Numerical solution of Atmospheric Boundary Layer flows problems

T.Bodnár, K. Kozel

Department of Technical Mathematics, Faculty of Mechanical Engineering Czech Technical University of Prague Karlovo náměstí 13, 121 35 Prague 2, Czech Republic

I. - Viscosity role in CFD models

II. - Application of CFD models in ABL simulations

Contents

I	Visco	osity role in CFD models	7
1	Phy	sical viscosity	8
	1.1	Compressible Navier-Stokes equations	9
	1.2	Simplified models	10
	1.3	Transport equation	11
	1.4	Turbulence effects	12
	1.5	Summary	13
2	One	e-dimensional model problems	14

	2.1	Model	equations	15
	2.2	Nume	rical solution of advection equation	16
		2.2.1	Classical explicit schemes	17
	2.3	Behav	iour of numerical schemes - Summary	18
		2.3.1	Diffusive & Dispersive behaviour	19
3	Ana	lysis o	f Numerical Schemes	20
	3.1	"Discr	ete analysis"	21
		3.1.1	Up-wind & Down-wind decomposition	21
		3.1.2	Central & Upwind decomposition	23
		3.1.3	Central & Viscous decomposition	23
	3.2	Nume	rical viscosity	24
		3.2.1	"Discrete analysis" - Summary	27
	3.3	"Conti	inuous analysis"	28
		3.3.1	Motivation example	28
		3.3.2	Derivation of "Modified equation"	32

	3.4	3.3.3 Examples of modified equations3.3.4 Generalisation of modified equation conceptNumerical schemes analysis - Summary	37 38 43
4	Intr 4.1 4.2 4.3 4 4	oduction to High Resolution Methods Improved classical schemes Blended schemes Composite schemes Artificial viscosity methods	44 45 46 47 48
5 II	Visc	cosity - Overview	50
6	Def 6.1	inition of the Problem Geometry of the domain	53 54

		6.1.1 Wind-tunnel scale tests	54
		6.1.2 Real scale tests	56
7	Gov	erning equations	57
	7.1	Reynolds averaged Navier-Stokes equations	58
	7.2	RANS - nonconservative form	59
	7.3	Boussinesq approximation	60
	7.4	Transport equations	61
	7.5	Turbulence modelling	62
8	Nun	nerical Solution	63
	8.1	Artificial compressibility formulation	64
	8.2	Finite difference discretisation	65
	8.3	One-dimensional model schemes	66
	8.4	Semi-implicit scheme	67
	8.5	Pressure resolution	72
	8.6	Artificial viscosity terms	74

	8.7 8.8 8.9	One-dimensional test	75 77 82
9	Sele	cted Numerical Results	86
	9.1	Wind-tunnel scale tests	87
	9.2	Turbulence model adjustement	88
	9.3	Validation in 2D - Pressure distribution	89
	9.4	Validation in 2D - Separated flow	90
	9.5	Pollution dispersion	93
	9.6	Real scale tests	96

Part I

Viscosity role in CFD models

Chapter 1

Physical viscosity

1.1. Compressible Navier-Stokes equations

Momentum equations

$$\frac{\partial}{\partial t}(\rho \boldsymbol{v}) + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v}) = -\nabla p + \rho \boldsymbol{f} + \nabla \cdot \boldsymbol{\mathcal{T}}$$
(1.1)

Stokes law for viscous fluid

$$\mathcal{T} = \mu [\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T] - \lambda \mathbb{I} \nabla \cdot \boldsymbol{v}$$
(1.2)

$$\nabla \cdot \mathcal{T} = \operatorname{div} \mathcal{T} = \left(\sum_{j=1}^{3} \frac{\partial \tau_{j1}}{\partial x_j}, \sum_{j=1}^{3} \frac{\partial \tau_{j2}}{\partial x_j}, \sum_{j=1}^{3} \frac{\partial \tau_{j3}}{\partial x_j} \right)$$
(1.3)

1.2. Simplified models

Compressible Navier-Stokes system

$$\nabla \cdot \mathcal{T} = \nabla \cdot \{ \mu [\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T] - \lambda \mathbb{I} \nabla \cdot \boldsymbol{v} \}$$
(1.4)
$$= \nabla \cdot (\mu \nabla \boldsymbol{v}) + (\lambda + \mu) \nabla (\nabla \cdot \boldsymbol{v})$$

Incompressible Navier-Stokes system $\operatorname{div} \boldsymbol{v} = 0$

$$\nabla \cdot \boldsymbol{\mathcal{T}} = \nabla \cdot (\mu \nabla \boldsymbol{v}) \tag{1.5}$$

Euler system $\mu = \lambda = 0$

$$\nabla \cdot \mathcal{T} = 0 \tag{1.6}$$

Home Page
Title Page
Contents
< →
Page 10 of 104
Go Back
Full Screen
Close
Quit

1.3. Transport equation

$$\frac{\partial(\rho c)}{\partial t} + \nabla \cdot (\rho \, c \, \boldsymbol{v}) = \rho f_{pc} - \nabla \cdot \boldsymbol{q}_c \qquad (1.7)$$

Fourier's law for concentration flux

$$\boldsymbol{q}_c = -k_c \,\nabla c \tag{1.8}$$

$$\frac{\partial(\rho c)}{\partial t} + \nabla \cdot (\rho \, c \, \boldsymbol{v}) = f_{pc} + \nabla \cdot (\boldsymbol{k}_c \, \nabla \, c) \tag{1.9}$$

1.4. Turbulence effects

Boussinesq hypothesis

 $\mu \longrightarrow K = \mu_L + \mu_T$ Turbulent diffusion coefficient = =Laminar (molecular) viscosity + Turbulent (eddy) viscosity

Example

$$\mu_L = const$$

$$\mu_T = \ell^2 \left\| \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{n}} \right\|$$

(1.10)

1.5. Summary

Physical diffusion coefficients

- Dynamical viscosity μ
- \bullet Bulk viscosity λ
- \bullet Diffusion coefficient k
- Turbulent diffusion $K = \mu_L + \mu_T$

Home Page
Title Page
Contents
•••
Page 13 of 104
Go Back
Full Screen
Close
Quit

Chapter 2

One-dimensional model problems

2.1. Model equations

Advection $u_t + au_x = 0$ $\hat{u}(\xi,t) = e^{-i\xi at}\hat{\eta}(\xi) \Longrightarrow u(x,t) = rac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-i\xi at}\hat{\eta}(\xi)e^{i\xi x}d\xi$ Diffusion $u_t + bu_{xx} = 0$ $\hat{u}(\xi,t) = e^{-i^2\xi^2 bt} \hat{\eta}(\xi) \Longrightarrow u(x,t) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{\xi^2 bt} \hat{\eta}(\xi) e^{i\xi x} d\xi$ Dispersion $u_t + c u_{xxx} = 0$ $\hat{u}(\xi,t) = e^{-i^3\xi^3ct}\hat{\eta}(\xi) \Longrightarrow u(x,t) = rac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{i\xi^3ct}\hat{\eta}(\xi)e^{i\xi x}d\xi$ Initial data

$$u(x,t=0)=\eta(x)$$

$$\hat{u}(\xi,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u(x,t) e^{-i\xi x} dx \qquad \& \qquad u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{u}(\xi,t) e^{i\xi x} d\xi$$

