Almost £-Wise Independent Sets
Establish Hitting Sets for
Width-3 1-Branching Programs

Jivi Sima, Stanislav Zak

Institute of Computer Science
Academy of Sciences of the Czech Republic




Derandomization of Space-Bounded Computation
? ?
RL =L, BPL-=L

pseudorandom generator g : {0,1}* — {0,1}" ;s < n

stretches a short uniformly random seed of s bits into n
bits that cannot be distinguished from uniform ones by
small space machines M:

|Proy, [M(z) =1] = Pry~y, [M(g(y)) = 1]| < ¢

where U, is the uniform distribution on {0, 1}" and ¢ > 0
is the error

deterministic simulation performs the computation for
every fixed setting of the seed (which replaces the ran-
dom string of a randomized algorithm) and approximates
the probability of accepting/rejecting computations

efficient derandomization (BPL=L) if there is an explicit
pseudorandom generator computable in space O(logn)
with seed length O(logn)



Branching Program P

a leveled directed acyclic multi-graph G = (V, E):

e one source s € V of zero in-degree at level 0
e two sinks of zero out-degree at the last level d (=depth)
e every inner (=non-sink) node has out-degree 2

e the inner nodes are labeled with input Boolean
variables =1, ..., z,

e the two edges outgoing from any inner node at level
¢ < d lead to nodes at the next level £ + 1 and are
labeled 0 and 1

e the two sinks are labeled 0 and 1

width = the maximum number of nodes in one level



branching program P computes Boolean function
P:{0,1}" — {0, 1}:

source () level 0



Branching Programs (BPs)

a non-uniform model of space bounded computation:

infinite family of branching programs {P,}, one P, for
each input length n > 1

a computation that uses space s(n) and runs in time
t(n) is modeled by P, of width 2°(") and depth t(n)
(e.g. TM's configurations are represented by BP’s nodes)

Klivans, van Melkebeek, 1999: if DSPACE(O(n)) re-
quires branching programs of size 2" then BPL=L.

Restrictions:

Read-Once BPs (1-BPs): every input variable is tested
at most once along each computational path

Oblivious BPs: at each level only one variable is queried



Explicit Pseudorandom Generators for 1-BPs

polynomial width: PRG with seed length O(log* n)
(Nisan, 1992)

width w = 2: PRG with seed length O(logn) where
5‘2:()(1/n) (Saks, Zuckerman, 1999)

width w = 3: known techniques fail to improve the seed
length O(log®n) from Nisan's result

—— Additional Restrictions:

regular 1-BP: every inner non-source node has in-degree 2

oblivious regular 1-BPs of constant width: PRG with
seed length O(lognloglogn) where ¢ = O(1/logn)
(Braverman, Rao, Raz, Yehudoff; Brody, Verbin, 2010)

permutation 1-BP: regular 1-BP where the two edges
leading to any inner non-source node are labeled 0 and 1
(i.e. edges between levels labeled with O respectively 1
create a permutation)

oblivious permutation 1-BPs of constant width: PRG
: 1

with seed length O (lognlog g)

(Koucky, Nimbhorkar, Pudldk, 2010)



Hitting Set Generator
the one-sided error version of pseudo-random generator

Hitting Set:

Let £ > 0 and P,, be a class of BPs with n inputs.
A set H, C {0,1}" is an e-hitting set for P,
if for every P € P,

i)
2n
(Ja € H,) Pla)=1.

> ¢ implies

Pty [P(2) = 1] =

For every n (given in unary), the hitting set generator
(HSG) for a class of families of BPs produces hitting set H,,.

deterministic simulation of a randomized algorithm with
one-sided error performs the computation for every string
from the hitting set and accepts if there is at least one
accepting computation



Hitting Set Generator for 1-BPs of Width 3

a normalized form of BP: the probability distribution of
inputs on the three nodes at each level is ordered as

pr>pe>p3>0 (pr+pa+ps=1)

a simple 1-BP of width 3 excludes one special level-to-
level transition pattern in its normalized form (about 40
possible patterns in normalized width-3 1-BPs):

A

p(e+ 1) S p(e+ 1) > (e+ 1)

a polynomial-time construction of (%)—hitting set for

simple 1-BPs of width 3 (§ima, Zak, 2007)



The Richness Condition

A set A C {0,1}" is e-rich if for any index set
I C{1,...,n}, and for any partition {Ry,..., R} of [
(r > 0) satisfying

ﬁ (1 - 21@) 2 €, (1)

J=1

for any @ C {1,...,n} \ I such that |Q| < logn, for
any ¢ € {0, 1}" there exists a € A that meets

Vi€ Q)a;, =c¢; and
(V]E{l,,r})(ﬂzER])az#cz <2>

formula (2) can be interpreted as a read-once CNF with
O(log n) single literals and clauses whose sizes satisfy (1):

A ) A N\ L)

i€Q J=1ieR;
fx fore =1

for any such a read-once CNF formula, a rich set A
contains at least one satisfying assignment
(i.e. A is a hitting set for this class of formulas)



Sufficiency of the Richness Condition

the richness condition expresses an essential property of
hitting sets for 1-BPs of width 3 while being independent
of a rather technical formalism of branching programs:

