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Abstract

A deterministic finite automaton accepting a regular language L is a state-partition automaton with respect to a pro-
jection P if the state set of the deterministic finite automaton accepting the projected language P(L), obtained by
the standard subset construction, forms a partition of the state set of the automaton. In this paper, we study funda-
mental properties of state-partition automata. We provide a linear algorithm to decide whether an automaton is a
state-partition automaton with respect to a given projection, a construction of the minimal state-partition automaton,
discuss closure properties of state-partition automata under the standard constructions of deterministic finite automata
for regular operations, and show that almost all of them fail to preserve the property of being a state-partition automa-
ton. Finally, we define the notion of state-partition complexity, and prove the tight bound on state-partition complexity
of regular languages represented by incomplete deterministic finite automata.
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1. Introduction

A deterministic finite automaton G accepting a regular language L is a state-partition automaton with respect
to a projection P if the state set of the deterministic automaton accepting the projected language P(L), obtained by
the standard subset construction [5, 24], forms a partition of the state set of the automaton G. This means that,
unlike the general case, the projection of a string uniquely specifies the state of the projected automaton. Therefore,
all projected strings of a language with the same observation, that is, with the same projections, lead to the same
state of the projected automaton. This property immediately implies that the size of the state set of the minimal state-
partition automaton accepting the language L is not smaller than the size of the minimal deterministic finite automaton
accepting the projected language P(L).

From the practical point of view, state-partition automata are of interest in engineering and computer science,
especially in applications where the user, supervisor, or controller has only a partial observation of the whole behavior
of a system, which is modeled by a projection. From the theoretical point of view, state-partition automata have found
applications as a proof formalism for systems with partial observations. Namely, they have been successfully used
to simplify constructions and proofs, and are useful in applications of natural projections to obtain or describe an
abstraction of a system. Note that projections are sometimes generalized to so-called causal reporter maps, see [22,
25]. We refer the reader to [3, 4, 12, 13] for applications of state-partition automata in supervisory control of discrete-
event systems. Note that state-partition automata are related to the Schützenberger covering. More specifically, the
construction of a state-partition automaton is close to the Schützenberger construct [16].

A system represented by a state-partition automaton with respect to a projection that describes an abstraction
or a partial observation has a projected automaton that is not larger than the original automaton. This is the most
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important property from the application point of view. Notice that, up to now, there is only one well-known condition
ensuring that a projected automaton is smaller than the original automaton, an observer property, cf. [21], although
there is still no efficient algorithm to compute the projected automaton. The study of state-partition automata is thus
a further step to the understanding and characterization of the class of automata useful for practical applications in,
e.g., coordination or hierarchical supervisory control of discrete-event systems [1, 9, 10, 11, 18, 19].

In this paper, we discuss fundamental properties of state-partition automata. In Section 3, we provide a linear
algorithm to decide whether a deterministic finite automaton is a state-partition automaton with respect to a given pro-
jection. In Section 4, we recall the known result proving that every regular language has a state-partition automaton
with respect to a given projection. A procedure to construct this automaton is known, see [3]. We repeat the construc-
tion here and use it to obtain the minimal state-partition automaton. The last result of this section describes a regular
language and two projections with respect to which the language has no state-partition automaton. This negative result
indicates that state-partition automata are useful for systems with either a partial observation or abstraction, but not
with the combination of both. Then, in Section 5, we study the closure properties of state-partition automata under the
standard constructions of deterministic automata for the operations of complement, union, intersection, concatenation,
Kleene star, reversal, cyclic shift, and left and right quotients. We show that almost all of them fail to preserve the
property of being a state-partition automaton. Only two of the considered operations preserve this property, namely,
the construction of a deterministic automaton for the right quotient of two regular languages, and the construction of
a deterministic automaton for the complement of regular languages represented by complete deterministic automata.
Finally, in the last section, we introduce and study the notion of state-partition complexity of regular languages with
respect to a projection, defined as the smallest number of states in any state-partition automaton (with respect to the
projection) accepting the language. The first result of this section shows that a language represented by a minimal
incomplete deterministic automaton with n states has state-partition complexity at most 3n · 2n−3. The second result
then proves the tightness of this bound using a language defined over a three-letter alphabet and a projection on binary
strings.

2. Preliminaries and Definitions

In this paper, we assume that the reader is familiar with the basic notions and concepts of formal languages and
automata theory, and we refer the reader to [5, 15, 17] for all details and unexplained notions. For a finite non-empty
set Σ, called an alphabet, the set Σ∗ represents the free monoid generated by Σ. A string over Σ is any element of Σ∗,
and the unit of Σ∗ is the empty string denoted by ε. A language over Σ is any subset of Σ∗. For a string w in Σ∗, let
|w| denote the length of w, and for a symbol a in Σ, let |w|a denote the number of occurrences of the symbol a in w. If
w = xyz, for strings x, y, z,w in Σ∗, then x is a prefix of w, and y is a factor of w.

A deterministic finite automaton (DFA) is a quintuple G = (Q,Σ, δ, s, F), where Q is a finite non-empty set of
states, Σ is an input alphabet, δ : Q × Σ → Q is a partial transition function, s ∈ Q is the initial (or start) state,
and F ⊆ Q is the set of final states. Note that we consider incomplete deterministic finite automata that are also
called generators in the literature, cf. [2, 23]. That is why we prefer to use G to denote an incomplete deterministic
automaton. The transition function can be naturally extended to the domain Q × Σ∗ by induction. The language
accepted by the automaton G is the set of strings L(G) = {w ∈ Σ∗ | δ(s,w) ∈ F}. A state q of G is called reachable if
q = δ(s,w) for a string w in Σ∗, and it is called useful, or co-reachable, if δ(q,w) ∈ F for a string w.

