High Resolution Finite Volume Methods for Transonic Flows

Jiří Fürst

- Mathematical models of transonic flows
- Numerical solution of scalar equation in 1D
- Extension to multidimensional case via finite volume method
- Numerical solution of hyperbolic systems
- Convection-diffusion problems

Mathematical models of transonic flows

• compressible viscous or inviscid flows,

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j) = 0 \qquad \text{mass} \qquad (1)$$

$$\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j) + \frac{\partial p}{\partial x_i} = \frac{\partial \tau_{ij}}{\partial x_j} \qquad \text{momentum} \qquad (2)$$

$$\frac{\partial E}{\partial t} + \frac{\partial}{\partial x_j} ((E+p)u_j) = \frac{\partial}{\partial x_j} (u_i \tau_{ij}) - \frac{\partial q_j}{\partial x_j} \qquad \text{energy} \qquad (3)$$

 ρ - density, u_i - velocity vector, p - pressure, E - total energy per m^3 , τ_{ij} - stress tensor, q_i - heat flux

• Newtonian fluids: $\tau_{ij} = 2\mu S_{ij}$, $S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}$.

• Fourier's law:
$$q_j = \lambda rac{\partial T}{\partial x_i}$$
.

• Equation of state: $p = \rho RT \Rightarrow p = (\gamma - 1)(E - \frac{1}{2}\rho u_i u_i)$.

Conservative non-dimensional form

$$W_{t} + F(W)_{x} + G(W)_{y} = \frac{1}{Re} (R(W, \nabla W)_{x} + S(W, \nabla W)_{y}),$$

where $Re = \frac{\rho u L}{\mu}$, $Pr = \frac{c_{\rho} \mu}{\lambda}$, $W = [\rho, \rho u, \rho v, E]^{T}$,
 $F(W) = [\rho u, \rho u^{2} + p, \rho u v, (E + p)u]^{T}$, $G(W) = [\rho v, \rho u v, \rho v^{2} + p, (E + p)v]^{T}$
 $R(W, \nabla W) = [0, \frac{4}{3}u_{x} - \frac{2}{3}v_{y}, u_{y} + v_{x}, ...]^{T}$, $S(W, \nabla W) = [0, u_{y} + v_{x}, \frac{4}{3}v_{y} - \frac{2}{3}u_{x}, ...]^{T}$

۱

Transonic flow

Flow at high *Re*

- viscous effects mainly in vicinity solid walls,
- thin boundary layers,
- shock waves,

Inviscid flow - system of Euler equations

Obtained from system of Navier-Stokes equations by $\mu \rightarrow 0$ ($Re \rightarrow \infty$):

 $W_t + F(W)_x + G(W)_y = 0.$

- system of equations is hyperbolic,
- no viscous effects (boundary layers, turbulence, ...),
- usually good description of flow features far from boundary,

Scalar hyperbolic equation in 1D case

$$u_t + f(u)_x = 0,$$

$$u(x,0) = u_0(x)$$

Linear case

•
$$f(u)_x = au_x$$
, $a = const$.

• exact solution $u(x,t) = u_0(x-at)$.

equation initial condition

Non-linear case

- $f(u)_x = a(u)u_x$, $a(u) \neq const$.
- classical solution only for $t < t_{crit}$

Theory

• weak solution, $\Omega = R imes (0,\infty)$, $\phi(x,t) \in C_0^\infty$

$$\iint_{\Omega} (u_t \phi + f(u)_x \phi) \, dx \, dt = 0$$
$$\iint_{\Omega} (-u\phi_t - f(u)\phi_x) \, dx \, dt = \int_R u_0(x)\phi(x,0) \, dx.$$

