
On Tight Separation for Blum Measures
Applied to Turing Machine Buffer Complexity

Jǐŕı Š́ımaa,∗, Stanislav Žáka

aInstitute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, 182 07 Prague 8, Czech Republic

Abstract

We formulate a very general tight diagonalization method for the Blum com-
plexity measures satisfying certain additional axioms. We apply this method
to two new so-called distance and buffer complexity measures for Turing ma-
chine computations. These measures are sensitive to long-distance transfers of
information on the worktape and they prove to be mutually related. In partic-
ular, the buffer complexity counts the number of necessary block uploads into a
virtual double-block buffer of the worktape which is divided into blocks. Thus,
they can be used for investigating the buffering aspects of Turing computations.
We start this study by proving a tight separation which shows that a very small
increase in the buffer (or distance) complexity bound (roughly from f(n) to
f(n + 1)) brings provably more computational power to both deterministic and
nondeterministic Turing machines even for unary languages. We also obtain
hierarchies of the distance and buffer complexity classes.

Keywords: Turing machine, hierarchy, buffer complexity, diagonalization

1. Introduction

The theory of computational complexity is one of the major attempts to un-
derstand the phenomenon of computation. One of the key tasks of the theory
is to find out how an increase or decrease of limits set on the computational
resources can influence the computational power of different types of computa-
tional devices. In history, the efforts to answer questions of this type led to a
long sequence of various separation and hierarchy results for particular computa-
tional devices and complexity measures, e.g. chronologically [1, 2, 3, 4, 5, 6, 7, 8].

The present paper follows this direction of research. We formulate a very
general tight diagonalization method issuing from [5] which works for the Blum
complexity measures [9] satisfying certain additional axioms. We apply this
method to two new nontraditional measures, namely the so-called distance and

∗Corresponding author
Email addresses: sima@cs.cas.cz (Jǐŕı Š́ıma), stan@cs.cas.cz (Stanislav Žák)

Preprint submitted to Elsevier June 24, 2013

buffer complexities, which are introduced for both deterministic and nondeter-
ministic Turing machines (TM) with one worktape. These measures are sensitive
to long transfers of information on the worktape of a Turing machine while the
short transfers are not counted.

In particular, a given computation by TM is characterized, among others,
by a sequence of worktape head positions (ht)t≥0 where ht is the head position
on the worktape just after t computational steps (i.e. at time instant t). The
distance complexity dδ is the minimum length of its so-called δ-distance subse-
quence (hti)i≥0 which, starting with t0 = 0, is defined inductively as follows. If
one restricts only to the segment of computation since time ti, then the next
ti+1 is the first time instant at which the worktape head is exactly at distance
δ(n) (measured in the number of tape cells) from some of its previous positions
within the computational segment under consideration. Note that parameter
δ(n) depends on the input length n.

The buffer complexity bδ is defined similarly by using a so-called δ-buffer
subsequence such that the distance in the definition of ti+1 is measured from
the previous member hti of this subsequence. The δ-buffer subsequence thus
divides the worktape into disjoint blocks of size δ(n). The buffer complexity
proves to be related to the distance measure by d2δ ≤ bδ ≤ dδ. Furthermore,
consider a virtual buffer of the worktape whose size is two such blocks. Then
the buffer complexity measures the number of necessary block uploads into this
buffer. In this way, the buffer or distance measure can be used for investigating
the buffering aspects of Turing computations.

We start our study by separation and hierarchy results for the distance
and buffer complexity which are surprisingly very tight. This indicates that the
new complexity measures are appropriate tools for classifying the computations.
The tightness in the results requires that the worktape alphabet is fixed and
the measure is not applied to TM computations directly but instead to their
simulations on a fixed universal Turing machine. The results are of the form that
a shift by one in the argument of the complexity bound (and of parameter δ plus
an additive constant) leads to a strictly greater computational power. In the case
of a linear complexity bound, the increase in the bound by an additive constant
is sufficient to gain more power. For the hierarchies of complete languages the
increase in the bound is slightly larger. The main tool of the proof is the general
diagonalization method derived from [5] which is newly formulated for suitable
Blum complexity measures. The results are valid even for unary languages,
which strengthens a preliminary version of this paper [10] containing the proofs
only for binary alphabet.