A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, δ, S , F), where Q, Σ, and F are as in a
DFA, S ⊆ Q is the set of initial states, and δ : Q × (Σ ∪ {ε}) → 2Q is the nondeterministic transition function that
can be extended to the domain 2Q × Σ∗ by induction. The language accepted by the NFA N is defined as the set
L(N) = {w ∈ Σ∗ | δ(S ,w) ∩ F , ∅}. Notice that our NFAs may have ε-transitions and multiple initial states. However,
ε-transitions and multiple initial states can be eliminated by a standard technique [5].

Two automata are equivalent if they accept the same language. Every NFA N = (Q,Σ, δ, S , F) without ε-transitions
can be converted to an equivalent DFA det(N) = (2Q,Σ, δd, sd, Fd) by an algorithm known as the “subset construc-
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tion” [14], where we have

δd(R, a) = δ(R, a) for each R in 2Q and a in Σ,

sd = S , and

Fd = {R ∈ 2Q | R ∩ F , ∅}.

We call the deterministic automaton det(N) the subset automaton corresponding to the automaton N. Notice that
the state set of the subset automaton is the set of all subsets of Q, even though some of them may be unreachable from
the initial state sd.

Let Σ be an alphabet and Σo ⊆ Σ. A homomorphism P from Σ∗ to Σ∗o is called a (natural) projection if it is defined
by P(a) = a for each a in Σo and P(a) = ε for each a in Σ \ Σo. The inverse image of P is a mapping P−1 from Σ∗o to
2Σ∗ defined by P−1(w) = {u ∈ Σ∗ | P(u) = w}.

Let G = (Q,Σ, δ, s, F) be a DFA accepting a language L and P be the projection from Σ∗ to Σ∗o with Σo ⊆ Σ. From
the DFA G, we construct an NFA NG accepting the language P(L) by replacing all transitions labeled by symbols from
Σ \ Σo with ε-transitions, and by eliminating these ε-transitions. Then the projected automaton for the language P(L)
is the deterministic automaton

P(G) = (Q′,Σo, δ
′, s′, F′)

that forms the reachable part of the subset automaton det(NG). Thus, Q′ is the set of all states of 2Q reachable from the
initial state s′. Notice that we do not eliminate states from which no final state is reachable. This is due to applications
in supervisory control, where this problem is known as the problem of nonblockingness [2].

A DFA G = (Q,Σ, δ, s, F) is a state-partition automaton (SPA) with respect to a projection P from Σ∗ to Σ∗o with
Σo ⊆ Σ if the states of the projected automaton P(G) = (Q′,Σo, δ

′, s′, F′) are pairwise disjoint as sets. Note that if all
states of G are reachable, then the state set of the projected automaton P(G) defines a partition of the state set of G.

For an automaton G (deterministic or nondeterministic), let sc(G) denote the number of states of the automaton
G. We immediately have the following result.

Lemma 1. Let G be a DFA over an alphabet Σ that has no unreachable states. Let P be a projection from Σ∗ to Σ∗o
with Σo ⊆ Σ. If G is a state-partition automaton with respect to P, then sc(P(G)) ≤ sc(G).

Now we define a parallel composition of two incomplete deterministic automata, which is basically the intersection
of their languages defined over two different alphabets. Therefore, it is first necessary to unify their alphabets by
adding the missing symbols.

For two deterministic finite automata G1 = (Q1,Σ1, δ1, s1, F1) and G2 = (Q2,Σ2, δ2, s2, F2), we define the parallel
composition of G1 and G2, denoted by G1 ‖ G2, as the reachable part of the DFA (Q1×Q2,Σ1∪Σ2, δ, (s1, s2), F1×F2),
where

δ((p, q), a) =


(δ1(p, a), δ2(q, a)), if δ1(p, a) is defined in G1 and

δ2(q, a) is defined in G2;
(δ1(p, a), q), if δ1(p, a) is defined in G1 and a < Σ2;
(p, δ2(q, a)), if a < Σ1 and δ2(q, a) is defined in G2;
undefined, otherwise.

From the language point of view, it can be shown that

L(G1 ‖ G2) = P−1
1 (L(G1)) ∩ P−1

2 (L(G2)) ,

where Pi is the projection from (Σ1 ∪ Σ2)∗ to Σ∗i for i = 1, 2.
Let us briefly recall definitions of the operations of reversal, cyclic shift, and left and right quotients for languages

over an alphabet Σ. The reversal of a string w over Σ is defined by εR = ε and (va)R = avR for a symbol a in Σ and
a string v in Σ∗. The reversal of a language L is the language LR = {wR ∈ Σ∗ | w ∈ L}. The cyclic shift of a language
L is defined as the language Lshi f t = {uv ∈ Σ∗ | vu ∈ L}. The left and right quotients of a language L by a language
K are the languages K\L = {x ∈ Σ∗ | there exists w ∈ K such that wx ∈ L} and L/K = {x ∈ Σ∗ | there exists w ∈
K such that xw ∈ L}, respectively. By Lc we denote the complement of a language L, that is, the language Σ∗ \ L.
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Figure 1: A DFA demonstrating the proof technique; P : {a, b}∗ → {a}∗.