- weak solution exists, but it may be non-unique!
- *physically correct* weak solution can be chosen by the so-called *entropy condition*: $\mathcal{U}_t + \mathcal{F}_x \leq 0$ in \mathcal{D}' with \mathcal{U} convex and $\mathcal{F}' = \mathcal{U}'f'$,
- the *entropy solution* is equal to viscosity vanishing limit of u^{ϵ} for $\epsilon \to 0+$, where

$$u_t^{\varepsilon} + f(u^{\varepsilon})_x = \varepsilon u_{xx}.$$

Numerical solution

Let
$$x_{i+1/2} = (i+1/2)\Delta x$$
 and $t^n = n\Delta t$. Then:

$$0 = \int_{x_{i-1/2}}^{x_{i+1/2}} (u_t + f(u)_x) \, dx =$$

= $\frac{d}{dt} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x,t) \, dx - f(u(x_{i-1/2},t)) + f(u(x_{i+1/2},t)).$

Denote $u_i(t) = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x,t) dx$, then

$$\frac{d}{dt}u_i = \frac{f\left(u(x_{i-1/2},t)\right) - f\left(u(x_{i+1/2},t)\right)}{\Delta x}.$$

Time integration

•
$$\frac{d}{dt}u_i \approx \frac{u_i(t^{n+1})-u_i(t^n)}{\Delta t}$$
,

Numerical flux $f_{i+1/2}^n$

- $f_{i+1/2}^n = f(u_i^n, u_{i+1}^n) \approx f(u(x_{i+1/2}, t^n))$
- consistency f(v, v) = f(v),
- Lipschitz continuous $|f(u,v) f(w)| \le K(|u-w| + |v-w|)$,

Discrete (explicit) method

•
$$\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \frac{\Delta t}{\Delta x} \left(\mathbf{f}_{i+1/2}^n - \mathbf{f}_{i-1/2}^n \right).$$

Numerical solution (low order schemes)

Assume $u_t + au_x = 0$ with a > 0.

$$\begin{split} \mathbf{u}_{i}^{n+1} &= \mathbf{u}_{i}^{n} - \frac{a\Delta t}{\Delta x} \left(\mathbf{u}_{i}^{n} - \mathbf{u}_{i-1}^{n} \right), \qquad \qquad \mathbf{f}_{i+1/2}^{n} = a\mathbf{u}_{i}^{n}, \text{ (upwind)} \\ \mathbf{u}_{i}^{n+1} &= \frac{\mathbf{u}_{i+1}^{n} + \mathbf{u}_{i-1}^{n}}{2} - \frac{a\Delta t}{2\Delta x} \left(\mathbf{u}_{i+1}^{n} - \mathbf{u}_{i-1}^{n} \right), \quad \mathbf{f}_{i+1/2}^{n} = \frac{a\mathbf{u}_{i}^{n} + a\mathbf{u}_{i+1}^{n}}{2} - \frac{\Delta x}{2\Delta t} (\mathbf{u}_{i+1}^{n} - \mathbf{u}_{i}^{n}), \text{ (LF)} \end{split}$$

- well known theory: stability and convergence for $\Delta t \leq \Delta x/a$, valid also in nonlinear case,
- error for smooth data $\approx O(\Delta x)$,
- modified equation ($\beta > 0$, $\beta = O(1)$):

$$u_t + au_x = \Delta x \beta(\frac{\Delta t}{\Delta x})u_{xx} + O(\Delta x^2).$$

Numerical solution (high order schemes)

$$\begin{split} u(x,t^{n+1}) &= u(x,t^n) + \Delta t u_t + \frac{\Delta t^2}{2} u_{tt} + \ldots = u(x,t^n) - \Delta t a u_x + \frac{\Delta t^2}{2} a^2 u_{xx} + \ldots, \\ u_i^{n+1} &= u_i^n - \frac{a \Delta t}{2\Delta x} \left(u_{i+1}^n - u_{i-1}^n \right) + \frac{\Delta t^2 a^2}{2\Delta x^2} \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n \right) \text{ (Lax-Wendroff)} \\ f_{i+1/2}^n &= \frac{a u_i^n + a u_{i+1}^n}{2} - \frac{\Delta t a^2}{2\Delta x} \left(u_{i+1}^n - u_i^n \right) \end{split}$$

