is met by a ternary acyclic DFA with the dead
state, or by an acyclic DFA over a growing alphabet without the dead state. ut

Now we turn to the problem whether the minimal DFA for the reverse of
an acyclic minimal DFA is also acyclic. Theorem 1 implies that it may be com-
putationally unfeasible to directly construct the minimal DFA for the reverse.
Therefore, we study structural properties of acyclic minimal DFAs to solve the
problem. To this end, we need several definitions.

For two states p and q of a DFA M = (Q,Σ, δ, q0, F ), we write p ≺ q if p 6= q
and state q is reachable from state p, that is, there exists a string w in Σ∗ such
that q = δ(p, w). A state p is called maximal if there exists no state q such that
p ≺ q. Denote by Σ(q) the set of all symbols appearing on the self-loops of state
q, that is, Σ(q) = {a ∈ Σ | δ(q, a) = q}.

Let Σi ⊆ Σ and δi be the restriction of the transition function δ of the DFA
M to the domain Q × Σi. Denote by Γ (Σi) the directed graph obtained from
the deterministic automaton (Q,Σi, δi, q0, F ) by ignoring the labels of edges and
eliminating the multi-edges. A connected component of the directed graph Γ (Σi)
with respect to a node q is the set of all nodes which are connected with q by a
path disregarding the orientation of edges.

The following theorem characterizes the structural property which will be
useful to derive the polynomial-time algorithm testing acyclicity of the reversed
automaton. Although this result can be indirectly derived from other results con-
cerning piecewise testable languages, as discussed in the conclusions, we prefer
to give a direct proof of this fact here.

Theorem 2. Let M be an acyclic minimal DFA. The minimal DFA accepting
the reverse of the language L(M) is acyclic if and only if for each state p of M ,
the connected component of the graph Γ (Σ(p)) containing state p has a unique
maximal state with respect to the relation ≺.

Proof. Let M = (Q,Σ, δ, q0, F ) be an acyclic minimal DFA and assume that the
minimal DFA for the reverse, denoted by

M ′ = (Q′, Σ, δ′, F, {R ⊆ Q | q0 ∈ R}) ,

where Q′ ⊆ 2Q, is acyclic. The DFA M ′ is obtained from M by setting F to
be the set of initial states, reversing all the transitions, converting the obtained
NFA to a DFA, and minimizing the DFA. Each subset containing the initial state
q0 of M is set to be a final state of M ′.

Assume that M ′ is acyclic. For the sake of contradiction, assume that there
exists a state p in Q such that the connected component of the graph Γ (Σ(p))
containing state p has two distinct maximal states. Since state p is a maximal
state of this component, there exists a state q in that component that is maximal
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and different from p. The DFA M is acyclic, thus either p 6≺ q or q 6≺ p. Without
loss of generality, we assume that q 6≺ p. Then, there exist a state r in Q and two
strings u, v in Σ(p)∗ such that δ(r, u) = p and δ(r, v) = q. Since M is minimal,
states p and q are distinguished by a string w in Σ∗. Let w be accepted from p
and rejected from q as depicted in Fig. 4; the other case is symmetric.

Fig. 4. Two maximal states p and q of the component Γ (Σ(p)) containing p.

Consider the computation of M ′ on the string

wR uR vR uR vR uR vR uR vR . . . ,

and let the computation be

F
wR

→ Z
uR

→ X1
vR

→ Y1
uR

→ X2
vR

→ Y2 · · · .

Since w is accepted by M from p but rejected from q, state p is in Z but q is
not. Moreover, since p has a loop on each symbol in Σ(p), it occurs in every Xi

and Yi. Now, consider the state r. It occurs in every set Xi since p goes to r by
uR in M ′. However, r does not occur in any Yi because otherwise we would have

r
v→ q

uvuvuv···uvu−→ q
w→ f

in M for a final state f of M ; thus, string w would be accepted from state q,
which is a contradiction. Now consider a sequence X1, Y1, X2, Y2, . . . of subsets
of the states of M . Since we only have a finite number of such subsets, there
exists a cycle in this sequence. Let X and X ′ be two consecutive subsets on this
cycle. Then state r is in exactly one of X and X ′. Without loss of generality, let
r ∈ X. Since M is minimal, state r is reached in M from the initial state q0 by a
string x ∈ Σ∗. It follows that xR is accepted from X in M ′. On the other hand,
since M is deterministic and r /∈ X ′, string xR is not accepted from X ′ in M ′.
Thus X and X ′ are not equivalent, and therefore the cycle is not a self-loop.
This contradicts our assumption that M ′ is acyclic.
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To prove the converse implication, assume that for each state p of M , the
connected component of the graph Γ (Σ(p)) containing p has a unique maximal
state with respect to the relation ≺. For the sake of contradiction, assume that
there exists a cycle of length at least two in the DFA M ′. Let S and T be two
different sets on this cycle. Without loss of generality, we can assume that there
exists a state r in M with r /∈ S and r ∈ T . Assume that S goes to T by a
string u, and T goes to S by a string v on the cycle in M ′, see Fig. 5. For i ≥ 0,
let pi = δ(r, uR(vRuR)i) be the states of M reached from the state r by strings
uR(vRuR)i. Then all the states pi belongs to S. Since M is acyclic, there exists
j such that pj goes to itself on each symbol occurring in uv, denoted by Σ(uv).
Since pj is in S and goes to itself on each symbol from Σ(uv), it is also in T .
Denote p = pj . Then p is maximal with respect to Σ(uv). Now the aim is to find
another maximal state in the connected component of Γ (Σ(uv)) containing p.