Home Page
Title Page
Contents
Page 15 of 104
Go Back
Full Screen
Chee
Quit

2.2. Numerical solution of advection equation

Model equation $u_t + au_x = 0$ a > 0Initial data $u(x, t = 0) = \eta(x)$

2.2.1. Classical explicit schemes

Up-wind scheme [U]

$$u_i^{n+1} = u_i^n - \frac{a\Delta t}{\Delta x}(u_i^n - u_{i-1}^n)$$

Down-wind scheme [D]

$$u_i^{n+1} = u_i^n - \frac{a\Delta t}{\Delta x}(u_{i+1}^n - u_i^n)$$

Central scheme [C]

$$u_{i}^{n+1} = u_{i}^{n} - \frac{a\Delta t}{2\Delta x}(u_{i+1}^{n} - u_{i-1}^{n})$$

Lax-Friedrichs scheme [LF]

$$u_i^{n+1} = \frac{1}{2}(u_{i+1}^n + u_{i-1}^n) - \frac{a\Delta t}{2\Delta x}(u_{i+1}^n - u_{i-1}^n)$$

Lax-Wendroff scheme [LW]

$$u_i^{n+1} = u_i^n - \frac{a\Delta t}{2\Delta x}(u_{i+1}^n - u_{i-1}^n) + \frac{a^2\Delta t^2}{2\Delta x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$

2.3. Behaviour of numerical schemes - Summary

Scheme	Acc	uracy	Stability	Behaviour
U	$(\Delta t)^1$	/ $(\Delta x)^1$	Stable	Diffusive
D	$(\Delta t)^1$	/ $(\Delta x)^1$	UnStable	Dispersive
С	$(\Delta t)^1$	/ $(\Delta x)^2$	UnStable	Dispersive
LF	$(\Delta t)^1$	/ $(\Delta x)^1$	Stable	Diffusive
LW	$(\Delta t)^2$	/ $(\Delta x)^2$	Stable	Dispersive

Accuracy

$$u_i^n = u(x_i, t_n) + \mathcal{O}\left((\Delta t)^p + (\Delta x)^q\right)$$

Stability

Von Neumann stabilty analysis

Chapter 3

Analysis of Numerical Schemes

3.1. "Discrete analysis"

3.1.1. Up-wind & Down-wind decomposition

$$u_t + au_x = 0 \qquad a > 0$$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a \left[\alpha \left(\frac{u_{i+1}^n - u_i^n}{\Delta x} \right) + (1 - \alpha) \left(\frac{u_i^n - u_{i-1}^n}{\Delta x} \right) \right] = 0$$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a \left[\alpha \{\mathsf{D}\} + (1 - \alpha)\{\mathsf{U}\}\right] = 0$$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a\left[\alpha \{\mathsf{D}\} + (1 - \alpha)\{\mathsf{U}\}\right] = 0$$

Scheme	Coefficient α	
U	0	
D	1	
С	$\frac{1}{2}$	
LF	$rac{1}{2} - rac{\Delta x}{2a\Delta t}$	
LW	$rac{1}{2}-rac{a\Delta t}{2\Delta x}$	

Home Page
Title Page
Contents
<
Page 22 of 104
Go Back
Full Screen
Close
Quit

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a \left[\alpha \{ \mathsf{D} \} + (1 - \alpha) \{ \mathsf{U} \} \right] = 0$$

3.1.2. Central & Upwind decomposition

$$\{\mathsf{C}\} = \frac{\{\mathsf{D}\} + \{\mathsf{U}\}}{2} \implies \{\mathsf{D}\} = 2\{\mathsf{C}\} - \{\mathsf{U}\}$$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a \left[2\alpha \{\mathsf{C}\} + (1 - 2\alpha)\{\mathsf{U}\}\right] = 0$$

3.1.3. Central & Viscous decomposition

$$\{\mathsf{V}\} = \frac{\{\mathsf{D}\} - \{\mathsf{U}\}}{\Delta x} \implies \{\mathsf{U}\} = \{\mathsf{C}\} - \frac{\Delta x}{2}\{\mathsf{V}\}$$
$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a\left[\{\mathsf{C}\} - (1 - 2\alpha)\frac{a\Delta x}{2}\{\mathsf{V}\}\right] = 0$$

3.2. Numerical viscosity

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a\{\mathsf{C}\} = (1 - 2\alpha)\frac{a\Delta x}{2}\{\mathsf{V}\}$$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a\{\mathsf{C}\} = \mu\{\mathsf{V}\}$$

$$u_t + au_x = 0 \qquad \longrightarrow \qquad u_t + au_x = \mu u_{xx}$$

$$\mu = \underbrace{(1 - 2\alpha)}_{\epsilon} \frac{a\Delta x}{2}$$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a\{\mathsf{C}\} = \mu\{\mathsf{V}\}$$
$$\mu = \underbrace{(1 - 2\alpha)}_2 \frac{a\Delta x}{2}$$

 ϵ

Scheme	Coefficient α	Coefficient ϵ	Coefficient μ
U	0	1	$rac{a\Delta x}{2}$
D	1	-1	$-rac{a\Delta x}{2}$
C	$\frac{1}{2}$	0	0
LF	$rac{1}{2} - rac{\Delta x}{2a\Delta t}$	$\frac{1}{\gamma}$	$rac{\Delta x^2}{2\Delta t}$
LW	$rac{1}{2} - rac{a\Delta t}{2\Delta x}$	γ	$rac{a^2\Delta t}{2}$

