
A Low-Energy Implementation of Finite Automata

by Optimal-Size Neural Nets
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Energy Aspects of Neural Networks

• the activity of neurons in the brain is quite sparse, with only about 1% of
neurons firing (Lennie, 2003)

• biological neurons require more energy to transmit a spike than not to fire

• in contrast, the design of artificial neural circuits does not usually take the
energy aspects into account, e.g. on average, every second unit fires during a
computation



Energy Complexity of Threshold Circuits

Uchizawa, Douglas, Maass (2006):

energy complexity of feedforward perceptron networks (threshold circuits)
= the maximum number of firing units taken over all the input values to the circuit

• related by tradeoff results to other complexity measures:

– network size = the number of neurons
(Uchizawa, Takimoto, 2008; Uchizawa, Takimoto, Nishizeki, 2011)

– circuit depth = parallel computation time
(Uchizawa, Nishizeki, Takimoto, 2010; Uchizawa, Takimoto, 2008)

– fan-in = the maximum number of inputs to a single unit
(Suzuki, Uchizawa, Zhou, 2011)

• a tool for proving the lower bounds in circuit complexity
(Uchizawa, Takimoto, Nishizeki, 2011)

? Energy Complexity of Recurrent Networks ?



Model of Recurrent (Perceptron) Networks

• Architecture: s computational units (neurons, perceptrons, threshold gates)
V = {1, . . . , s} connected into a directed graph

where s is the size of the network

• each edge from neuron i to j is labeled with an integer weight w(i, j)

(w(i, j) = 0 iff there is no edge (i, j))

• Computational Dynamics: the evolution of network state

y(t) = (y
(t)
1 , . . . , y

(t)
s ) ∈ {0, 1}s

at discrete time instant t = 0, 1, 2, . . .



Computational Dynamics

1. initial state y(0)

2. at discrete time instant t ≥ 0 the excitation

ξ
(t)
j =

s∑
i=1

w(i, j)y
(t)
j − h(j) for j = 1, . . . , s

where h(j) is an integer threshold of unit j

3. at the next time instant t + 1, the neurons j ∈ αt+1 from a selected subset
αt+1 ⊆ V updates their states (outputs)

y
(t+1)
j =

{
1 for ξ

(t)
j ≥ 0

0 for ξ
(t)
j < 0

while y
(t+1)
j = y

(t)
j for j 6∈ αt+1

Energy Complexity = the maximum number of firing neurons
∑s

j=1 y
(t)
j at any

time instant t ≥ 0, taken over all possible computation



Recurrent Neural Networks as Language Acceptors

(Horne, Hush, 1996; Indyk, 1995; Siegelmann, Sontag, 1995 etc.)

• language (problem) L ⊆ {0, 1}∗ over binary alphabet

• input string x = x1 . . . xn ∈ {0, 1}n of arbitrary length n ≥ 0 is sequentially
presented bit after bit via input neuron in ∈ V ,

y
(τ(i−1))
in = xi for i = 1, . . . , n

where integer τ ≥ 1 is a time overhead (period) for processing a single bit

• output neuron out ∈ V signals whether x
?
∈ L ,

y
(τn)

out =

{
1 for x ∈ L
0 for x 6∈ L



Computational Power of Recurrent Perceptron Networks

• recurrent networks having at most 2s different network states from {0, 1}s
correspond to finite automata recognizing regular languages

• a deterministic finite automaton A with m states can simply be implemented
using 2m+1 neurons, one for each 0 or 1 state transition of A (Minsky, 1967)

this naive O(m) implementation requires only a constant energy

• optimal-size implementations of a deterministic finite automaton with m states
by neural nets with Θ(

√
m) neurons (Horne, Hush, 1996; Indyk, 1995).

? Energy complexity of an optimal-size neural network simulating
a given deterministic finite automaton ?



Main Result: Tradeoff Between Energy and Time Overhead

Theorem 1 For any function e satisfying e = Ω(log s) and e = O(s), a given
deterministic finite automaton A with m states can be simulated by a neural
network N of optimal size s = Θ(

√
m) neurons with time overhead τ = O(s/e)

per one input bit, using the energy O(e).

Simple Idea of Proof:

• each of the m states of A can be encoded using p = dloge + 1 bits including
a one-bit indicator of final states

• transition function δ : Q× {0, 1} −→ Q of A (producing the new state from
the old one and the current input bit) can be viewed as a vector Boolean function
f : {0, 1}p+1 −→ {0, 1}p



Idea of Proof (Continuation)

• function f is implemented by four-layer perceptron network of optimal size
s = O(

√
2p) = O(

√
m) using the method of threshold circuit synthesis due

to Lupanov (1973)

• the recurrent connections leading from the fourth to the first layer replace the
current state by the new one

• the dominant-size layer of Θ(s) neurons is properly partitioned into O(s/e)
blocks of O(e) units each

• control units ensure that these blocks are updated successively one by one so
that the energy consumption O(e) is guaranteed while the time overhead for
processing a single input bit is O(s/e)



Technical Schema of Low-Energy Neural Automata



The Lower Bounds

Theorem 2 Let τ log τ = o(log s). There exists a neural network of size s
neurons simulating a finite automaton with time overhead τ per one input bit
which needs energy e such that log e = Ω∞

(
1
τ log s

)
.

Idea of Proof: the technique due to Uchizawa, Takimoto (2008) based on com-
munication complexity argument

Corollary 1

1. If τ = O(1), then e ≥ sδ for some δ such that 0 < δ < 1 and for infinitely
many s. × our construction e = O(s)

2. If τ = O(log log s), then e = Ω∞

(
s

1
logδ s

)
= Ω∞

(
2log

1−δ s
)

for any δ such

that 0 < δ < 1.

3. If τ = O(logα s) for some 0 < α < 1, then e = Ω∞

(
s
log log s

logδ s

)
= Ω∞

(
(log s)log

1−δ s
)

for any δ such that δ > α. × our construction e = O
(

s
logα s

)



Conclusions and Open Problem

•We have, for the first time, applied the energy complexity measure to recurrent
neural nets which has recently been introduced and studied for feedforward
perceptron networks.

•We have presented a low-energy implementation of finite automata by optimal-
size neural nets with the tradeoff between the time overhead for processing one
input bit and the energy varying from the logarithm to the full network size.

•We have also achieved lower bounds for the energy consumption of neural
finite automata which are valid for at most sublogarithmic time overheads and
are still not tight.

• An open problem remains for further research whether these bounds can be
improved.