To this aim, let si = δ(r, vR(uRvR)i) for i ≥ 0. Since M is acyclic, there exists
an index k such that sk goes to itself on each symbol from Σ(uv). Set q = sk.
State q is in the same connected component as p since both p and q are reached
from r in M . We need to show that q 6= p. Assume to the contrary that q = p.
Then state r is reached in M ′ from state p by the string (vu)kv. Since state p is
in T , state r is in S, which is a contradiction. Hence states p and q are distinct
maximal states in the same connected component of the graph Γ (Σ(uv)). Since
M is acyclic, either p 6≺ q or q 6≺ p. Assume that q 6≺ p, and consider the graph
Γ (Σ(p)). Then Γ (Σ(uv)) ⊆ Γ (Σ(p)), state p is maximal with respect to Σ(p),
and states p and q are connected in the graph Γ (Σ(p)). State q or a successor
of q is maximal in the same connected component of Γ (Σ(p)), but it is different
from p because q 6≺ p. ut

Now we demonstrate this technique on the following example.

Example 1. Consider the minimal DFA depicted in Fig. 6 (left). We have Σ(1) =
{a, b}. Fig. 6 (right) shows the graph Γ (Σ(1)). The only connected component
of Γ (Σ(1)) has two maximal states, namely 1 and d. By Theorem 2, the minimal
DFA accepting the reverse of the language accepted by the DFA in Fig. 6 (left)
has a cycle, as shown in Fig. 7. ut

Notice that this technique requires to consider complete minimal DFAs and
it works neither for incomplete DFAs nor for complete DFAs that are not mini-
mal. The previous example does not work if we ignore the dead state. In addi-

Fig. 5. A cycle in the minimal DFA M ′ for the reverse.
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Fig. 6. An acyclic DFA and its graph Γ (Σ(1)).

Fig. 7. The minimal DFA for the reverse of the language accepted by the DFA in Fig. 6
(left).

tion, in the case of non-minimal automata, we can have two different maximal
accepting/non-accepting states that can be equivalent.

The condition whether for each state p of M , the connected component of
Γ (Σ(p)) containing state p has a unique maximal state with respect to the
relation ≺ can be tested using the algorithm presented by Trahtman [18]. The
algorithm runs in time O(n2), where n is the sum of the number of states and the
number of transitions in M . As a consequence, we have the following theorem.

Theorem 3. Let M be an acyclic minimal deterministic finite automaton with
m states and k transitions. Let n = mk. There exists an algorithm solving the
problem of acyclicity of the minimal deterministic automaton for the reverse of
the language L(M) in time O(n2). ut

4 Conclusions

We discussed the state complexity of acyclic minimal DFAs, and the problem of
deciding whether or not the minimal DFA for the reverse of a language is acyclic
if the language is represented by an acyclic minimal DFA. We showed that the
minimal DFA for the reverse is acyclic if and only if the minimal acyclic DFA
for the original language possesses a special structural property. This property
can be tested in quadratic time using the result of Trahtman [18], even though
the construction of the minimal DFA for the reverse may be exponential.
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We could also ask the opposite question: Is there a structural property ensur-
ing that the minimal DFA for the reverse of a language is acyclic if the language
is represented by a minimal DFA with a cycle? As far as the authors know, this
question is open. Let us also mention that the work by Trahtman is motivated
by the investigation of a proper subclass of the class of regular languages, the
class of so-called piecewise testable languages introduced by Simon in [13].

A piecewise testable language over an alphabet A is a finite boolean com-
bination of languages of the form A∗a1A

∗a2A
∗ . . . A∗akA

∗, where k ≥ 0 and
ai ∈ A. Simon [14] characterized piecewise testable languages as the class of
languages with J -trivial syntactic monoids, see also Stern [15]. Stern suggested
a polynomial-time algorithm of order O(n5) deciding whether or not a regular
language is piecewise testable in [16]. Trahtman [18] improved this result by
presenting an algorithm running in time quadratic in the size of the input, and
provided a package TESTAS implementing the algorithm in [17].

Recently, Polák and Kĺıma [7] have mentioned another method for the ver-
ification of piecewise testability of a regular language. However, this method is
based on the construction of a so-called biautomaton, which requires both the
minimal DFA for a language and the minimal DFA for its reverse. According
to Theorem 3, this construction may be unfeasible because of the complexity
reasons.

Acknowledgements. The authors gratefully acknowledge useful suggestions
and comments of the anonymous referees.
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