MATHEMATICA BOHEMICA, Vol. 134, No. 4, pp. 337-348, 2009

On some cohomological properties of the Lie algebra of Euclidean motions

Marta Baksova, Anton Dekret

Marta Baksova, Technical University, Zvolen, Slovak Republic, e-mail: baksova@vsld.tuzvo.sk; Anton Dekret, Matej Bell University, Banska Bystrica, Slovak Republic, e-mail: dekret@fpv.umb.sk

Abstract: The external derivative $d$ on differential manifolds inspires graded operators on complexes of spaces $\Lambda^rg^\ast$, $\Lambda^rg^\ast\otimes g$, $\Lambda^rg^\ast\otimes g^\ast$ stated by $g^\ast$ dual to a Lie algebra $g$. Cohomological properties of these operators are studied in the case of the Lie algebra $g=se( 3 )$ of the Lie group of Euclidean motions.

Keywords: Lie group, Lie algebra, dual space, twist, wrench, cohomology

Classification (MSC 2000): 70B15, 22E60, 22E70


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at EMIS]