 $\begin{array}{ll} \mbox{Parameter } \gamma = \frac{a \Delta t}{\Delta x} \mbox{ is bounded by stabilty condition.} \\ \mbox{CFL condition} & \Longrightarrow & \gamma < 1 \end{array}$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a\{\mathsf{C}\} = \mu\{\mathsf{V}\}$$
$$a\Delta x$$

$$\mu = \underbrace{(1 - 2\alpha)}_{\epsilon} \frac{a \Delta x}{2}$$

Scheme	ϵ	$oldsymbol{\mu}$	Accuracy	Stability	Behaviour
D	-1	$-\frac{a\Delta x}{2} < 0$	$(\Delta t)^1/(\Delta x)^1$	UnStable	Dispersive
C	0	0	$(\Delta t)^1/(\Delta x)^2$	UnStable	Dispersive
LW	$\gamma < 1$	$rac{a^2\Delta t}{2}$	$(\Delta t)^2/(\Delta x)^2$	Stable	Dispersive
U	1	$rac{a\Delta x}{2}$	$(\Delta t)^1/(\Delta x)^1$	Stable	Diffusive
LF	$\frac{1}{\gamma} > 1$	$rac{\Delta x^2}{2\Delta t}$	$(\Delta t)^1/(\Delta x)^1$	Stable	Diffusive

 $\mathsf{CFL} \text{ condition} \qquad \Longrightarrow \qquad \gamma < 1$

Home Page
Title Page
Contents
•• ••
Page 26 of 104
Go Back
Full Screen
Close

Quit

3.2.1. "Discrete analysis" - Summary

- It is possible to rewrite the schemes as a sum of "inviscid, unstable" part and "viscous, stabilising" part
- Each scheme contains some amount of "imbeded, implicit" numerical viscosity
- The amount of viscosity influences the stability, accuracy and dispersive-diffusive behaviour of the scheme

- 3.3. "Continuous analysis"
- **3.3.1.** Motivation example

$$\frac{dy}{dt} = f(y) \qquad y(t=0) = y_0$$

Euler method

$$y(t + \Delta t) = y(t) + \Delta t \frac{dy}{dt} + \mathcal{O}(\Delta t^2)$$

$$\implies \frac{dy}{dt} = \underbrace{\frac{y(t + \Delta t) - y(t)}{\Delta t}}_{f(y)} + \mathcal{O}(\Delta t)$$

Home Page
Title Page
Contents
•• ••
Page 28 of 104
Go Back
Full Screen
Close
Quit

Modified equation

$$y(t + \Delta t) = y(t) + \Delta t \frac{dy}{dt} + \frac{\Delta t^2}{2!} \frac{d^2 y}{dt^2} + \mathcal{O}(\Delta t^3)$$

$$\implies \frac{dy}{dt} = \underbrace{\frac{y(t + \Delta t) - y(t)}{\Delta t}}_{f(y)} + \frac{\Delta t}{2!} \frac{d^2 y}{dt^2} + \mathcal{O}(\Delta t^2)$$

$$\frac{dy}{dt} = f(y) \qquad \& \qquad \frac{d^2y}{dt^2} = \frac{df}{dy}\frac{dy}{dt} = \frac{df}{dy}f(y)$$

$$\frac{dy}{dt} = f(y) + \frac{\Delta t}{2!} \frac{df}{dy} f(y)$$

"Original equation"

$$\frac{dy}{dt} = f(y)$$

"Modified equation"

$$\frac{dy}{dt} = f(y) + \frac{\Delta t}{2!} \frac{df}{dy} f(y)$$

Example

$$\frac{dy}{dt} = y^2 \qquad y(t=0) = 1$$

"Modified equation"

$$\frac{dy}{dt} = y^2 + \Delta t y^3$$

$$\frac{dy}{dt} = y^2 \qquad y(t=0) = 1 \qquad t \in <0; 0.9 > \qquad \Delta t = 0.9/16$$

Quit

3.3.2. Derivation of "Modified equation"

The advection equation

$$u_t + au_x = 0 \qquad a > 0$$

Up-wind scheme

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a \left[\frac{u_i^n - u_{i-1}^n}{\Delta x} \right] = 0$$

Continuous interpolant $u(x_i, t_n) = u_i^n$

$$\frac{u(x_i, t_{n+1}) - u(x_i, t_n)}{\Delta t} + a \left[\frac{u(x_i, t_n) - u(x_{i-1}, t_n)}{\Delta x} \right] = 0$$

Taylor expansions

$$u(x_i, t_{n+1}) = u(x_i, t_n) + \Delta t u_t(x_i, t_n) + \frac{\Delta t^2}{2} u_{tt}(x_i, t_n)$$
$$+ \frac{\Delta t^3}{6} u_{ttt}(x_i, t_n) + \mathcal{O}(\Delta t^4)$$

$$u(x_{i-1}, t_n) = u(x_i, t_n) - \Delta x u_x(x_i, t_n) + \frac{\Delta x^2}{2} u_{xx}(x_i, t_n)$$
$$- \frac{\Delta x^3}{6} u_{xxx}(x_i, t_n) + \mathcal{O}(\Delta x^4)$$

Home Page
Title Page
Contents
•• >>
Page 33 of 104
Go Back
Full Screen
Close
Quit

$$\frac{u(x_i, t_{n+1}) - u(x_i, t_n)}{\Delta t} = u_t(x_i, t_n) + \frac{\Delta t}{2} u_{tt}(x_i, t_n) + \frac{\Delta t^2}{6} u_{ttt}(x_i, t_n) + \mathcal{O}(\Delta t^3)$$

$$\frac{u(x_i, t_n) - u(x_{i-1}, t_n)}{\Delta x} = u_x(x_i, t_n) - \frac{\Delta x}{2} u_{xx}(x_i, t_n) + \frac{\Delta x^2}{6} u_{xxx}(x_i, t_n) + \mathcal{O}(\Delta x^3)$$

$$\frac{u(x_i, t_{n+1}) - u(x_i, t_n)}{\Delta t} + a \left[\frac{u(x_i, t_n) - u(x_{i-1}, t_n)}{\Delta x} \right] =$$

 $= u_t(x_i, t_n) + au_x(x_i, t_n) + \dots = 0$

Home Page
Title Page
Contents
•• >>
Page 34 of 104
Go Back
Full Screen
Close
Quit

$$u_t(x_i, t_n) + au_x(x_i, t_n) = -\frac{\Delta t}{2} u_{tt}(x_i, t_n) - \frac{\Delta t^2}{6} u_{ttt}(x_i, t_n) + \mathcal{O}(\Delta t^3)$$

$$+ \frac{a\Delta x}{2}u_{xx}(x_i, t_n) - \frac{a\Delta x^2}{6}u_{xxx}(x_i, t_n) + \mathcal{O}(\Delta x^3)$$

$$u_t(x_i, t_n) + au_x(x_i, t_n) = -\frac{a^2 \Delta t}{2} u_{xx}(x_i, t_n) + \frac{a^3 \Delta t^2}{6} u_{xxx}(x_i, t_n) + \mathcal{O}(\Delta t^3)$$

$$+ \frac{a\Delta x}{2}u_{xx}(x_i, t_n) - \frac{a\Delta x^2}{6}u_{xxx}(x_i, t_n) + \mathcal{O}(\Delta x^3)$$