- stable for $\Delta t \leq \Delta x/a$,
- theory only for linear equation!
- error for smooth data $\approx \mathcal{O}(\Delta x^2)$,
- \bullet modified equation ($\!\gamma\!>\!0$, $\!\gamma\!=\mathcal{O}(1)$) :

$$u_t + au_x = -\Delta x^2 \gamma(\frac{\Delta t}{\Delta x}) u_{xxx} + O(\Delta x^3).$$

Fight against oscillations

- artificial viscosity approach: $u_t + f(u)_x = \Delta x^p \varepsilon u_{xx}$
 - ϵ usually depends on the first or second derivatives of the solution,
 - used very often but almost no theory!
- TVD (total variation diminishing) schemes:
 - systematic approach for constructing non-oscillatory schemes,
 - proofs of stability and convergence even for non-linear case,
 - complications with extension to 2D and 3D,
- ENO (essentially non-oscillatory) schemes:
 - no proofs, relatively simple to extend do 2D and 3D,
- other strategies: composite schemes, filtering, etc....

Artificial viscosity

• Von Neumann & Rychtmeyer (1950)

$$\mathbf{f}_{i+1/2} = \mathbf{f}_{i+1/2}^{LW} - \mathbf{\varepsilon}^{(2)} |\mathbf{u}_{i+1}^n - \mathbf{u}_i^n| (\mathbf{u}_{i+1}^n - \mathbf{u}_i^n)$$

• MacCormack & Baldwin (1975) (for Euler or Navier–Stokes eq.)

$$\mathsf{F}_{i+1/2} = \mathsf{F}_{i+1/2}^{LW} - \varepsilon^{(2)}(|u|+c) \frac{|\mathsf{p}_{i+1}-2\mathsf{p}_i+\mathsf{p}_{i-1}|}{\mathsf{p}_{i+1}+2\mathsf{p}_i+\mathsf{p}_{i-1}|} (\mathsf{W}_{i+1}^n - \mathsf{W}_i^n)$$

• Beam & Warming (1976)

$$\mathsf{F}_{i+1/2} = \mathsf{F}_{i+1/2}^{LW} - \mathsf{D}^{(2)} + \varepsilon^{(4)} \left(\mathsf{W}_{i+2}^n - 3\mathsf{W}_{i+1}^n + 3\mathsf{W}_i^n - \mathsf{W}_{i-1}^n \right)$$

• Jameson & Turkel (1981) - previous terms with special choice of $\epsilon^{(2)}$ and $\epsilon^{(4)}.$

TVD schemes

- Total variation: $TV(u^n) = \sum_i |u_i^n u_{i-1}^n|$.
- TVD property: $TV(u^{n+1}) \leq TV(u^n)$.
- Harten's lemma: scheme

$$\mathbf{u}_{i}^{n+1} = \mathbf{u}_{i}^{n} - C_{i-1/2}^{n}(\mathbf{u}_{i}^{n} - \mathbf{u}_{i-1}^{n}) + D_{i+1/2}^{n}(\mathbf{u}_{i+1}^{n} - \mathbf{u}_{i}^{n})$$

has TVD property if $C_{i-1/2}^n \ge 0$, $D_{i+1/2}^n \ge 0$, and $C_{i+1/2}^n + D_{i+1/2}^n \le 1$.

Monotone schemes

$$\mathsf{u}_i^{n+1} = \mathsf{u}_i^n - \frac{\Delta t}{\Delta x} \left(\mathsf{f}_{i+1/2}^n - \mathsf{f}_{i-1/2}^n \right) = \mathcal{H}(\mathsf{u}_{i-1}^n, \mathsf{u}_i^n, \mathsf{u}_{i+1}^n), \text{ with } \quad \frac{\partial \mathcal{H}(v_1, v_2, v_3)}{\partial v_k} \ge 0.$$

Monotone schemes are TVD, but their accuracy is limited to first order!

Jiří Fürst

High order TVD schemes - flux limiting approach

- Idea: f^{low} , $f^{high} \Rightarrow f^{TVD}_{i+1/2} = f^{low}_{i+1/2} + Q_{i+1/2} \left(f^{high}_{i+1/2} f^{low}_{i+1/2} \right)$.
- Example [Causon]: upwind + