
Chapter 48
Supervisory Control of Discrete-Event Systems

Jan Komenda and Tomáš Masopust

Abstract The aim of this essay is to provide a brief introduction to supervisory
control theory of discrete-event systems.

48.1 Motivation

In our daily lives we are confronted with many different machines that can be
viewed as instances of discrete-event systems. Probably the most popular examples
are personal computers, laptops, tablets, mobile phones, ATM machines, beverage
machines, copy machines, medical scanners, and others. Many large engineering
systems, such as manufacturing or transportation systems, contain discrete-event
components, for instance conveyor belts, robots, storage capacities, on-board com-
puters in vehicles, etc. Large complex engineering systems are often built out of
the smaller ones as their synchronous or asynchronous compositions. Notice that
the composition of discrete-event systems results in a discrete-event system again.
Discrete-event systems composed of two or more subsystems are called distributed.
As the complexity of distributed systems grows, human operators are not able to de-
sign a controller by hand, and a formal approach to design a controller or supervisor
is needed. The task of a supervisor is to impose a given requirement on the behavior
of the system that is usually referred to as control specification. Traditionally, control
specifications are formulated only informally and software engineers translate them
into a control software manually. This is a time-consuming and error-prone pro-
cess; moreover, the produced software needs to be verified using model-checking
techniques.

Supervisory control is a formal method providing a theory to design supervi-
sors for discrete-event systems. Using supervisory control theory, the control design

Jan Komenda · Tomáš Masopust
Institute of Mathematics, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno,
Czech Republic, e-mail: komenda@ipm.cz, masopust@math.cas.cz

1

2 Jan Komenda and Tomáš Masopust

process becomes fully automated. Typical examples of control specifications are to
avoid dangerous states in the systems such as overflows or underflows of buffers in
manufacturing systems, to avoid collision of vehicles in transportation systems or to
control access to databases with many users, where a new user may enter only after
all previous users have completed their tasks (writing to the database). Supervisory
control theory is also applicable to continuous-time and hybrid systems (those com-
posed of a discrete and continuous components) after these systems are abstracted
into discrete-event systems.

The aim of this essay is to acquaint the reader with the basic notions, concepts
and results of discrete-event systems and supervisory control theory. It is an intro-
duction to the subsequent essay on coordination control, Chapter ??. For further
details, the reader is referred to [2, 9, 12]. The pioneering work on this topic are the
papers [6, 7].

48.2 Concepts

This chapter differs from the other chapters of this book in the considered model.
The model used in this chapter is a finite automaton, also called a finite-state ma-
chine. In supervisory control theory, automata are usually called generators. An in-
troduction to automata theory and formal languages can be found in [4, 10]. Here
we recall only the notions necessary for the presented theory.

Consider a discrete-event system. Each action of such a system is described by
an event. Let Σ denote a finite nonempty set of events. The behavior of a system is
then a finite sequence of actions, hence we can see it as a finite sequence of events.
Such a finite sequence is called a word over the event set Σ . The set of all words
over the event set Σ is denoted by Σ ∗. The initial behavior of a system, where no
action has yet been performed, is described by the empty word, denoted by ε . For
instance, for an event set Σ = {e,h, l,o}, the word hello is an example of a word
over Σ .

As already mentioned, the basic model of discrete-event systems used here is
a generator. A generator is a quintuple G = (Q,Σ , f ,q0,Qm), where Q is a finite
nonempty set of states, Σ is a finite set of events (event set), f : Q×Σ → Q is a
partial transition function, q0 ∈Q is the initial state, and Qm ⊆Q is a set of marked
states. For instance, let G = ({1,2,3},{$1,$2, tea,co f}, f ,1,{1}) be a generator,
modeling a simple beverage machine. A graphical representation of generators uses
labeled graphs as demonstrated in Fig. 48.1. States of the generator are drawn as
circles, a transition f (q,a) = p is depicted as a labeled arrow from state q to state
p labeled by event a, the initial state is denoted by an incoming arrow that does not
come from any other state, and the marked states are drawn as double circles.

The transition function f can be extended from events to words as the function
f̂ : Q×Σ ∗→Q so that f̂ (q,ε) = q and f̂ (q,aw) = f̂ (f (q,a),w), for a ∈ Σ and w ∈
Σ ∗. The behavior of a generator G is described in terms of languages. The language
generated by G is the set L(G) = {s ∈ Σ ∗ | f̂ (q0,s) ∈ Q}, and the language marked

48 Supervisory Control of Discrete-Event Systems 3

12 3

$1

tea $2

co f

Fig. 48.1 A graphical representation of the generator G of a simple beverage machine; tea costs
$1, while we need to pay $2 to get coffee.

by G is the set Lm(G) = {s ∈ Σ ∗ | f̂ (q0,s) ∈Qm}. Obviously, Lm(G)⊆ L(G). Thus,
for our example, we have L(G) = {ε,$1,$1 tea,$1 tea $2,$1 tea $2 co f f e, . . .} and
Lm(G) = {ε,$1 tea,$1 tea $2 co f f e, . . .}.