The paper is organized as follows. After a brief review of basic definitions
regarding Turing machines and complexity measures in Section 2, we define a
diagonalizer and prove a general diagonalization theorem for Blum complexity
measures in Section 3. In Section 4, the distance and buffer complexity measures
are introduced and related to each other. The separation for these measures is
proven in Section 5 while the corresponding hierarchies are presented in Sec-
tion 6. The results are summarized in Section 7 where possible further research
directions are outlined.

2

2. Preliminaries

By a language L we mean any set of words over binary alphabet, that is,
L ⊆ {0, 1}∗. We will formulate our results for unary languages over one-symbol
alphabet for which we assume L ⊆ {1}∗. In addition, we say that two languages
L and L′ are equivalent, that is, L ∼ L′ iff they differ only in a finite number of
words. For a class C of languages we define E(C) =df {L′ | (∃L ∈ C) L ∼ L′}.
Clearly, L /∈ E(C) implies that L differs from any language of E(C) on infinitely
many words.

By a Turing machine we mean any finite-control machine with two-way
read-only input tape and with one semi-infinite worktape (infinite to the right)
with alphabet {0, 1, b} (b stands for blank) and endmarker # at the left end
side (at the 0th cell of the worktape), allowing for both the deterministic or
nondeterministic versions.

The programs are words from {0, 1}+. If p is a program, then Mp is a
corresponding machine which implements p. For any machine M , we denote
by L(M) the language accepted by M , and define Lp = L(Mp). By pM we
mean a program of M . For any input word u, a universal machine starts its
computation with some program p stored at the left end side of the worktape
and it simulates machine Mp on u.

By a complexity measure we mean any (partial) mapping c : {0, 1}∗ ×
{0, 1}∗ × {0, 1}∗ → N ∪ {∞} where N denotes the set of natural numbers
(including 0). Informally, c(p, u, v) is intended to measure the complexity of
computation by machine Mp on input word u starting with v stored at the left
end side of the worktape. In general, we assume that c satisfies Blum axioms [9],
that is, c(p, u, v) < ∞ iff Mp with initial worktape content v halts on input u,
and there is a Turing machine which, given p, u, v ∈ {0, 1}∗ and m ∈ N, decides
whether c(p, u, v) = m. We also use notation c(p, u) = c(p, u, ε) when ε is the
empty word.

In Section 4, we will introduce the complexity measures whose definitions
depend parametrically on the input length. This means that complexity measure
c is in fact defined as a (uniform) sequence of complexity measures (cn)∞n=0 where
cn is employed for input words of length n, that is, c(p, u) = c|u|(p, u) where
|u| is the length of word u. For such c we denote by c′ the complexity measure
specified by a shifted sequence (cn+1)∞n=0 so that c′(p, u) = c|u|+1(p, u) for any
input word u ∈ {0, 1}∗. For nonparametric measures, c′ and c coincide.

Let P ⊆ {0, 1}+ be a recursively enumerable set of programs of the machines
in question (e.g. nondeterministic Turing machines), that is, there exists a Tur-
ing machine which will enumerate all valid programs of P . For any p ∈ P , for
any complexity measure c and for any complexity bound f : N → N, we define
language Lp(c, f) =df {u ∈ Lp | c(p, u) ≤ f(|u|)} to be a set of words accepted
by machine Mp within the complexity bound f measured by c. The complexity
class c(f) = {Lp(c, f) | p ∈ P} contains all such languages for p ∈ P while the
respective class of complete languages is denoted by a corresponding capital let-
ter and defined as C(f) = {Lp |Lp = Lp(c, f) , p ∈ P}. Clearly, C(f) ⊆ c(f).
For the purpose of a tight separation of complexity classes we will measure the

3

complexity of a computation by machine M as the complexity of simulating pM

on a fixed universal machine U . In particular, for any complexity measure c we
define its universal version as cU (p, u) =df c(pU , u, p).