Home Page
Title Page
Contents
••
Page 35 of 104
Go Back
Full Screen
Close
Quit

$$u_t(x_i, t_n) + au_x(x_i, t_n) = \left(\frac{a\Delta x}{2} - \frac{a^2\Delta t}{2}\right) u_{xx}(x_i, t_n) + \mathcal{O}(\Delta t^2; \Delta x^2)$$

$$u_t(x_i, t_n) + au_x(x_i, t_n) \doteq \frac{a\Delta x}{2}(1 - \gamma)u_{xx}(x_i, t_n)$$

$$u_t + a u_x = 0 \quad \stackrel{Up-wind}{\longrightarrow} \quad u_t + a u_x = rac{a \Delta x}{2} (1-\gamma) u_{xx}$$

 $1^{st}\ {\rm order}\ {\rm approximation}\ {\rm of}\ {\rm Original}\ {\rm equation}$

$$u_t + au_x = 0 + \mathcal{O}(\Delta t; \Delta x)$$

 $2^{nd}\ {\rm order}\ {\rm approximation}\ {\rm of}\ {\rm Modified}\ {\rm equation}$

$$u_t + au_x = \frac{a\Delta x}{2}(1-\gamma)u_{xx} + \mathcal{O}(\Delta t^2; \Delta x^2)$$

Home Page
Title Page
Contents
•• ••
Page 36 of 104
Go Back
Full Screen
Close
Quit
3.3.3. Examples of modified equations

Scheme	Modified equation
Up-wind	$u_t + au_x = (1 - \gamma)\frac{a\Delta x}{2}u_{xx}$
Down-wind	$u_t + au_x = -(1+\gamma)\frac{a\Delta x}{2}u_{xx}$
Central	$u_t + au_x = -\gamma \frac{a\Delta x}{2} u_{xx}$
Lax-Friedrichs	$u_t + au_x = (\frac{1}{\gamma} - \gamma)\frac{a\Delta x}{2}u_{xx}$
Lax-Wendroff	$u_t + au_x = -\frac{a\Delta x^2}{6}(1 - \gamma^2)u_{xxx}$
Beam-Warming	$u_t + au_x = \frac{a\Delta x^2}{6}(2 - 3\gamma + \gamma^2)u_{xxx}$
Wendroff	$u_t + au_x = -\frac{a\Delta x^2}{12}(2+3\gamma+\gamma^2)u_{xxx}$
Crank-Nicolson	$u_t + au_x = -\frac{a\Delta x^2}{12}(2+\gamma^2)u_{xxx}$

3.3.4. Generalisation of modified equation concept

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a \left[\alpha_1 \left(\frac{u_{i+1}^n - u_i^n}{\Delta x} \right) + \alpha_2 \left(\frac{u_i^n - u_{i-1}^n}{\Delta x} \right) \right] \\ + a \left[\alpha_3 \left(\frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta x} \right) + \alpha_4 \left(\frac{u_i^{n+1} - u_{i-1}^{n+1}}{\Delta x} \right) \right] = 0$$
Consistency
$$\implies \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1$$

Explicit schemes $|\alpha_3| + |\alpha_4| = 0$

(

Implicit schemes

 $|\alpha_3| + |\alpha_4| \neq 0$

Home Page
Title Page
Contents
4
Page 38 of 104
Go Back
Full Screen
Close
Quit

Scheme	$lpha_1$	$lpha_2$	$lpha_3$	$lpha_4$
U	0	1	0	0
D	1	0	0	0
С	$\frac{1}{2}$	$\frac{1}{2}$	0	0
LF	$\frac{1}{2} - \frac{\Delta x}{2a\Delta t}$	$\frac{1}{2} + \frac{\Delta x}{2a\Delta t}$	0	0
LW	$rac{1}{2}-rac{a\Delta t}{2\Delta x}$	$\frac{1}{2} + \frac{a\Delta t}{2\Delta x}$	0	0
W	$\frac{1}{2}$	0	0	$\frac{1}{2}$
CN	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Home Page Title Page Contents •• • ▶ Page **39** of **104** Go Back Full Screen Close Quit

Modified equation - up to $\mathbf{3}^{rd}$ order terms

$$u_t + au_x = \epsilon_2 u_{xx} + \epsilon_3 u_{xxx}$$

$$egin{aligned} \epsilon_2 &= -rac{a\Delta x}{2} \Big\{ (lpha_1-lpha_2) + (lpha_3-lpha_4) \ &+ \gamma \left[(lpha_1+lpha_2)^2 - (lpha_3+lpha_4)^2
ight] \Big\} \end{aligned}$$

$$egin{aligned} \epsilon_3 &= -rac{a\Delta x^2}{6} \Big\{ 1 + 3\gamma \left[(lpha_1^2 - lpha_2^2) - (lpha_3^2 - lpha_4^2)
ight] \ &+ 2\gamma^2 \left[(lpha_1 + lpha_2)^3 + (lpha_3 + lpha_4)^3
ight] \Big] \end{aligned}$$

Home Page
Title Page
Contents
Page 40 of 104
Go Back
Full Screen
Close
Quit

$$u_t + a u_x = \epsilon_2 u_{xx} + \epsilon_3 u_{xxx}$$

$$= ilde{\epsilon}_2rac{a\Delta x}{2}u_{xx}+ ilde{\epsilon}_3rac{a\Delta x^2}{6}u_{xxx}$$

Scheme	$ ilde{\epsilon}_2$	$ ilde{\epsilon}_3$	_	_
U	$1-\gamma$	•••	$\epsilon_2 > 0$	diffusive
D	$ -1-\gamma $	•••	$\epsilon_2 < 0$	unstable
C	$-\gamma$	•••	$\epsilon_2 < 0$	unstable
LF	$rac{1}{\gamma}-oldsymbol{\gamma}$	•••	$\epsilon_2 > 0$	diffusive
LW	0	$-(1-\gamma^2)$	$\epsilon_3 eq 0$	dispersive
W	0	$-rac{1}{2}(2+3\gamma+\gamma^2)$	$\epsilon_3 eq 0$	dispersive
CN	0	$-rac{1}{2}(2+\gamma^2)$	$\epsilon_3 eq 0$	dispersive

Home Page
Title Page
Contents
•• ••
Page 42 of 104
Go Back
Full Screen
Close
Quit

3.4. Numerical schemes analysis - Summary

- Numerical solution of the advection equation is "much closer" to the solution of advection-diffusion or advection-dispersion equation
- The behaviour and quality of numerical solution is essentially dependent on the coefficients of modified equation
- The detailed knowledge of the structure of the leading order terms in the modified equation can be used to construct the "high resolution" numerical methods