The set of behaviors of a generator is called a (regular) language. On the other
hand, a (regular) language L over an event set Σ is a set L⊆ Σ ∗ such that there exists
a generator G with Lm(G) = L. The prefix closure L of a language L over an event
set Σ is the set of all prefixes of all its words, that is, L = {w ∈ Σ ∗ | there exists u ∈
Σ ∗ such that wu ∈ L}; language L is prefix-closed if L = L.

To control a system, we need to specify which events can be controlled, that is,
disabled by a supervisor. This is done by the notion of a controlled generator. A con-
trolled generator over an event set Σ is a triple (G,Σc,Γ), where G is a generator
over Σ = Σc ∪Σu, where Σc is the set of controllable events, Σu = Σ \Σc is the set
of uncontrollable events, and Γ = {γ ⊆ Σ | Σu ⊆ γ} is the set of control patterns.
Only controllable events can be disabled by the supervisor, while uncontrollable
events cannot be prevented from happening. Typical instances of uncontrollable
events are fault events, ticks of clocks, high priority events, unpreventable events
due to hardware or actuation limitations, events that should not be disabled, and so
on. Supervisors choose events among those from control patterns.

Example 48.1. Let G = ({1,2,3},{a,b,c,d}, f ,1,{1}) be a generator depicted in
Fig. 48.2 with the set of controllable events Σc = {a,c}. Then Σu = {b,d} are
uncontrollable events (whose transitions are depicted by dashed arrows) and Γ =
{{b,d},{a,b,d},{b,c,d},{a,b,c,d}} is the set of control patterns. One can think
of this example as a simple manufacturing system, where a single resource (e.g. a
machine) is shared by two manufacturing lines: one line is represented by operations
(event sequences) (ab)∗ and the other one by operations (cd)∗. All possible sched-
ules are considered, that is, the resource can be attributed to an arbitrary sequence
of both lines.

A supervisor for the controlled generator (G,Σc,Γ) is a map S : L(G)→ Γ . The
meaning of a supervisor is that for any state of the system, i.e., a word w generated

12 3
a

b c

d

Fig. 48.2 Generator G

4 Jan Komenda and Tomáš Masopust

by the generator, S(w) defines the set of events that are enabled in the system after
w is generated. By definition of Γ , only controllable events can be disabled.

Applying a supervisor on a (controlled) generator results in the closed-loop sys-
tem. The closed-loop system associated with the controlled generator (G,Σc,Γ) and
the supervisor S is the resulting (supervised/controlled) system defined as the mini-
mal language L(S/G)⊆ Σ ∗ such that

1. ε ∈ L(S/G) and
2. if s ∈ L(S/G), a ∈ S(s), and sa ∈ L(G), then sa ∈ L(S/G).

The intuition is that the supervisor disables some transitions of the generator G, but it
can never disable any transition under an uncontrollable event. The marked language
of the closed-loop system is defined as Lm(S/G) = L(S/G)∩Lm(G), meaning that
in the closed-loop system the states are marked in the same way as in G.

If the closed-loop system is nonblocking, that is, Lm(S/G) = L(S/G), then the
supervisor S is called nonblocking.

Example 48.2. Consider the controlled generator from Example 48.1. Our goal is
to define a supervisor that disables events c and a in an alternating way when the
plant is back in the initial state. More precisely, c is disabled in the initial state at the
beginning of the work of the system (that is, the generated word is ε), a is disabled
in the state after ab is generated, c is disabled after abcd is generated and so forth.
We define the supervisor S as follows. For k ≥ 0,

• S((abcd)k) = {a,b,d},
• S((abcd)kab) = {b,c,d},
• for all other words w, S(w) = {a,b,c,d}.

The closed-loop system is then L(S/G) = Lm(S/G) = {(abcd)k | k ≥ 0}, so the su-
pervisor is nonblocking.

The following two concepts play a central role in supervisory control [12].

Definition 48.1 (Controllable language). Let G be a generator over an event set Σ .
A language K ⊆ L(G) is controllable with respect to L(G) and Σu if

KΣu∩L(G)⊆ K .