In the notation of complexity classes, f(n + 1) stands for complexity bound
f ′ : N → N such that f ′(n) = f(n + 1) for each n ∈ N. Notice that inclusion
c(f) ⊆ c(f(n + 1)) need not, in general, be true even for nondecreasing f since
some of the languages Lp(c, f) cut out of Lp by complexity bound f cannot be
delimited by f(n + 1). Recall that complexity bound f is recursive if there is a
Turing machine that computes f .

3. The Diagonalization Theorem

Our diagonalization method issuing from [5] is based on a diagonalizer for
Blum complexity measure c and its recursive bound f : N → N, which is a
Turing machine ∆ working on unary inputs u ∈ {1}∗. We will below describe
its program p∆ by using a high-level pseudocode. The program is composed of
two main parts: precomputation A and simulation S. The precomputation A is
formally defined as an infinite process which is terminated when the worktape
head of ∆ leaves a delimited working space.

Diagonalizer ∆

input u

Precomputation A

check whether the input u is of the form 1n and construct a working space
Wn of length |Wn| = log n on the worktape (e.g. using a binary counter)

for every i = 1, 2, 3, . . . until Wn suffices do

Phase G: on the untapped part of Wn generate the next element pi

of a sequence (pi)∞i=1 which contains each program p ∈ P infinitely
many times

Phase T : using only Wn, test whether ui

?
∈ Lpi

(cU , f) where ui ∈ {1}∗
is the shortest input to ∆ for which A generates pi (within W|ui|)

enddo

Simulation S { last generated pi is on the worktape }

if A terminates during its phase G without generating pi+1 then

accept u iff ui /∈ Lpi(cU , f)

else { A terminates during its phase T without deciding ui

?

∈ Lpi(cU , f) }
simulate machine Mpi on input u1 as universal machine U would do

4

Note that the leaving condition which breaks precomputation A when the
logarithmic working space Wn on the worktape is consumed can, in fact, be
replaced by any suitable condition which can be simply tested so that the longer
the input word to ∆, the more computation of A is performed.

Furthermore, we define function z : N → N so that z(i) is the minimum
j ∈ N such that A finishes its phase T on input ui1j and decides whether
ui

?
∈ Lpi

(cU , f). For any i ∈ N, denote Ri = {ui1j | 0 ≤ j < z(i)} whose
union R =

⋃
i≥1 Ri contains the inputs on which ∆ performs the simulation in

S. Now we are ready to introduce our diagonalization theorem which proves a
tight separation for suitable Blum complexity measures:

Theorem 1. Let ∆ be a diagonalizer for Blum complexity measure c and its
recursive bound f : N → N which satisfy the following two conditions:

1. for any u ∈ Ri, c′(p∆, u) = cU (pi, u1)
2. for any u /∈ R, c′(p∆, u) ≤ f(|u|+ 1).

Then L =df Lp∆(c′, f(n + 1)) ∈ c′(f(n + 1)) \ E(cU (f)).

Proof. On the contrary, suppose that L ∈ E(cU (f)). Hence, L ∼ Lp(cU , f)
for some p ∈ P . By the definition of diagonalizer ∆ we know that p occurs in
the sequence (pi)∞i=1 generated during phase G of precomputation A infinitely
many times. Thus, there is i ∈ N such that Lpi(cU , f) differs from L only on
words shorter than ui.

For any ui1j ∈ Ri, we know that ui1j ∈ L iff ui1j ∈ Lp∆ & c′(p∆, ui1j) ≤
f(|ui1j |+ 1) (by definition of L) iff ui1j ∈ Lp∆ & cU (pi, ui1j+1) ≤ f(|ui1j+1|)
(by condition 1) iff ui1j+1 ∈ Lpi(cU , f) (by definition of ∆) iff ui1j+1 ∈ L
since Lpi(cU , f) differs from L only on words shorter than ui. Hence, ui ∈ L
iff ui1z(i) ∈ L iff ui1z(i) ∈ Lp∆ (as for u = ui1z(i) /∈ R we know c′(p∆, u) ≤
f(|u| + 1) by condition 2) iff ui /∈ Lpi(cU , f) (by definition of ∆) iff ui /∈ L,
which is a contradiction, and thus L /∈ E(cU (f)). 2