3. A linear algorithm for checking the SPA property

In this section, we present a linear algorithm with respect to the number of states and transitions to check whether,
given a DFA G and a projection P, G is a state-partition automaton with respect to projection P.

Theorem 2. Let G be a DFA over an alphabet Σ with all states reachable, and let P be a projection from Σ∗ → Σ∗o.
There exists a linear algorithm with respect to the number of states plus the number of transitions of the DFA deciding
whether DFA G is a state-partition automaton with respect to projection P.

Proof. Let G = (Q,Σ, δ, q0, F) be a DFA, and let P(G) = (Q′,Σo, δ
′,Q0, F′) denote the projected automaton corre-

sponding to DFA G and projection P. For a in Σ, an a-transition is said to be an ε-transition if P(a) = ε.
By definition, if G is an SPA, then each state of G belongs to exactly one state of the projected automaton P(G),

which is the property we need to check. To do this, we will use a slight modification of the standard algorithm to
construct the DFA P(G) from DFA G and projection P. The problem with the standard algorithm is that to compare
two sets in each step can make the algorithm non-linear, thus we need to take care of these checks. It is explained
below.

First, note that by definition we can use an array, A, indexed by states of G to remember a state of P(G) to which
the state belongs, that is, for a state q of G, A[q] denotes the state of P(G) containing q. Moreover, notice that all
states of any strongly connected component with respect to ε-transitions3 are contained either all or none in the state
of P(G), hence the first step of our algorithm is to eliminate cycles under ε-transitions.

Step 1: Compute the graph of strongly connected components (SCC) with respect to ε-transitions.

In this step, all bs with P(b) = ε are replaced with ε, and all other transitions are ignored in the computation of SCC,
but not removed and still present in the resulting graph, see Figures 1 and 2. As the resulting graph has no cycles
under ε-transitions, we can topologically order it with respect to ε-transitions. This ordering is not necessary for the
algorithm, it only allow us to speak about maximal and minimal SCC components with respect to a given component.
We say that a component is maximal with respect to a given component C if it is ε-reachable from C and there is no
ε-transition leaving this component, and it is minimal with respect to C if C is ε-reachable from it and there is no
ε-transition going to it.

In Figure 2, component 3 is maximal with respect to 3, and 2 and 4 are minimal with respect to 3.
Note that the graph of SCC components is an NFA accepting the language P(L(G)). We now use this NFA to

compute the automaton P(G). We first initialize the array A.

Step 2: Set A[i] = −, for 1 ≤ i ≤ n, where n ≤ |Q| is the number of SCC components.

3This basically denotes cycles under ε-transitions.

Figure 2: The graph of SCC components with respect to ε-transitions. State 4 is a representative of the SCC component {4, 5, 6}.
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We now need to compute the initial state Q0 of the automaton P(G).

Step 3: Construct Q0 as the union of all SCC components that are ε-reachable from the component containing state
q0. For each such a component c, set A[c] = Q0. Moreover, set MAX[Q0] to be the list of all maximal
components reached during this step.

For the NFA of Figure 2, Q0 = {1}, A = [Q0,−,−,−], and MAX[Q0] = {1}.

Step 3.1: Use the list MAX[Q0] to compute the list MIN[Q0] of minimal components reachable from elements
of MAX[Q0]. If there exists a minimal component c ∈ MIN[Q0] such that A[c] , Q0, then stop because
G is not SPA as explained below.

Step 3.2: Put Q0 to a queue.

The minimal components can be computed in linear time using a copy of the NFA with reversed transitions. In
our example, MIN[Q0] = {1}. If there is a component c ∈ MIN[Q0] with A[c] = −, let Qc denote the state
of P(G) containing the component c. Such a state must exist in P(G) because c is reachable in G. However,
MAX[Q0] ∩ Qc , ∅ because c has been reached from a maximal element of Q0 by reversed ε-transitions. Then
the states Q0 , Qc have nonempty intersection, which violates the SPA property.

Note that, so far, only components of Q0 and ε-transitions connecting them have been investigated twice.

Now, assume that we have computed states Q0,Q1, . . . ,Qk, for some 0 ≤ k ≤ n − 1, and compute the set δ′(Qi, a),
for some 0 ≤ i ≤ k and a ∈ Σo. By definition, if δ′(Qi, a) ∩ Q j , ∅, for some 0 ≤ j ≤ k, then δ′(Qi, a) = Q j. Thus, the
next step of the algorithm is to check this property.

Step 4: Pop a state, X, of P(G) from the queue to be examined next, and compute δ′(X, a), a ∈ Σo, as follows:

Step 4.1: Investigating the first a-transition from X, going to a component c, set the variable ReachedCompo-
nent := A[c], the reached state of P(G). Remove or mark each used a-transition so that no a-transition is
investigated more than once.

Step 4.2: For each a-transition going from X to a component, say c′, check that ReachedComponent = A[c′].
This checks that all a-transitions go from X to the same state of P(G). If this is not satisfied, then stop
because G is not an SPA as it violates the definition (see the paragraph above Step 4).
The following step verifies that it goes exactly to that state and not only to a substate.

Step 4.3: If ReachedComponent = Q j, for some previously constructed state Q j of P(G), check that δ′(X, a)
visits all minimal components of Q j, i.e., MIN[Q j]. If not, then stop because G is not an SPA: If G is an
SPA, then there must be an a-transition from X to each component of MIN[Q j] (all minimal components
of Q j), otherwise we get two states with nonempty intersection as above in Step 3.
Note that the number of steps is linear with respect to the number of a-transitions even though we need
to go through the whole list MIN[Q j]. This is because if G is an SPA, then there is an edge to each
component of MIN[Q j], hence to go through the list MIN[Q j] only doubles this number.