Chapter 4

Introduction to High Resolution Methods

- 1. Improved classical schemes
- 2. "Blended schemes"
- 3. "Composite schemes"
- 4. Artificial viscosity methods

4.1. Improved classical schemes

Lax-Friedrichs

$$u_i^{n+1} = \frac{1}{2}(u_{i+1}^n + u_{i-1}^n) - \frac{a\Delta t}{2\Delta x}(u_{i+1}^n - u_{i-1}^n)$$

$$u_i^{n+1} = u_i^n - \frac{a\Delta t}{2\Delta x}(u_{i+1}^n - u_{i-1}^n) + \frac{1}{2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$

Modified Lax-Friedrichs

$$u_{i}^{n+1} = u_{i}^{n} - \frac{a\Delta t}{2\Delta x} (u_{i+1}^{n} - u_{i-1}^{n}) + \frac{\epsilon}{2} (u_{i+1}^{n} - 2u_{i}^{n} + u_{i-1}^{n}) \qquad \epsilon \in (0; 1)$$

Modification of the internal numerical viscosity of the scheme

4.2. Blended schemes

Central & Upwind

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a \left[2\alpha \{ \mathsf{C} \} + (1 - 2\alpha) \{ \mathsf{U} \} \right] = 0 \qquad \alpha \in (0; 1)$$

Central - low diffusion & Upwind - high diffusion \implies Blended - "optimal" diffusion

- constant blending coefficient
- variable blending coefficient

Dependent on the local solution behaviour (e.g. on the solution gradient)

4.3. Composite schemes

- 1. Advance m steps by the higher order, dispersive method (e.g. Lax-Wendroff)
- 2. Advance n steps by the low order, diffusive method (e.g. Lax-Friedrichs)

Lax-Wendroff - solving & Lax-Friedrichs - smoothing

Step	Scheme
1.	LW
2.	LW
3.	LW
4.	LF
5.	LW
6.	LW
7.	LW
8.	LF

Example

m = 3, n = 1

Home Page
Title Page
Contents
••
Page 47 of 104
Go Back
Full Screen
Close
Quit

4.4. Artificial viscosity methods

$$\frac{u_i^{n+1}-u_i^n}{\Delta t}+a\{\mathsf{C}\}=(1-2\alpha)\frac{a\Delta x}{2}\{\mathsf{V}\}$$

$$rac{u_i^{n+1}-u_i^n}{\Delta t}+a\left[rac{u_{i+1}^n-u_{i-1}^n}{2\Delta x}
ight]=(1-2lpha)rac{a\Delta x}{2}\left[rac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{\Delta x^2}
ight]$$

Generalisation - Artificial viscosity

 $u^{n+1} = \mathbb{L}u^n + \mathsf{D}u^n$

 \mathbb{L} ... discrete evolution operator

Example - Central scheme

$$u_i^{n+1} = \underbrace{u_i^n - rac{a\Delta t}{2\Delta x}(u_{i+1}^n - u_{i-1}^n)}_{\mathbb{L}u^n} + extsf{D} u_i^n$$

How to design the numerical viscosity?

 $\mathsf{D}u^n = \mathsf{D}_2 u^n + \mathsf{D}_4 u^n$

$$D_{2}u^{n} = \epsilon_{2}\Delta x^{2}u_{xx} \approx \epsilon_{2}(u^{n}_{i+1} - 2u^{n}_{i} + u^{n}_{i-1})$$

$$D_{4}u^{n} = \epsilon_{4}\Delta x^{4}u_{xxxx} \approx \epsilon_{4}(u^{n}_{i+2} - 4u^{n}_{i+1} + 6u^{n}_{i} - 4u^{n}_{i-1} + u^{n}_{i-2})$$

Chapter 5

Viscosity - **Overview**

Home Page
Title Page
Contents
•• ••
Page 50 of 104
Go Back
Full Screen
Close
Quit
Quit

Viscosity role in CFD models Viscosity:

- 1. Physical
 - coming from the mathematical description of the fluid flow
 - (a) <u>Laminar</u> basic property of the fluid. Usualy constant or temperature dependent
 - (b) **<u>Turbulent</u>** depends on the local flow field and is given by turbulence model

2. Numerical

- introduced as a consequence of numerical method used for the solution
- (a) Internal implicitly involved in the numerical discretisation
- (b) **External** explicitly added into the numerical solution to improve the stability and accuracy of the numerical method

Part II

Application of CFD Models in ABL Simulations

Chapter 6

Definition of the Problem

- 6.1. Geometry of the domain
- **6.1.1.** Wind-tunnel scale tests

3D case

Figure 6.1: Three-dimensional domain with sinusoidal hill

2D case

Figure 6.2: Two-dimensional domain with sinusoidal hill

Figure 6.3: Hill geometry for 2D problems

Hill	\mathbf{slope}	$\mathbf{height}\ H$	length L_1
S3H4	0.3	$4 \mathrm{cm}$	$6.67~\mathrm{cm}$
S3H7	0.3	$7 \mathrm{cm}$	$11.67 \mathrm{~cm}$
S5H4	0.5	$4 \mathrm{cm}$	4.0 cm
S5H7	0.5	$7 \mathrm{cm}$	$7.0~\mathrm{cm}$
Tal	ble 6.1	: 2D hill se	etup

Contents
•• >>
Page 55 of 104
Go Back
Full Screen
Close
Quit

Home Page

Title Page

6.1.2. Real scale tests

Real terrain orography

Figure 6.4: 3D domain with real terrain topography (Mediterranean coast)

Home Page Title Page Contents Page 56 of 104 Go Back Full Screen Close Quit

Chapter 7

Governing equations

7.1. Reynolds averaged Navier-Stokes equations

$$u_{x} + v_{y} + w_{z} = 0$$

$$u_{t} + (u^{2} + p)_{x} + (uv)_{y} + (uw)_{z} = [Ku_{x}]_{x} + [Ku_{y}]_{y} + [Ku_{z}]_{z} + f_{c}v$$

$$v_{t} + (uv)_{x} + (v^{2} + p)_{y} + (vw)_{z} = [Kv_{x}]_{x} + [Kv_{y}]_{y} + [Kv_{z}]_{z} - f_{c}u$$

$$w_{t} + (uw)_{x} + (vw)_{y} + (w^{2} + p)_{z} = [Kw_{x}]_{x} + [Kw_{y}]_{y} + [Kw_{z}]_{z}$$

In vector form:

 $\tilde{R}\mathbf{W}_t + \mathbf{F}_x + \mathbf{G}_y + \mathbf{H}_z = \mathbf{R}_x + \mathbf{S}_y + \mathbf{T}_z + \mathbf{f}_w$