Note that condition 1 in Theorem 1 is naturally satisfied for Blum mea-
sures that are related to the space complexity. Clearly, the logarithmic space
consumed within precomputation A is hidden in the space complexity of simu-
lation S, which implies condition 1. For example, this is not true for the time
complexity of ∆ which is a sum of the times needed for performing A and S,
respectively. In this case, the diagonalizer itself must control the time of simula-
tion S [5]. Thus, for Blum complexity measures that do not meet condition 1 one
can possibly modify ∆ in part S so that ∆ simulates Mpi by U on input u1 and
accepts iff U accepts within complexity bound f(|u1|). In addition, the witness
language L is defined as complete language Lp∆ . Hence, for any ui1j ∈ Ri, we
obtain that ui1j ∈ L =df Lp∆ iff ui1j+1 ∈ Lpi & cU (pi, ui1j+1) ≤ f(|ui1j+1|)
by this modified definitions of ∆ and L which compensate for condition 1 in the
proof of Theorem 1 accordingly.

The diagonalization Theorem 1 provides the witness language L which is
unary and is thus outside the respective complexity class of languages over

5

any multi-symbol alphabet. This strengthens our previous simpler diagonalizer
working on binary inputs which was presented in a preliminary version of this
paper [10].

4. The Distance and Buffer Measures

We introduce two new complexity measures which are sensitive to long-
distance transfers of information on the worktape. For any computation by
Turing machine M , denote by ht ∈ N the head position on the worktape just
after t computational steps by M (i.e. at time instant t) which equals the dis-
tance (in the number of tape cells) from the current worktape head position to
the leftmost worktape cell with endmarker # whose position is thus zero (e.g.
h0 = 1). This defines a sequence h0, h1, h2, . . . of the worktape head positions
which is finite for halting computations and satisfies |ht+1 − ht| ≤ 1 for any
t ≥ 0. For any positive recursive function δ : N → N, we inductively define
its so-called δ-distance subsequence ht0 , ht1 , ht2 , . . . for a computation on input
word u as follows:

1. t0 = 0
2. ti+1 = min{t | (∃ t′) ti ≤ t′ < t & |ht − ht′ | = δ(|u|)}.

In other words, if we take into account only the worktape positions hti , hti+1,
hti+2, . . . visited by the head after ti computational steps, then ti+1 is the first
time instant at which the worktape head is exactly at distance δ(|u|) from some
of these previous positions. Similarly, a so-called δ-buffer subsequence is defined
when condition 2 above is replaced by

2’. ti+1 = min{t | t > ti & |ht − hti
| = δ(|u|)}

in which t′ is restricted to ti, and hence δ(|u|) divides hti − 1 for any i ∈ N.
This means that the δ-buffer subsequence divides the worktape into blocks of
length δ(|u|).

For any program p ∈ P and for any input word u, we define the distance
complexity dδ(p, u) to be the minimum length of δ-distance subsequence over all
halting computations of Mp on u where δ is a paramater of the distance measure
depending on the input length. In addition, we define formally dδ(p, u) = ∞ if
Mp does not halt on u. Similarly, the buffer complexity measure bδ is defined
by using δ-buffer subsequences. Obviously, the distance and buffer complexity
measures satisfy the Blum axioms. Moreover, they can mutually be related as
follows.

Lemma 1. Let δ : N → N be a positive recursive function. For any program
p ∈ P and any input word u, inequality d2δ(p, u) ≤ bδ(p, u) ≤ dδ(p, u) holds.