Step 4.4: If ReachedComponent = −, let m be a unique marker. In this step, mark every reached unmarked
component, c′, with m, including those components that are unmarked and ε-reached from c′. Set A[c′] =

δ′(X, a), and update MAX[δ′(X, a)]. Due to the marking, any component of δ′(X, a) is investigated only
once. Now, go through the list of maximal elements of MAX[δ′(X, a)] and investigate the ε-transitions
from them in the inverse direction to compute MIN[δ′(X, a)]. If a new component is reached, then stop
because G is not an SPA as explained in Step 3 above.
The complexity of this step is linear: a-transitions are removed/marked as soon as they are used, and ε-
transitions are used only twice (once when computing the maximal components, and once when computing
the minimal components).

The overall complexity of this algorithm is then O(n + m), where n is the number of states and m the number of
transitions.
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To finish the demonstration of the algorithm, recall that we have computed the set Q0 = {1} and A = [Q0,−,−,−].
To compute Q1 = δ′(Q0, a), note that ReachedComponent = − because δ(1, a) = 2 and A[2] = −. As state 3 is
ε-reachable from state 2, we have to check that A[2] = A[3], which is satisfied. Hence, we set A = [Q0,Q1,Q1,−],
and MAX[Q1] = {3}. However, when we compute MIN[Q1] = {2, 4}, we obtain component 4 that does not belong
to Q1. Thus, the algorithm stops and rejects. Obviously, the states δ({1}, a) = {2, 3} and δ({1}, a2) = {3, 4} violate the
SPA property.

4. Minimal State-Partition Automata

The fundamental question is whether every regular language can be accepted by a state-partition automaton with
respect to a given projection. If this is the case, can we construct such a state-partition automaton efficiently? The
answer to this question is known, and we repeat it in the following theorem. Although a proof has been given in [3],
we prefer to recall it here since some fundamental observations play a role later in the paper.

Theorem 3 ([3, 4]). Let P be a projection from Σ∗ to Σ∗o with Σo ⊆ Σ. Let L be a language over the alphabet Σ, and
let G be a DFA accepting the language L. Then the automaton P(G) ‖ G is a state-partition automaton with respect
to the projection P that accepts the language L.

Proof. Let G = (Q,Σ, δ, s, F) be a DFA accepting the language L, and let P(G) = (Q′,Σo, δ
′, s′, F′) be the correspond-

ing projected automaton. By definition of the parallel composition and the comment below the definition, we have
that

L(P(G) ‖ G) = P−1(P(L(G))) ∩ L(G) = L(G) .

Hence, the automaton P(G) ‖ G accepts the language L.
Let w be a string over the alphabet Σo. Then the state of the projected automaton P(P(G) ‖ G) reached from the

initial state by the string w is {
(δ′(s′,w), q) | q ∈ δ(s, P−1(w))

}
.

Since δ(s, P−1(w)) = δ′(s′,w), by definition of the transition function of the automaton P(G), the state reachable from
its initial state by the string w in the DFA P(P(G) ‖ G) is, in fact,{

(δ′(s′,w), q) | q ∈ δ′(s′,w)
}
.

It then follows that the states of the projected automaton P(P(G) ‖ G) reachable by two different strings are either the
same or disjoint.

Next we prove that the state-partition automaton constructed from a minimal DFA using the construction of the
previous theorem is the minimal state-partition automaton with respect to the number of states. To prove this, we need
the notion of isomorphic automata, and the result proved in the following lemma.

Let G1 = (Q1,Σ, δ1, s1, F1) and G2 = (Q2,Σ, δ2, s2, F2) be two DFAs. Let f be a mapping from Q1 to Q2 such that

• f (δ1(q, a)) = δ2( f (q), a) for each q in Q1 and a in Σ,

• f (s1) = s2, and

• q ∈ F1 if and only if f (q) ∈ F2.

The mapping f is called a homomorphism from G1 to G2. If f is a bijection, then it is called an isomorphism, and G1
and G2 are said to be isomorphic.

The next lemma shows that the parallel composition of automata P(G) and G is isomorphic to G for a state-partition
automaton G.

Lemma 4. Let G be an SPA with respect to a projection P from Σ∗ to Σ∗o in which all states are reachable. Then the
DFA P(G) ‖ G is isomorphic to G.
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Proof. Let G = (Q,Σ, δ, s, F) be a state-partition automaton with respect to the projection P, and let the automaton
P(G) = (Q′,Σo, δ

′, s′, F′) be the corresponding projected automaton. Let (X, q) be a state of P(G) ‖ G reachable by a
string w. By definition, we have X = δ(s, P−1(P(w))) and δ(s,w) = q. Thus, q ∈ X.