Where $\mathbf{W} = (0, u, v, w)^T$, $\mathbf{f}_{\mathbf{W}} = (0, f_c v, -f_c u, 0)^T$ and $\tilde{R} = diag(0, 1, 1, 1)$

$$\begin{split} \mathbf{F} &= (u, u^2 + p, uv, uw)^T \quad \mathbf{R} = (0, Ku_x, Kv_x, Kw_x)^T \\ \mathbf{G} &= (v, uv, v^2 + p, vw)^T \quad \mathbf{S} = (0, Ku_y, Kv_y, Kw_y)^T \\ \mathbf{H} &= (w, uw, vw, w^2 + p)^T \quad \mathbf{T} = (0, Ku_z, Kv_z, Kw_z)^T \end{split}$$

7.2. RANS - nonconservative form

$$u_x + v_y + w_z = 0$$

$$u_t + uu_x + vu_y + wu_z = -\frac{p_x}{\rho} + \left\{ [Ku_x]_x + [Ku_y]_y + [Ku_z]_z \right\} + f_c v$$

$$v_t + uv_x + vv_y + wv_z = -\frac{p_y}{\rho} + \left\{ [Kv_x]_x + [Kv_y]_y + [Kv_z]_z \right\} - f_c u$$

$$v_t + uw_x + vw_y + uw_z = -\frac{p_z}{\rho} + \left\{ [Kw_x]_x + [Kw_y]_y + [Kw_y]_y \right\}$$

$$w_t + uw_x + vw_y + ww_z = -\frac{p_z}{\rho} + \left\{ [Kw_x]_x + [Kw_y]_y + [Kw_z]_z \right\}$$

In vector form:

$$u_x + v_y + w_z = 0$$

$$\begin{split} \mathbf{V}_t + u \mathbf{V}_x + v \mathbf{V}_y + w \mathbf{V}_z &= -\frac{\nabla p}{\rho} + \{ [\mathbf{K} \mathbf{V}_x]_x + [\mathbf{K} \mathbf{V}_y]_y + [\mathbf{K} \mathbf{V}_z]_z \} + \mathbf{f}_{\mathbf{V}} \\ \text{Here } \mathbf{V} &= (u, v, w)^T, \ \mathbf{f}_{\mathbf{V}} = (f_c v, -f_c u, 0)^T. \end{split}$$

7.3. Boussinesq approximation

$$(\rho_{_{0}}u)_{x} + (\rho_{_{0}}v)_{y} + (\rho_{_{0}}w)_{z} = 0$$

$$u_t + uu_x + vu_y + wu_z = -\frac{p_x''}{\rho_0} + \frac{1}{\rho_0} \{ [\rho_0 K u_x]_x + [\rho_0 K u_y]_y + [\rho_0 K u_z]_z \} + f_c v_{abs} + f_c v_$$

$$v_t + uv_x + vv_y + wv_z = -\frac{p_y''}{\rho_0} + \frac{1}{\rho_0} \{ [\rho_0 K v_x]_x + [\rho_0 K v_y]_y + [\rho_0 K v_z]_z \} - f_c u$$

$$w_t + uw_x + vw_y + ww_z = -\frac{p_z''}{\rho_0} + \frac{1}{\rho_0} \{ [\rho_0 K w_x]_x + [\rho_0 K w_y]_y + [\rho_0 K w_z]_z \} - \frac{\Theta''}{\Theta_0} g$$

In vector form:

$$\begin{split} (\rho_{_{0}}u)_{x}+(\rho_{_{0}}v)_{y}+(\rho_{_{0}}w)_{z}&=0\\ \mathbf{V}_{t}+u\mathbf{V}_{x}+v\mathbf{V}_{y}+w\mathbf{V}_{z}&=-\frac{\nabla p''}{\rho_{_{0}}}+\frac{1}{\rho_{_{0}}}\{[\rho_{_{0}}K\mathbf{V}_{x}]_{x}+[\rho_{_{0}}K\mathbf{V}_{y}]_{y}+[\rho_{_{0}}K\mathbf{V}_{z}]_{z}\}+\mathbf{f}_{\mathsf{v}}\\ \text{Here }\mathbf{V}=(u,v,w)^{T},\ \mathbf{f}_{\mathsf{v}}=(f_{c}v,-f_{c}u,\frac{\Theta''}{\Theta_{_{0}}}g)^{T}. \end{split}$$

Home Page
Title Page
Contents
∢ ∢ >>
Page 60 of 104
Go Back
Full Screen
Close
Quit

7.4. Transport equations

$$C_{t}^{i} + uC_{x}^{i} + vC_{y}^{i} + wC_{z}^{i} = \left[K\frac{C_{x}^{i}}{\sigma_{C^{i}}}\right]_{x} + \left[K\frac{C_{y}^{i}}{\sigma_{C^{i}}}\right]_{y} + \left[K\frac{C_{z}^{i}}{\sigma_{C^{i}}}\right]_{z}$$
$$\Theta_{t} + u\Theta_{x} + v\Theta_{y} + w\Theta_{z} = \left[K\frac{\Theta_{x}}{\sigma_{\Theta}}\right]_{x} + \left[K\frac{\Theta_{y}}{\sigma_{\Theta}}\right]_{y} + \left[K\frac{\Theta_{z}}{\sigma_{\Theta}}\right]_{z}$$

7.5. Turbulence modelling

Algebraic turbulent closure $K = \nu_L + \nu_T$ Turbulent viscosity ... $\nu_T = \ell^2 \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right]^{1/2} \mathcal{G}$ Stability function ... $\mathcal{G} = (1 + \beta Ri)^{-2}$ for Ri > 0 $\mathcal{G} = (1 - \beta Ri)^2$ for $Ri \leq 0$ Mixing length ... $\ell = \frac{\kappa(z+z_0)}{1+\kappa \frac{(z+z_0)}{\sigma}}$

Type of surface	$z_0 [m]$
snow, ice	10^{-5}
flat hayfield, grass of height 1 cm	10^{-3}
grass of height 10 cm	10^{-2}
grass of height 50 cm	$7\cdot 10^{-2}$
city estate	$1/10 \div 1/20$ average height of buildings

Chapter 8

Numerical Solution

8.1. Artificial compressibility formulation

$$rac{p_t}{eta^2}+u_x+v_y+w_z ~=~ 0$$

$$oldsymbol{\mathsf{V}}_t + u oldsymbol{\mathsf{V}}_x + v oldsymbol{\mathsf{V}}_y + w oldsymbol{\mathsf{V}}_z \; = \; -rac{
abla p'}{
ho_0} + [K oldsymbol{\mathsf{V}}_x]_x + [K oldsymbol{\mathsf{V}}_y]_y + [K oldsymbol{\mathsf{V}}_z]_z + ec{f}$$

$$egin{aligned} C_t^i + u C_x^i + v C_y^i + w C_z^i &= \left[K rac{C_x^i}{\sigma_{C^i}}
ight]_x + \left[K rac{C_y^i}{\sigma_{C^i}}
ight]_y + \left[K rac{C_z^i}{\sigma_{C^i}}
ight]_z \ \Theta_t + u \Theta_x + v \Theta_y + w \Theta_z &= \left[K rac{\Theta_x}{\sigma_{\Theta}}
ight]_x + \left[K rac{\Theta_y}{\sigma_{\Theta}}
ight]_y + \left[K rac{\Theta_z}{\sigma_{\Theta}}
ight]_z \end{aligned}$$

where V = col(u, v, w)