Proof. Let (ht1i
)i≥0, (ht2i

)i≥0, and (ht′i
)i≥0 be the δ-distance, 2δ-distance, and

δ-buffer subsequences, respectively, for a computation of p on input word u. It
suffices to prove t1i ≤ t′i ≤ t2i for any meaningful i (note that the subsequences
are typically of different length). By definition we know t10 = t′0 = t20 = 0. On

6

the contrary, let j ≥ 1 be the minimum index such that t1j ≤ t′j < t′j+1 < t1j+1

or t′j ≤ t2j < t2j+1 < t′j+1. Suppose first that t1j ≤ t′j < t′j+1 < t1j+1. According
to the definition of δ-distance subsequence, t1j+1 is the first time instant such
that there is t′ satisfying t1j ≤ t′ < t1j+1 and |ht1j+1

− ht′ | = δ(|u|), but for
t′ = t′j we know t1j ≤ t′j < t1j+1 and |ht′j+1

− ht′j
| = δ(|u|), which contradicts

t′j+1 < t1j+1. Thus, assume t′j ≤ t2j < t2j+1 < t′j+1. According to the definition
of δ-buffer subsequence, t′j+1 is the first time instant such that t′j+1 > t′j and
|ht′j+1

−ht′j
| = δ(|u|), which implies |ht2j+1

−ht′j
| < δ(|u|) and |ht′j

−ht2j
| < δ(|u|).

Hence, 2δ(|u|) > |ht2j+1
− ht′j

| + |ht′j
− ht2j

| ≥ |ht2j+1
− ht2j

| = 2δ(|u|), which is a
contradiction completing the argument. 2

The buffer complexity can be used for investigating the buffering aspects
of Turing computations. In particular, imagine the control unit has a virtual
buffer memory for the worktape whose capacity is two blocks of length δ(|u|) so
that the worktape head position has to be within this buffer. This means that
the buffer uploads the block from the worktape next to the right when the head
leaves the buffer to the right, and the buffer contents are shifted to the left so
that the head finds itself in the midpoint of the buffer while the block on the
left is stored to the worktape. This is reminiscent of a super-head reading the
whole block as a super-cell of length δ(|u|) and moving to the right. Similarly,
the buffer moves to the left when the head leaves the buffer to the left. Thus,
the buffer complexity measures the number of necessary buffer uploads.

5. The Separation Result

We first show a lemma concerning the distance complexity of simulating a
machine on the universal Turing machine.

Lemma 2. Let U be a fixed universal machine, pM be a program of machine
M , and δ : N → N be a positive recursive function. Then dδ(pM , u) =
d

δ+|pM |
U (pM , u) for any input word u.

Proof. (Sketch) Machine M is simulated by universal Turing machine U so
that its program pM is being shifted along the worktape following the shifts of
the head of M . The distance δ on the worktape of M is thus transformed to
the distance δ + |pM | on the worktape of U . 2

A tight separation for the distance complexity measure is formulated in the
following theorem. We point out that this is a quite strong result since a very
small increase in the distance complexity bound (roughly from f to f(n+1) plus
a constant) brings provably more computational power to both deterministic and
nondeterministic Turing machines working on unary inputs.

Theorem 2. Let U be a fixed universal machine. Assume δ : N → N and
f : N → N are positive recursive functions, and δ(n + 1) ≥ log2. Then
L = Lp∆(dδ(n+1), f(n + 1)) ∈ d

δ(n+1)+|p∆|
U (f(n + 1)) \ E(dδ

U (f)) where ∆ is
a diagonalizer for complexity measure dδ and its bound f .

7

Proof. We will employ Theorem 1 for the distance complexity dδ and its
bound f for which the two conditions have to be verified. For any input
word u = 1n to ∆, the distance complexity dδ(n+1)(pA, u) of precomputa-
tion A equals 1 by the assumption of δ(n + 1) ≥ log2 since the capacity of
working space Wn is log n. Thus, for input word u ∈ Ri, the distance com-
plexity dδ(n+1)(p∆, u) = dδ

U (pi, u1) is dominated by the complexity of simu-
lation S, which secures condition 1 of Theorem 1. Condition 2 which has
now the form 1 = dδ(n+1)(p∆, u) ≤ f(|u| + 1) for any u /∈ R follows from
the assumption of f > 0. By applying Theorem 1, we obtain language L =
Lp∆(dδ(n+1), f(n + 1)) ∈ dδ(n+1)(f(n + 1)) which satisfies L /∈ E(dδ

U (f)). More-
over, L ∈ d

δ(n+1)+|p∆|
U (f(n + 1)) by Lemma 2, which completes the proof. 2

It is obvious that Lemma 2 and Theorem 1 are also valid for the buffer com-
plexity bδ, which can be verified simply by replacing d with b in their statements
and proofs.