Define a mapping f : Q′ × Q → Q by f (X, q) = q. Then it holds that δ(q, a) = δ( f (X, q), a). Since each state
q is reachable in G by a string w, q = δ(s,w), and the state (δ(s, P−1(P(w))), δ(s,w)) of P(G) ‖ G is mapped to the
state q. Hence, f is surjective. On the other hand, let (X, q) and (X′, q′) be two states of the automaton P(G) ‖ G
with f (X, q) = f (X′, q′). Then q = q′, and q ∈ X ∩ X′ implies that X = X′ since the automaton G is a state-partition
automaton. Hence, f is also injective, thus it is bijective. Finally, let δ′′ denote the transition function of the automaton
P(G) ‖ G. By definition of the mapping f , we have f (δ′′((X, q), a)) = f (δ′(X, P(a)), δ(q, a)) = δ(q, a), f (s′, s) = s, and
(X, q) is a final state of the automaton P(G) ‖ G if and only if f (X, q) is a final state of the automaton G. This shows
that f is an isomorphism from P(G) ‖ G to G.

The following result constructs the minimal state-partition automaton for a given regular language and a projection.

Theorem 5. Let L be a regular language over an alphabet Σ, and let G be the minimal DFA accepting the language
L. Let P be a projection from Σ∗ to Σ∗o. Then the DFA P(G) ‖ G is the minimal state-partition automaton with respect
to the projection P that accepts the language L.

Proof. Let G = (Q,Σ, δ, s, F) be the minimal DFA accepting the language L, and let G2 = (Q2,Σ, δ2, s2, F2) be a
state-partition automaton with respect to the projection P that also accepts the language L. We may assume that all
states of the DFA G2 are reachable and useful; otherwise, we can remove unreachable and useless states from G2 and
obtain a smaller state-partition automaton.

Define a mapping f : Q2 → Q as follows. For a state q in Q2 that is reachable in the automaton G2 from the
initial state s2 by a string w, set f (q) = δ(s,w), that is, f (q) is a state in Q that is reachable in the automaton G from
the initial state s by the string w. Notice that f is well-defined since if a state in Q2 is reached by two different strings
u and v, then states δ(s, u) and δ(s, v) must be equivalent in the automaton G, and since G is minimal, we must have
δ(s, u) = δ(s, v).

Next, we have f (δ2(q, a)) = δ( f (q), a) for each state q in Q2 and symbol a in Σ, f (s2) = s, and q ∈ F2 if and only
if f (q) ∈ F. Hence f is a homomorphism from G2 to G.

Now, extend the mapping f to a mapping from the state set of the automaton P(G2) ‖ G2 to the state set of the
automaton P(G) ‖ G by setting

f (X, q) = ( f (X), f (q)) .

This is well-defined because if (X, q) is a state of the automaton P(G2) ‖ G2, then there exists a string w over Σ such
that X = δ2(s2, P−1(P(w))) and q = δ2(s2,w), and, therefore,

( f (X), f (q)) = (δ(s, P−1(P(w))), δ(s,w)) ,

which means that ( f (X), f (q)) is reachable by the string w in the automaton P(G) ‖ G.
To prove that f is surjective, consider a state (Y, p) of the automaton P(G) ‖ G. Then, there exists a string w such

that
(Y, p) =

(
δ(s, P−1(P(w))), δ(s,w)

)
.

Let (X, q) =
(
δ2(s2, P−1(P(w))), δ2(s2,w)

)
. Then (X, q) is a state of the automaton P(G2) ‖ G2 reachable by the string

w, and f (X, q) = ( f (X), f (q)) = (Y, p). Since f is surjective and the automaton G2 is a state-partition automaton with
respect to the projection P, we have, using Lemma 4, that

sc(P(G) ‖ G) ≤ sc(P(G2) ‖ G2) = sc(G2) .

This completes the proof.

Corollary 6. Let L be a regular language over an alphabet Σ, and let P be a projection from Σ∗. Then the minimal
state-partition automaton accepting the language L is unique up to isomorphism.
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Figure 3: The computation of G on the string w = xcy′dz.

Proof. Let G2 be a minimal state-partition automaton with respect to the projection P that accepts the language L. By
Lemma 4, the automaton G2 is isomorphic to the automaton P(G2) ‖ G2. Consider the extended mapping f from the
automaton P(G2) ‖ G2 to a minimal state-partition automaton P(G) ‖ G, where G is the minimal automaton accepting
the language L, constructed in the proof of Theorem 5. It can be proved that the mapping f is a homomorphism.
Moreover, since the automaton G2 is a minimal state-partition automaton, the homomorphism f is injective. Hence,
it is an isomorphism.

It is natural to ask whether an automaton can be a state-partition automaton with respect to more than one projec-
tion. This property would be useful in applications, where both an abstraction and a partial observation are combined,
cf. [1]. Unfortunately, the following result shows that this does not hold true in general.4

Lemma 7. There exist a language L and projections P and P̃ such that no DFA accepting the language L is a state-
partition automaton with respect to both projections P and P̃.

Proof. Let Σ = {a, b}. Let P and P̃ be projections from Σ∗ onto {a}∗ and {b}∗, respectively. Consider the language
L = (ab)∗. Assume that G = (Q,Σ, δ, s, F) is a state-partition automaton for both projections P and P̃ accepting the
language L. Notice that the DFA G does not have any loop, that is, no state of G goes to itself on any symbol, because
otherwise the automaton G would accept a string that does not belong to the language L.

Let w be a string of the language L of length at least |Q|. Then at least one state appears twice in the computation
of the automaton G on the string w. Let p be the first such state. Then w = xyz, where x is the shortest prefix of w such
that the initial state s goes to state p by x, and y is the shortest non-empty factor of w by which p goes to itself. Since
the automaton G has no loops, the length of y is at least two. Therefore, y = cy′d, where c, d ∈ {a, b}. In addition,
c , d because xyyz = xcy′dcy′dz belongs to the language L. Let q be the state of the automaton G that is reached from
the state p on reading the string cy′. Figure 3 illustrates the computation of G on the string w. Since x is the shortest
prefix of w that moves G to state p, and y is the shortest non-empty factor of w by which p goes to itself, we have
p , q.