Theorem 1 Lete > %. If A is e\ -rich for some &' < ¢,
then H = Q3(A) which contains all the vectors within
the Hamming distance of 3 from any a € A, is an
e-hitting set for the class of 1-BPs of width 3.

|dea of proof:

e on the contrary, a normalized 1-BP P of width 3
such that ‘P‘l(l)‘ /2" > ¢ and P(a) = 0 for every
a € H, is assumed

e starting from the last level, the structure of P is in-
ductively analyzed block after block (corresponding
to partition classes R;) until a set Q) (|Q| < logn)
suitable for the richness condition is found

e the richness condition is employed to achieve a
contradiction

e the proof includes a rather tedious case analysis, e.g.
decreasing the lower bound for ¢ from the original

v/ 12/13 to 5/6 increases significantly the number of
cases to be analyzed



The Necessary Condition

The Weak Richness Condition:

A set A C {0,1}" is weakly e-rich if
for any index set I C {1,...,n} and for any partition
{Ry,...,R,,Q1,...,Q,} of I (r >0, g >0) satisfying

1_ﬁ< 2@) XH( 2|R|)>5 (3)

j=1
for any ¢ € {0,1}" there exists a € A that meets
(Fje{l,....q}) VieQ;)a;=¢ and
(V]G{l,,T})(HZER])&Z#Cz <4)

Any e-rich set is weakly e-rich: condition (3) implies that
there is j € {1,...,q} such that |Q;| <logn

formula (4) can be interpreted as a read-once conjunction
of DNFs and CNFs whose sizes satisfy (3):

VN ) n N\ )

j=1 i€Q; j=1 i€R;

Theorem 2 Any e-hitting set for the class of 1-BPs of
width 3 is weakly e-rich.



The Main Result

Any almost O(logn)-wise independent set is c-rich.

(k, 3)-wise independent set A C {0,1}" for any in-
dex set S C {1,...,n} of size |S| < k, the probability
distribution on the bit locations from .S is almost uni-
form, i.e. for any ¢ € {0,1}"

‘AS<C)’ 1

|A| 215
where A°(c) = {a € A| (Vi € S)a; = ¢;}.
for any 8 > 0 and k = O(logn), a (k, 3)-wise indepen-

dent set A can be constructed in time polynomial in %

(Alon, Goldreich, Hastad, Peralta, 1992)

<p

Theorem 3 Let ¢ > 0, C' be the least odd integer
greater than (2In1)?, and 0 < 8 < ﬁ Then any

([(C' + 2)logn|, 3)-wise independent set is e-rich.

Corollary: Any almost O(log n)-wise independent set ex-
tended with all the vectors within the Hamming distance
of 3 is a polynomial-time constructible e-hitting set for
1-BPs of width 3 with acceptance probability ¢ > 5/6.



Idea of Proof

Let A be a ([(C + 2)logn], 3)-wise independent set.
We will show that A is e-rich:

Assume a partition {Ry,...,R.} of I C {1,...,n}
satisfies [ [;_; (1 — 1/2ily > cand Q C {1,...,n}\ [
such that |Q] < logn.

In order to show for a given ¢ € {0,1}" that there is
a € A that meets

(Vi€ Q)a; =c¢; and
(V] c {1,,7”})(32 < Rj)CLZ' #Ci,
we will prove that the probability

42(e) \ U, A%i(c)
p=plA) = A > 0.

Intuition:

p(10.1)) =5 TT (1 g7 ) 25 >0

Jj=1




The Main Steps of the Proof

Modifications of Partition Classes:

e superlogarithmic cardinalities:
/ /
R; C Rj so that [R}| <logn
e small constant cardinalities:

R<; =g |<, R; where o is a suitable constant
< <

— Q’:QURSU, cgzl—ci for 1 € R<,

A9 () \ Uy AT
4]

Lemma: p >

J Bonferroni inequality

o AU
p= Z<_1> Z Al
k=0 1<j1 <jo<---<jp<r’

J Almost O(logn)-wise independence
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1 U /
pZW Z(—l)k Z H = —%
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The Main Steps of the Proof Il

Grouping the Classes of the Same Cardinalities

0 < 81,8y <logn ... cardinalities of R’

r; = H] , R;‘ = sz}’ ... # classes of cardinality s;

Frequent Cardinalities

ry > 1Ty > -+ >1,n > 0 where o is a suitable constant

1 ( C’ X m! tfl 5/\

P> PGS H A
k=0 bytetk, p=k i1

\ k120, K 5>0 )




The Main Steps of the Proof Il

J Multinomial theorem

J Taylor's theorem

1

1 ! m 8/

. —Diciti _ N

p>—|e Rerig 275@ 5
/L:

1
D ti < In 5
Lagrange remainder R yq (— > iy ti) < SZ/

\j

/

p>4—nQ>O []



Conclusion & Open Problems

e the explicit polynomial-time construction of a hitting
set for 1-BPs of width 3

e an important step in the effort to construct HSGs for
1-BPs of bounded width

X

such constructions were known only for width 2 and
for oblivious regular/permutation 1-BPs of bounded
width

e Can the result be achieved for any acceptance
probability € > 0 (X our result holds for ¢ > 5/6) ?

e Can the technique be extended to width 4 or to bounded
width 7