6. The Hierarchies

In order to achieve a fine-grained hierarchy for the distance (or buffer) com-
plexity we will employ the classes of complete languages Dδ

U (f). Unlike dδ
U (f),

these classes Dδ
U (f) prove to be linearly ordered with respect to inclusion for

hierarchies of functions δ and f .

Lemma 3. Let U be a fixed universal machine. Assume δ1 : N → N,
δ2 : N → N are positive recursive functions, and f1 : N → N, f2 : N → N are
recursive complexity bounds. If δ1 ≤ δ2 and f1 ≤ f2, then Dδ1

U (f1) ⊆ Dδ2
U (f2).

Proof. Let Lp ∈ Dδ1
U (f1), that is, Lp = L(Mp) = Lp(dδ1

U , f1) for some p ∈ P .
We will prove that Lp(dδ1

U , f1) ⊆ Lp(dδ2
U , f2) which implies Lp = Lp(dδ2

U , f2), and
consequently Lp ∈ Dδ2

U (f2).
Suppose that u ∈ Lp(dδ1

U , f1). For k ∈ {1, 2}, let htk
0
, htk

1
, htk

2
, . . . be the

δk-distance subsequence for a computation of U on the input word u starting
with p on the worktape. We will prove that t1i ≤ t2i for any meaningful i. We
know t10 = t20 = 0. On the contrary, let j ≥ 1 be the minimum index such that
t1j ≤ t2j < t2j+1 < t1j+1. This means that there is t′ such that t2j ≤ t′ < t2j+1

and |ht2j+1
−ht′ | = δ2(|u|) ≥ δ1(|u|) by the definition of δ2-distance subsequence,

which contradicts the definition of δ1-distance subsequence since t2j+1 < t1j+1 was
assumed. Thus, t1i ≤ t2i , which implies dδ2

U (p, u) ≤ dδ1
U (p, u) ≤ f1(|u|) ≤ f2(|u|).

Hence, u ∈ Lp(dδ2
U , f2), which completes the argument for Dδ1

U (f1) ⊆ Dδ2
U (f2).2

We will show that any language from complexity class dδ(f) is complete for
slightly larger distance parameter δ′ and complexity bound f ′.

Lemma 4. Let δ : N → N be a positive recursive function and f : N → N
be a recursive complexity bound such that for any input word u, the binary
representation of function values δ(|u|) and f(|u|) can be computed by a Turing

8

machine Γ so that dδ′
(pΓ, u) ≤ gδ

f (|u|) where δ′ = δ + 8 log δ + 2 log f , for some
complexity bound gδ

f : N → N. Then Lp(dδ, f) ∈ Dδ′
(f + gδ

f) for any p ∈ P .

Proof. Denote L = Lp(dδ, f) and M = Mp. We will define machine M ′ that
simulates M on any input word u and halts immediately before dδ(pM , u) >
f(|u|), which implies L(M ′) = L. In addition, we will ensure that L(M ′) ∈
Dδ′

(f + gδ
f), which gives desired L ∈ Dδ′

(f + gδ
f). The main ideas of how

M ′ computes follow. At the beginning, M ′ constructs on its worktape two
segments of length 8 log δ(|u|) and 2 log f(|u|), respectively, by using Γ. Then
M ′ simulates M so that M ′ shifts the two segments along the worktape following
the worktape head of M .