The concept of controllability of a specification language in supervisory control
theory differs from controllability in classical control theory of linear or nonlin-
ear systems. It is however closely related to the concept of invariant spaces from
geometrical control theory, because it requires that one cannot exit from the specifi-
cation by an uncontrollable transition while staying within the plant language.

Definition 48.2 (Lm(G)-closed language). Let G be a generator. A nonempty lan-
guage K ⊆ Lm(G) is Lm(G)-closed if

K = K∩Lm(G) .

48 Supervisory Control of Discrete-Event Systems 5

1

2

3

4

a b

cd

Fig. 48.3 Generator of the specification K

Example 48.3. Consider the generator G defined in Example 48.1, and define a spec-
ification language K as the language of the generator depicted in Fig. 48.3. Note that
the specification restricts the behavior of the manufacturing system by imposing a
particular schedule so that the resource is attributed in an alternating way to both
manufacturing lines. One can verify that K is controllable with respect to L(G) and
Σu, and Lm(G)-closed.

48.3 Supervisory Control Problem

In this section, we formally define the supervisory control problem. Let K be a
specification language, and let G be a plant (generator). The control objective of
supervisory control is to find a nonblocking supervisor S (if possible) such that the
closed-loop system satisfies the specification, that is,

L(S/G) = K and Lm(S/G) = K .

It cannot be satisfied if K 6⊆ Lm(G), therefore we can assume that K ⊆ Lm(G).

48.4 Supervisory Control Theory

The supervisory control problem is to find conditions that are equivalent to the ex-
istence of a supervisor that achieves a specification. Two conditions defined above,
controllability and Lm(G)-closedness, are necessary and sufficient for the existence
of a nonblocking supervisor that achieves the specification, see [2, 12] for the proofs
of the following theorems.

Theorem 48.1. Consider the problem specified above. There exists a nonblocking
supervisor S solving the problem if and only if the specification language K is both
controllable with respect to L(G) and Σu, and Lm(G)-closed.

Example 48.4. Consider the plant and the specification of Example 48.3. By Theo-
rem 48.1, there exists a supervisor S solving the supervisory control problem. This

6 Jan Komenda and Tomáš Masopust

supervisor is described in Example 48.2. Note that the supervisor can be represented
as an automaton. Moreover, if the specification K is controllable with respect to the
plant language L(G) and Σu, the generator for the specification is precisely the au-
tomaton representation of the supervisor. Thus, the automaton representation of the
supervisor S is depicted in Fig. 48.3.

It remains to explain what to do if the specification language is not controllable
(in some sense, the Lm(G)-closedness is not an issue, because if K is not Lm(G)-
closed, then K ∩ Lm(G) is considered as a new specification, cf. [2]). For uncon-
trollable specification languages, controllable sublanguages of the specification are
considered instead. Note that control specifications are most often safety specifica-
tions expressed by a language inclusion and, therefore, it is reasonable to compute
a controllable sublanguage of a specification, if the specification fails to be control-
lable. The notation C(K,L(G),Σu) stands for the set of controllable sublanguages
of the specification K with respect to L(G) and Σu. It is not hard to check that con-
trollability is preserved by language unions. Consequently, there always exists the
supremal controllable sublanguage of the specification language among the control-
lable sublanguages, denoted by supC(K,L(G),Σu), see [2, 12].

Theorem 48.2. The supremal controllable sublanguage of a specification language
always exists and is equal to the union of all controllable sublanguages of the spec-
ification.

The supremal controllable sublanguage is an important concept, because it repre-
sents the maximally permissive (or, equivalently, minimally restrictive) solution to
the supervisory control problem.

48.5 Nonblockingness in Distributed Systems

In this section we study the blocking issue that can appear in distributed discrete-
event systems. A distributed discrete-event system with synchronous communica-
tion is a concurrent system formed by the synchronous product of several local
subsystems. The engineering relevance of distributed systems modeled by discrete-
event systems can be justified by showing that supervisory control for the following
systems has been investigated in the literature. Control of a rapid thermal multi-
processor [1], databases [2], chemical plants [8], feature interaction in telephone
networks [11], theme park vehicles [3], a controller for traffic lights [5].