In case d = b, we consider the projected automaton

P(G) = (Q′, {a}, δ′, s′, F′) .

Let X = δ′(s′, P(x)) and Y = δ′(X, P(ay′)) be two states of the automaton P(G). Then p ∈ X and p, q ∈ Y . Notice
that X = δ(s, P−1(P(x))). Since c = a and w ∈ L, we have x = (ab)k for a non-negative integer k. Therefore,
P−1(P(x)) = P−1(ak).

Assume that there exists a string u in P−1(ak) that moves the automaton G from the initial state s to the state q.
Then the string udz is accepted by the automaton G. Since d = b, we must have u = (ab)k−1a. However, then the
state q would be the first state in the computation on the string w that appears at least twice in it, which contradicts
the choice of the state p. It follows that q < X, and, therefore, X , Y . Hence, the automaton G is not a state-partition
automaton with respect to the projection P.

In case d = a, we consider the projected automaton

P̃(G) = (Q′′, {b}, δ′′, s′′, F′′) ,

and two of its states X = δ′′(s′′, P̃(x)) and Y = δ′′(X, P̃(cy′)). Then p ∈ X and p, q ∈ Y . Now, since c = b, we have
x = (ab)ka and P̃−1(P̃(x)) = P̃−1(bk). Assume that there exists a string v in P̃−1(ak) with δ(s, v) = q. Then vdz ∈ L
implies that v = (ab)k, and we obtain a contradiction as above. Thus, we again have that q < X, so X , Y . Therefore,
the automaton G is not a state-partition automaton with respect to the projection P̃.

4Personal communication with J. Komenda, K. Schmidt, and J. H. van Schuppen.
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Figure 4: SPA G (left), and DFA Gc for the complement of the language L(G) (right); projection P : {a, b}∗ → {a}∗.

Figure 5: SPAs G1 (left) and G2 (middle), and their cross-product G1 ×G2 (right); projection P : {a, b}∗ → {a}∗.

5. Closure Properties

Since every regular language has a state-partition automaton with respect to a given projection, the class of lan-
guages accepted by state-partition automata is closed under all regular operations. In the following, we consider the
closure properties of state-partition automata under the standard constructions of deterministic automata for regular
operations as described in the literature [5, 17, 20, 24]. Hence, we investigate the following question: Given state-
partition automata with respect to a projection, is the deterministic automaton resulting from the standard construction
for a regular operation a state-partition automaton with respect to the same projection?

We prove that almost all standard constructions, except for the complement of complete state-partition automata
and right quotient, fail to preserve the property of being a state-partition automaton.

Theorem 8. State-partition automata are not closed under the operations of complement, intersection, union, con-
catenation, star, reversal, cyclic shift, and left quotient.

Proof. We briefly recall the standard construction of a deterministic automaton for each operation under consideration.
Let us emphasize that we do not minimize the resulting deterministic automata.
Complement: To get a deterministic automaton for complement from a possibly incomplete DFA G, add the dead
state, if necessary, and interchange the final and non-final states. We prove that state-partition automata are not closed
under this operation.

Consider the two-state DFA G in Figure 4 (left). The DFA accepts the language ab∗. Let P be the projection from
{a, b}∗ to {a}∗. Then G is a state-partition automaton with respect to the projection P since the projected automaton
P(G) is deterministic. However, the complement of G, the DFA Gc shown in Figure 4 (right), is not a state-partition
automaton with respect to the projection P because we have to add the dead state, 3, which then appears in two
different reachable sets of the projected automaton P(Gc), namely, in {1, 3} reached by ε and in {2, 3} reached by a.
However, as the next theorem shows, the resulting DFA is a state-partition automaton if the given DFA is complete.
Intersection and union: To get the deterministic automaton for intersection and union, we apply the standard cross-
product construction.

Consider two automata G1 and G2 shown in Figure 5, and their cross-product automaton G1 × G2 depicted in
Figure 5. In the case of intersection, the only final state is state 3, while in the case of union, the final states are states
3 and 4. Let P be the projection from {a, b}∗ to {a}∗. Both G1 and G2 are state-partition automata with respect to the
projection P. However, the automaton G1 × G2 is not since the sets {2, 3} and {3, 4} are reachable in the projected
automaton P(G1 ×G2) by strings a and aa, respectively.
Concatenation: Recall that an NFA for concatenation of two DFAs G1 and G2 is obtained from G1 and G2 by adding
ε-transitions from final states of G1 to the initial state of G2, and by setting the initial state to be the initial state of G1,
and final states to be final states of G2. The corresponding subset automaton restricted to its reachable states provides
the resulting DFA for concatenation.

Now, let G be the DFA shown in Figure 6 (left). Let P be the projection from {a, b}∗ to {b}∗. The projected
automaton P(G) is a one-state automaton and, therefore, the DFA G is a state-partition automaton with respect to the
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Figure 6: SPA G (left) and DFA G ·G for concatenation of the languages L(G) · L(G) (right); projection P : {a, b}∗ → {b}∗.

Figure 7: SPA G (left), and DFA G∗ for the star of the language L(G) (right); projection P : {a, b, c}∗ → {a, b}∗.

projection P. The DFA G · G for concatenation is depicted in Figure 6 (right), and states {1, 2, 3} and {1, 2, 3, 4} are
reachable in the projected automaton P(G ·G) by strings ε and b, respectively. Hence, the DFA G ·G for concatenation
is not a state-partition automaton for the projection P.
Star: To construct an NFA for star of a DFA G, add a new initial and final state and ε-transitions from all final states,
including the new one, to the original initial state of the automaton G. The subset construction results in a DFA for
star.

Consider the DFA G in Figure 7 (left), and the projection P from {a, b, c}∗ to {a, b}∗. The automaton G is a state-
partition automaton with respect to the projection P since the projected automaton P(G) is deterministic. However,
the deterministic automaton G∗ for star, shown in Figure 7 (right), is not a state-partition automaton with respect to
the projection P because the sets {3} and {3, 4} are reachable in the projected automaton P(G∗) by strings ab and aba,
respectively.
Reversal: We can get an NFA for reversal from a DFA G by swapping the roles of initial and final states, and by
reversing all transitions. After the application of the subset construction, we obtain a DFA for reversal.

Consider the DFA G in Figure 8 (left), and the projection P from {a, b, c}∗ to {a, c}∗. The DFA G is a state-partition
automaton with respect to P since the states of the projected automaton P(G) are {2, 3} and {1}. On the other hand, the
DFA GR in Figure 8 (right) is not a state-partition automaton with respect to the projection P because the sets {2} and
{2, 3} are reachable in the projected automaton P(GR) by strings a and ac, respectively.
Cyclic shift: For the construction of an NFA for cyclic shift, we refer to [8]. Figure 9 (middle) shows an NFA for
the cyclic shift of the language accepted by the DFA G of Figure 9 (left). Let P be the projection from {a, b}∗ to {b}∗.
Then G is a state-partition automaton with respect to the projection P since the projected automaton P(G) has just one
state {1, 2}. However, the automaton Gshi f t in Figure 9 (right) is not a state-partition automaton with respect to the
projection P since states {1, 2, 3} and {2, 3, 4, 5, 6, 7, 8} are reachable by strings ε and b, respectively.
Left quotient: Construct a DFA for left quotient by a string w from a DFA G by making the state reached after reading
the string w initial.

Consider the DFA G shown in Figure 10 (left) and the projection P from {a, b}∗ to {b}∗. The automaton G is a
state-partition automaton with respect to the projection P as in the case of cyclic shift. The automaton a\G for the left
quotient by the string a is shown in Figure 10 (right). It is not a state-partition automaton with respect to the projection
P since the sets {2} and {1, 2} are reachable in the projected automaton by strings ε and b, respectively.

Figure 8: SPA G (left), and DFA GR for the reversal of the language L(G) (right); projection P : {a, b, c}∗ → {a, c}∗.
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Figure 9: SPA G (left), NFA for shift(L(G)) (middle), and DFA Gshi f t (right); projection P : {a, b}∗ → {b}∗.

Figure 10: SPA G (left) and DFA a\G for the left quotient by the string a (right); projection P : {a, b}∗ → {b}∗.

The following theorem demonstrates that if the structure of the automaton is not changed after an operation, then
the automaton remains state-partition with respect to the same projection.

Theorem 9. State-partition automata are closed under the operations of right quotient and complement of complete
state-partition automata.

Proof. Let G be a complete state-partition automaton. Construct a deterministic automaton Gc for the complement of
L(G) from the DFA G by interchanging final and non-final states. The result now follows from the fact that the states
of the projected automaton P(Gc) are the same as the states of the projected automaton P(G) since the structure of the
automaton Gc is the same as the structure of the automaton G.

Now, consider the right quotient of a language L(G) by a language K; here, the DFA G may be incomplete.
Construct an automaton for the right quotient L(G)/K from the automaton G by replacing the set of final states with
the set of states of G from which a string of the language K is accepted. Again, the structure of the automaton remains
the same; we only change the set of final states.

6. State-Partition Complexity

Let L be a regular language over an alphabet Σ, and let P be a projection from Σ∗ to Σ∗o. We define the state-
partition complexity of the language L, denoted by spc(L), as the smallest number of states in any automaton accepting
the language L that is a state-partition automaton with respect to the projection P. By Theorem 5, the state-partition
complexity of the language L is the number of states of the DFA P(G) ‖ G, where G is the minimal incomplete DFA
accepting the language L.

Now, we give the upper bound on the state-partition complexity of regular languages, and prove that this bound is
tight.

Theorem 10. Let L be a language over an alphabet Σ accepted by the minimal incomplete DFA G with n states. Let
P be a projection from Σ∗ to Σ∗o. Then spc(L) ≤ 3n · 2n−3.