8.2. Finite difference discretisation

Home Page Title Page Contents •• Page 65 of 104 Go Back Full Screen Close Quit

8.3. One-dimensional model schemes

Advection equation:

$$u_t + au_x = 0$$

Home Page

Title Page

Quit

8.4. Semi-implicit scheme

$$V_{t} \sim \overline{\delta_{t}} V_{i,j,k}^{n}$$

$$u V_{x} \sim \frac{1}{2} \left(u_{i+1/2}^{n} \overline{\delta_{x}} V_{i,j,k}^{n} + u_{i-1/2}^{n} \overline{\delta_{x}} V_{i,j,k}^{n+1} \right)$$

$$v V_{y} \sim \frac{1}{2} \left\{ \frac{1}{2} \left(v_{j+1/2}^{n} \overline{\delta_{y}} V_{i,j,k} + v_{j-1/2}^{n} \overline{\delta_{y}} V_{i,j,k} \right)^{n} + \frac{1}{2} \left(v_{j+1/2}^{n} \overline{\delta_{y}} V_{i,j,k} + v_{j-1/2}^{n} \overline{\delta_{y}} V_{i,j,k} \right)^{n+1} \right\}$$

$$w V_{z} \sim \frac{1}{2} \left\{ \frac{1}{2} \left(w_{k+1/2}^{n} \overline{\delta_{z}} V_{i,j,k} + w_{k-1/2}^{n} \overline{\delta_{z}} V_{i,j,k} \right)^{n} + \frac{1}{2} \left(w_{k+1/2}^{n} \overline{\delta_{z}} V_{i,j,k} + w_{k-1/2}^{n} \overline{\delta_{z}} V_{i,j,k} \right)^{n+1} \right\}$$

Home Page
Title Page
Contents
•• ••
Page 67 of 104
Go Back
Full Screen
Close
Quit

Computational stencil Semi-implicit scheme

Time level n

Time level n+1

Home Page
Title Page
Contents
•• >>
Page 68 of 104
Go Back
Full Screen
Close
Quit

Sparse structure of system matrix Semi-implicit scheme

Fully implicit matrix

8.5. Pressure resolution

Pressure is updated from the modified continuity equation

$$p_t' = -(u_x + v_y + w_z)$$

The derivatives are discretized by central differences at time level (n + 1/2)

$$p_t \sim \delta_t p_{i,j,k}^{n+1/2}$$

$$u_x \sim \frac{1}{2} \{ \delta_x u_{i,j,k}^n + \delta_x u_{i,j,k}^{n+1} \}$$

$$v_y \sim \frac{1}{2} \{ \delta_y v_{i,j,k}^n + \delta_y v_{i,j,k}^{n+1} \}$$

$$w_z \sim \frac{1}{2} \{ \delta_z w_{i,j,k}^n + \delta_z w_{i,j,k}^{n+1} \}$$

8.6. Artificial viscosity terms

The non-physical oscillations are dumped by combination of artificial viscosity of second and fourth order.

 $D\mathbf{V}_{i}^{n} = D^{2}\mathbf{V}_{i}^{n} + D^{4}\mathbf{V}_{i}^{n}$ $D^{2}\mathbf{V}_{i}^{n} = \tilde{\epsilon}_{2}\Delta x^{3}\frac{\partial}{\partial x}|\mathbf{V}_{x}|\mathbf{V}_{x}$ $= \tilde{\epsilon}_{2}\Delta x^{2}(\epsilon_{i+1/2}\mathbf{V}_{x} - \epsilon_{i-1/2}\mathbf{V}_{x})$ $\epsilon_{i+1/2} = \begin{cases} |\mathbf{V}_{i+1} - \mathbf{V}_{i}| & \text{for } |\mathbf{V}_{i+1} - \mathbf{V}_{i}| < \frac{K}{10} \\ \frac{K}{10} & \text{for } |\mathbf{V}_{i+1} - \mathbf{V}_{k}| \geq \frac{K}{10} \end{cases}$

$$D^{4}\mathsf{V}_{i}^{n} = \tilde{\epsilon}_{4}\Delta x^{4}\mathsf{V}_{xxxx}$$

= $\tilde{\epsilon}_{4}\left(\mathsf{V}_{i-2}^{n} - 4\mathsf{V}_{i-1}^{n} + 6\mathsf{V}_{i}^{n} - 4\mathsf{V}_{i+1}^{n} + \mathsf{V}_{i+2}^{n}\right)$

8.7. One-dimensional test

Quit

Home Page

Non-linear Burgers equation test

$$u_t+uu_x=0 \qquad \qquad u_t+\left(rac{u^2}{2}
ight)_x=0$$

2.2 00 തമര 0

Y-scheme without art. viscosity

Y-scheme with art. viscosity

Mac Cormack finite-volume scheme

$$\begin{split} \mathsf{W}_{i,k}^{n+\frac{1}{2}} &= \mathsf{W}_{i,k}^{n} - \frac{\Delta t}{|D_{i,k}|} \sum_{l=1}^{4} \{ (\mathsf{F}_{l}^{n} - \mathsf{R}_{l}^{n}) \Delta z_{l} - (\mathsf{H}_{l}^{n} - \mathsf{T}_{l}^{n}) \Delta x_{l} \} \\ \overline{\mathsf{W}}_{i,k}^{n+1} &= \frac{1}{2} \Big[\mathsf{W}_{i,k}^{n} + \mathsf{W}_{i,k}^{n+\frac{1}{2}} \\ &- \frac{\Delta t}{|D_{i,k}|} \sum_{l=1}^{4} \{ (\mathsf{F}_{l}^{n+\frac{1}{2}} - \mathsf{R}_{l}^{n+\frac{1}{2}}) \Delta z_{k} - (\mathsf{H}_{l}^{n+\frac{1}{2}} - \mathsf{T}_{l}^{n+\frac{1}{2}}) \Delta x_{l} \} \Big] \\ \mathsf{W}_{i,k}^{n+1} &= \overline{\mathsf{W}}_{i,k}^{n+1} + \mathsf{D} \mathsf{W}_{i,k}^{n} \end{split}$$