The first segment of length 8 log δ(|u|) serves for identifying the time instant
ti+1 corresponding to the next worktape head position hti+1 from the δ-distance
subsequence ht0 , ht1 , ht2 , . . . for a computation of M on u. Recall that ti+1 is
the first time instant t since ti for which there is t′ such that ti ≤ t′ < t
and |ht − ht′ | = δ(|u|). For this purpose, it suffices to keep and update the
current head position hτ , the current minimum and maximum head positions
hmin = min{ht | ti ≤ t ≤ τ} and hmax = max{ht | ti ≤ t ≤ τ} since time instant
ti as differences hτ − hti , |hmin − hti |, and |hmax − hti |, respectively, which con-
sumes 3 log δ(|u|) worktape cells of the segment. Moreover, a test whether the
current maximum distance |hmin − hti

|+ |hmax − hti
| equals δ(|u|) requires the

value of δ(|u|) occupying additional log δ(|u|) cells to be precomputed and shifted
with the first segment. Similarly, the second segment of length 2 log f(|u|) serves
for halting the computation after f(|u|) members of the δ-distance subsequence.
In particular, the value of f(|u|) occupying log f(|u|) cells is computed at the be-
ginning and decremented after each head position of the δ-distance subsequence
is reached.

In fact, the implementation of the ideas above requires the full double length
of the two segments since the worktape alphabet of M ′ is restricted to {0, 1} ac-
cording to our definition of Turing machine. In particular, it suffices to replace
each bit by a pair of bits. The first bit of this pair indicates ”marked/non-
marked”, which is used e.g. for comparing two parts of segments, and the sec-
ond one represents the value of the original bit. Hence, the length of the two
segments follows, which guarantees L(M ′) ∈ Dδ′

(f + gδ
f). 2

Now we are ready to prove the hierarchy theorem for the distance complexity
classes of complete languages.

Theorem 3. Let U be a fixed universal machine. Assume δ : N → N and
f : N → N are positive nondecreasing recursive functions, and δ(n + 1) ≥ log2.
Define recursive functions δ′ : N → N and f ′ : N → N as

δ′ = δ(n + 1) + 8 log(δ(n + 1)) + 2 log(f(n + 1)) (1)

f ′ = f(n + 1) + g
δ(n+1)
f(n+1) (2)

where g
δ(n+1)
f(n+1) : N → N is a nondecreasing recursive complexity bound such that

for any input word u, the binary representation of function values of δ(|u|+ 1)

9

and f(|u| + 1) can be computed by a Turing machine Γ so that dδ′
(pΓ, u) ≤

g
δ(n+1)
f(n+1)(|u|). Then Dδ

U (f) $ D
δ′+|p∆|
U (f ′) where ∆ is a diagonalizer for distance

complexity measure dδ and its bound f .

Proof. Since δ, f , and g
δ(n+1)
f(n+1) are nondecreasing functions we know that

δ ≤ δ′ + |p∆| and f ≤ f ′ according to (1) and (2), respectively. Hence,
Dδ

U (f) ⊆ D
δ′+|p∆|
U (f ′) follows from Lemma 3. Define L = Lp∆(dδ(n+1), f(n+1)).

According to Theorem 2, we know L /∈ E(dδ
U (f)) ⊇ E(Dδ

U (f)) which gives
L /∈ Dδ

U (f). On the other hand, L ∈ Dδ′
(f ′) by Lemma 4, which implies

L ∈ D
δ′+|p∆|
U (f ′) according to Lemma 2. This completes the proof of the theo-

rem. 2

The argument is similar for the hierarchy of buffer complexity classes Bδ
U (f)

of complete languages, which is formulated in the following theorem.

Theorem 4. Let U be a fixed universal machine. Assume δ : N → N and
f : N → N are positive nondecreasing recursive functions, and δ(n + 1) ≥ log2.
Define recursive functions δ′ : N → N and f ′ : N → N as

δ′ = δ(n + 1) + 4 log(δ(n + 1)) + 2 log(f(n + 1)) (3)

f ′ = f(n + 1) + g
δ(n+1)
f(n+1) (4)

where g
δ(n+1)
f(n+1) : N → N is a nondecreasing recursive complexity bound such that

for any input word u, the binary representation of function values of δ(|u|+ 1)
and f(|u| + 1) can be computed by a Turing machine Γ so that bδ′

(pΓ, u) ≤
g

δ(n+1)
f(n+1)(|u|). Then Bδ

U (f) $ B
δ′+|p∆|
U (f ′) where ∆ is a diagonalizer for buffer

complexity measure bδ and its bound f .