Proof. Let G = (Q,Σ, δ, s, F) be the minimal incomplete DFA accepting the language L, and let the automaton
P(G) = (Q′,Σo, δ

′, s′, F′) be the corresponding projected automaton. Consider the automaton P(G) ‖ G. By definition
of the transition function of the DFA P(G) ‖ G, a pair (X, q) in 2Q × Q is a state of the automaton P(G) ‖ G if and
only if q ∈ X and X is a state of the automaton P(G); see also proofs of Theorems 3 and 5. This implies that the sum
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Figure 11: The minimal incomplete DFA G meeting the upper bound 3n · 2n−3.

of the cardinalities of all states of the automaton P(G) gives the upper bound on the state-partition complexity of the
language L, that is,

spc(L) ≤
∑
X∈Q′
|X| ≤

n∑
i=0

(
n
i

)
i , (1)

where
∑n

i=0

(
n
i

)
i counts the cardinalities of all i-element subsets. However, it is known that not all subsets of the state

set Q are states of the automaton P(G). It was shown in [6], see also [21], that |Q′| ≤ 3 · 2n−2 − 1 if the projection is
not an identity mapping, and that this bound is met only if the automaton has only one transition labeled by a symbol
removed by the projection. Let (q, a, p) ∈ Q × Σ × Q be a transition of the automaton G such that P(a) = ε. Then,
every state of the automaton P(G) containing state q must also contain state p. Therefore, we have to subtract the
number of subsets containing state q but not state p from the number of subsets included in the last element of (1).
There are 2n−2 such subsets because we are interested in all subsets Y ∪ {q}, where Y is a subset of Q \ {p, q}. After
the multiplication of these subsets by their cardinalities and subtracting the resulting value from the right-hand side in
(1), we get the following upper bound

spc(L) ≤
n∑

i=0

(
n
i

)
i −

n−2∑
i=0

(
n − 2

i

)
(i + 1).

Using the equality
k∑

i=0

(
k
i

)
i = k2k−1 ,

we have
spc(L) ≤ n · 2n−1 −

(
(n − 2) · 2n−3 + 2n−2) = 3n · 2n−3 ,

which proves the theorem.

Finally, we prove that the bound proved in the previous theorem is tight.

Theorem 11. For every integer n ≥ 3, there exists a regular language L accepted by the minimal incomplete DFA G
with n states such that spc(L) = 3n · 2n−3.

Proof. Consider the language L accepted by the DFA G depicted in Figure 11 and the projection P from {a, b, c}∗ to
{a, b}∗. We need to prove that all subsets of the state set {0, 1, . . . , n − 1}, except for the sets that contain n − 1 and
do not contain 0, are states of the automaton P(G). Notice that if X is reachable in P(G) by a string u over {a, b} and
q ∈ X, then state q is reachable in the automaton G by a string w in P−1(u). This means that (X, q) is a reachable state
in the automaton P(G) ‖ G since (X, q) =

(
δ(s, P−1(P(w)), δ(s,w)

)
. First, we construct an NFA accepting the language

P(L) as shown in Figure 12. Let us show that all subsets of the state set {0, 1, . . . , n − 1} containing state 0, as well as
all non-empty subsets of the set {1, 2, . . . , n − 2} are reachable.

The proof is by induction on the size of subsets. Each set {i}, where i ≤ n − 2, is reached from {0} by the string
ai. Let 2 ≤ k ≤ n. Assume that each subset of size k − 1, satisfying the above mentioned conditions, is reachable. Let
X = {i1, i2, . . . , ik}, where 0 ≤ i1 < i2 < · · · < ik ≤ n − 1, be a subset of size k. Consider two cases:
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Figure 12: An NFA for language P(L(G)), where G is shown in Figure 11.

(i) i1 = 0. Take Y = {i j − i2 − 1 | 3 ≤ j ≤ k} ∪ {n − 2}. Then Y is of size k − 1 and it does not contain state n − 1.
Therefore, it is reachable by the induction hypothesis. The subset Y goes to X on the string aabi2−1 since we
have

Y
a
→ {0, n − 1} ∪ {i j − i2 | 3 ≤ j ≤ k}
a
→ {0, 1} ∪ {i j − i2 + 1 | 3 ≤ j ≤ k}
bi2−1

−−−→ X.

(ii) i1 ≥ 1. Then ik ≤ n − 2. Take Y = {0} ∪ {i j − i1 | 2 ≤ j ≤ k}. Then the subset Y is of size k and contains state 0.
Therefore, it is reachable as shown in case (i). The subset Y goes to X on the string ai1 .

This proves the reachability of all 3 · 2n−2 − 1 subsets discussed in the proof of the previous theorem. Using the
arguments of the proof of Theorem 10 then completes the proof.

7. Conclusions and Discussion

We investigated deterministic state-partition automata with respect to a given projection. The state set of such an
automaton is partitioned into disjoint subsets that are reachable in the projected automaton. Using a result from the
literature that every regular language has a state-partition automaton with respect to a given projection, we provided
the construction of the minimal state-partition automaton to a regular language and a projection. We also described
a regular language and two projections such that no automaton accepting this language is a state-partition automaton
with respect to both projections.

Next, we studied closure properties of state-partition automata under the standard constructions of deterministic
automata for the operations of complement, union, intersection, concatenation, star, reversal, cyclic shift, and left and
right quotients. We showed that except for the right quotient and complement of complete deterministic automata, all
other constructions fail to preserve the property of being a state-partition automaton.

Finally, we defined the notion of state-partition complexity of a regular language as the smallest number of states
of any state-partition automaton with respect to a given projection accepting the language. We proved that the tight
bound on state-partition complexity of a language represented by an incomplete deterministic automaton with n states
is 3n · 2n−3. To prove the tightness of this bound, we used a language defined over the ternary alphabet {a, b, c} and the
projection from {a, b, c}∗ to {a, b}∗. Note that it follows from the results of [6] that this bound cannot be reached using
a smaller alphabet or a projection to a singleton.

State-partition complexity of regular operations may be investigated in the future. We only know that state-
partition complexity of a language and its complement differs by one in the case of complete deterministic automata,
and by 3n if the automata are incomplete. Defining nondeterministic state-partition automata and investigating their
properties may also be of interest.
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