Synchronous product is a standard way of constructing large-scale systems as
a composition of potentially a large number of smaller systems. Formally, a syn-
chronous product of languages L1 ⊆ Σ ∗1 and L2 ⊆ Σ ∗2 is the language

L1‖L2 = P−1
1 (L1)∩P−1

2 (L2)⊆ Σ
∗ ,

where Pi : Σ ∗ → Σ ∗i are natural projections, for i = 1,2. A (natural) projection P :
Σ ∗→Σ ∗0 , where Σ0⊆Σ , is a homomorphism defined so that P(a)= ε for a∈Σ \Σ0,

48 Supervisory Control of Discrete-Event Systems 7

1 2 3 x y za b a d

Fig. 48.4 Generators G1 and G2

and P(a) = a for a ∈ Σ0. The projection of a word is thus uniquely determined by
projections of its letters. The inverse image of P is denoted by P−1 : Σ ∗0 → 2Σ∗ .

Example 48.5. Let P : {a,b,c}∗→ {a,b}∗ be a projection. Then the projection of a
word abcba is P(abcba) = abba. On the other hand, the inverse image of abba is
P−1(abba) = {ciac jbckbc`acm | i, j,k, `,m≥ 0}.

For two generators G1 = (Q1,Σ1, f1,q01,Qm1) and G2 = (Q2,Σ2, f2,q02,Qm2),
the generator G1‖G2 is defined as the accessible part (i.e., the part of the state
set which can be reached from the initial state) of the generator (Q1 ×Q2,Σ1 ∪
Σ2, f ,(q01,q02),Qm1×Qm2), where

f ((x,y),e) =

(f1(x,e), f2(y,e)), if f1(x,e) ∈ Q1 and f2(y,e) ∈ Q2,
(f1(x,e),y), if f1(x,e) ∈ Q1 and e /∈ Σ2,
(x, f2(y,e)), if e /∈ Σ1 and f2(y,e) ∈ Q2,
undefined, otherwise.

It is known that the relation to the synchronous product of languages is as follows:
L(G1‖G2) = L(G1)‖L(G2) and Lm(G1‖G2) = Lm(G1)‖Lm(G2).

Example 48.6. Consider two generators G1 and G2 depicted in Fig. 48.4. Note that
the only event shared by the generators is the event a, and that events b and d are pri-
vate in the respective generators. Then the synchronous product (also called parallel
composition) G1‖G2 is depicted in Fig. 48.5.

Recall that a generator G is nonblocking if Lm(G) = L(G), that is, if every gener-
ated word from L(G) can be prolongated to a marked word from Lm(G). Otherwise,
we say that the system is blocking, which typically arises in discrete-event systems
formed by the synchronous product. It is well known that the synchronous product
of two nonblocking generators G1 and G2 can be blocking.

1,x 2,y

3,y

3,z

2,z

a

b

d

d

b

Fig. 48.5 Synchronous product G1‖G2

8 Jan Komenda and Tomáš Masopust

1 2 3 4 1

2

3

4

a b d

a c

d a

Fig. 48.6 Generators G1 and G2

0 1

2

3

4

a

b c

c b

Fig. 48.7 Synchronous product G1‖G2

Example 48.7. Consider nonblocking generators G1 and G2 depicted in Fig. 48.6.
Their synchronous product, depicted in Fig. 48.7, is blocking because no marked
state is accessible from state 3.

References

1. S. Balemi, G. J. Hoffmann, P. Gyugi, H. Wong-Toi, and G.F. Franklin. Supervisory control of
a rapid thermal multiprocessor. IEEE Trans. Automat. Control, 38(7):1040–1059, 1993.

2. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2008.
3. S. T. J. Forschelen, J. M. Mortel-Fronczak, R. Su, and J. E. Rooda. Application of supervisory

control theory to theme park vehicles. Discrete Event Dyn. Syst., 22(4):511–540, 2012.
4. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 2006.
5. R. P. Kurshan. Computer-aided verification of coordinating processes: the automata-theoretic

approach. Princeton University Press, 1994.
6. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.

SIAM J. Control Optim., 25(1):206–230, 1987.
7. P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proc. of IEEE,

77(1):81–98, 1989.
8. L. Sang-Heon. Structural decentralised control of concurrent discrete-event systems. PhD

thesis, Australian National University, Canberra, 1998.
9. C. Seatzu, M. Silva, and J. H. van Schuppen, editors. Control of Discrete-Event Systems,

volume 433 of Lecture Notes in Control and Information Sciences. Springer London, 2013.
10. M. Sipser. Introduction to the Theory of Computation. Course Technology, 2005.
11. J. G. Thistle, R. P. Malhamé, H. H. Hoang, and S. Lafortune. Feature interaction modelling,

detection and resolution: A supervisory control approach. In FIW, pages 93–107, 1997.
12. W. M. Wonham. Supervisory control of discrete-event systems. Lecture notes, Department of

electrical and computer engineering, University of Toronto, 2009.