Proof. The proof proceeds the same way as in the case of the distance com-
plexity. In particular, the proof of Theorem 3 is based on Theorem 2 and Lem-
mas 2–4. We already know that the statements of Theorem 2 and Lemma 2, in
which d is replaced with b, are valid for the buffer complexity. The same applies
to Lemma 3 in whose proof the time instant t′ coincides with t2j . The only slight
change appears in the proof of the buffer complexity version of Lemma 4. In
the definition of machine M ′, the first segment serves for identifying the time
instant ti+1 corresponding to the next worktape head position hti+1 from the
δ-buffer subsequence ht0 , ht1 , ht2 , . . ., which is the first time instant t such that
t > ti and |ht − ht′ | = δ(|u|). Thus, it suffices to keep and update only the
current head position hτ since time instant ti as a difference hτ − hti which
consumes log δ(|u|) worktape cells of the segment. Hence, the first segment is
of half length 4 log δ(|u|) as compared to the distance complexity version, which
appears in formula (3). 2

10

7. Conclusions

In this paper we have introduced the new distance and buffer complexity
measures for computations on Turing machines with one worktape. These mea-
sures can be used for investigating the buffering aspects of Turing computations.
As a first step along this direction, we have proven quite strong separation and
hierarchy results which are valid even for unary languages. Many questions
concerning e.g. the comparison to other complexity measures, reductions, com-
pleteness and complexity classes remain open for further research.

We have also formulated our diagonalization method for the general Blum
complexity measures satisfying additional axioms, which is interesting on its
own. Analogous theorems can possibly be proven for other types of machines
such as those with auxiliary pushdown or counter, or with oracle etc.

Acknowledgments

J.Š.’s research was partially supported by project GA ČR P202/12/G061
and RVO: 67985807. S.Ž.’s research was partially supported by project GA ČR
P202/10/1333 and RVO: 67985807.

References

[1] S. A. Cook, A hierarchy for nondeterministic time complexity, Journal of
Computer and System Sciences 7 (4) (1973) 343–353.

[2] J. I. Seiferas, Relating refined space complexity classes, Journal of Com-
puter and System Sciences 14 (1) (1977) 100–129.

[3] J. I. Seiferas, M. J. Fischer, A. R. Meyer, Separating nondeterministic time
complexity classes, Journal of the ACM 25 (1) (1978) 146–167.

[4] I. H. Sudborough, Separating tape bounded auxiliary pushdown automata
classes, in: Proceedings of the STOC’77 Ninth Annual ACM Symposium
on Theory of Computing, 1977, pp. 208–217.

[5] S. Žák, A Turing machine time hierarchy, Theoretical Computer Science
26 (1983) 327–333.

[6] E. Allender, R. Beigel, U. Hertrampf, S. Homer, Almost-everywhere com-
plexity hierarchies for nondeterministic time, Theoretical Computer Science
115 (2) (1993) 225–241.

[7] V. Geffert, Space hierarchy theorem revised, in: Proceedings of the MFCS
2001 Twenty-Sixth Symposium on Mathematical Foundations of Computer
Science, Vol. 2136 of LNCS, 2001, pp. 387–397.

[8] J. Kinne, D. van Melkebeek, Space hierarchy results for randomized models,
in: Proceedings of the STACS 2008 Twenty-Fifth Annual Symposium on
Theoretical Aspects of Computer Science, 2008, pp. 433–444.

11

[9] M. Blum, A machine-independent theory of the complexity of recursive
functions, Journal of the ACM 14 (2) (1967) 322–336.

[10] S. Žák, J. Š́ıma, A Turing machine distance hierarchy, in: Proceedings of
the LATA 2013 Seventh International Conference on Language and Au-
tomata Theory and Applications, Vol. 7810 of LNCS, 2013, pp. 570–578.

12