Home Page
Title Page
Contents
•• ••
Page 78 of 104
Go Back
Full Screen
Close
Quit

Mac Cormack numerical flux

Mac Cormack inviscid fluxes

Predictor	Corrector
$F_1^n=F(W_{i,k}^n)$	$F_{1}^{n+\frac{1}{2}} = F(W_{i+1,k}^{n+\frac{1}{2}})$
$F_2^n=F(W_{i,k}^n)$	$F_{2}^{n+\frac{1}{2}} = F(W_{i,k+1}^{n+\frac{1}{2}})$
$F_3^n=F(W_{i-1,k}^n)$	$F_3^{n+\frac{1}{2}} = F(W_{i,k}^{n+\frac{1}{2}})$
$F_4^n=F(W_{i,k-1}^n)$	$F_4^{n+\frac{1}{2}} = F(W_{i,k}^{n+\frac{1}{2}})$

Viscous flux dual control volume

Mac Cormack numerical flux

Artificial viscosity

Home Page

Title Page

Contents

 \rightarrow

▶

Page 81 of 104

Go Back

Full Screen

Close

Quit

▲

◀

$$DW_{k}^{n} = \tilde{\epsilon}_{2} \left[|W_{k+1}^{n} - W_{k}^{n}| (W_{k+1}^{n} - W_{k}^{n}) - |W_{k}^{n} - W_{k-1}^{n}| (W_{k}^{n} - W_{k-1}^{n}) \right] + \tilde{\epsilon}_{4} (W_{k-2}^{n} - 4W_{k-1}^{n} + 6W_{k}^{n} - 4W_{k+1}^{n} + W_{k+2}^{n}); \tilde{\epsilon}_{2}, \tilde{\epsilon}_{4} \in \mathbb{R}$$

$$\begin{aligned} \mathsf{DW}_{k}^{n} &= \tilde{\epsilon}_{2} \left[\left| \frac{p_{k+1}^{n} - 2p_{k}^{n} + p_{k-1}^{n}}{p_{k+1}^{n} + 2p_{k}^{n} + p_{k-1}^{n}} \right| (\mathsf{W}_{k+1}^{n} - \mathsf{W}_{k}^{n}) - \left| \frac{p_{k}^{n} - 2p_{k-1}^{n} + p_{k-2}^{n}}{p_{k}^{n} + 2p_{k-1}^{n} + p_{k-2}^{n}} \right| (\mathsf{W}_{k}^{n} - \mathsf{W}_{k-1}^{n}) \right] \\ &+ \tilde{\epsilon}_{4} \left(\mathsf{W}_{k-2}^{n} - 4\mathsf{W}_{k-1}^{n} + 6\mathsf{W}_{k}^{n} - 4\mathsf{W}_{k+1}^{n} + \mathsf{W}_{k+2}^{n} \right); \tilde{\epsilon}_{2}, \tilde{\epsilon}_{4} \in \mathbb{R} \end{aligned}$$

Runge-Kutta time integration

$$\frac{d\mathsf{W}_{ijk}}{dt} = -\tilde{\mathcal{L}}\,\mathsf{W}_{i,j,k}$$

$$\begin{aligned} & \mathsf{W}_{i,j,k}^{(0)} \ = \ \mathsf{W}_{i,j,k}^{n} \\ & \mathsf{W}_{i,j,k}^{(r+1)} \ = \ \mathsf{W}_{i,j,k}^{(0)} - \alpha_{(r)} \Delta t \tilde{\mathcal{L}} \mathsf{W}_{i,j,k}^{(r)} \qquad r = 1, \dots, m \\ & \mathsf{W}_{i,j,k}^{n+1} \ = \ \mathsf{W}_{i,j,k}^{(m)} \end{aligned}$$

The three-stage explicit RK scheme has coefficients:

$$\alpha_{(1)} = 1/2, \ \alpha_{(2)} = 1/2, \ \alpha_{(3)} = 1$$

Artificial viscosity

$$\bar{\tilde{\mathcal{L}}} \mathsf{W}_{i,j,k}^{(r)} = \tilde{\mathcal{L}} \mathsf{W}_{i,j,k}^{(r)} + \mathsf{DW}_{i,j,k}^{(r)}$$

$$\mathsf{DW}_{i}^{n} = \epsilon_{2} \Delta x^{2} \, \mathsf{W}_{xx} |_{i}^{n} + \epsilon_{4} \Delta x^{4} \mathsf{W}_{xxxx} |_{i}^{n}$$

$$\begin{aligned} \mathsf{DW}_{i}^{n} &= \tilde{\epsilon}_{2}(\mathsf{W}_{i-1}^{n} - 2\mathsf{W}_{i}^{n} + \mathsf{W}_{i+1}^{n}) \\ &+ \tilde{\epsilon}_{4}\left(\mathsf{W}_{i-2}^{n} - 4\mathsf{W}_{i-1}^{n} + 6\mathsf{W}_{i}^{n} - 4\mathsf{W}_{i+1}^{n} + \mathsf{W}_{i+2}^{n}\right); \qquad \tilde{\epsilon}_{2}, \tilde{\epsilon}_{4} \in \mathbb{R} \end{aligned}$$

Chapter 9

Selected Numerical Results

9.1. Wind-tunnel scale tests

Figure 9.1: Boundary conditions for 2D incompressible Navier-Stokes model

Figure 9.2: Hill geometry for 2D problems

Hill	slope	height H	length L_1
S3H4	0.3	$4 \mathrm{cm}$	$6.67~\mathrm{cm}$
S3H7	0.3	$7 \mathrm{cm}$	$11.67~\mathrm{cm}$
S5H4	0.5	$4 \mathrm{cm}$	$4.0 \mathrm{cm}$
S5H7	0.5	$7 \mathrm{cm}$	$7.0~{ m cm}$

Table 9.1: 2D hill setup

Computation

-0.8

-2

0

2

x/L₁

Δ

6

8

Home Page
Title Page
Contents
•• ••
Page 89 of 104
Go Back
Full Screen
Close
Quit

9.4. Validation in 2D - Separated flow

Computation

9.5. Pollution dispersion

F	lome Page
	Title Page
	Contents
•	
Pa	ge 93 of 104
	Go Back
F	Full Screen
	Close
	Quit

9.6. Real scale tests

Figure 9.3: 3D domain with real terrain topography

Figure 9.5: Given meteorological data (velocity field) for the level 5000 meters above the sea level.

Figure 9.6: Contours of the computed near wall velocity field.

Close

Figure 9.7: Comparison of *u*-component profiles for 21. June 2001 at Sair Chamas

Figure 9.8: Comparison of *v*-component profiles for 21. June 2001 at Saint Chamas

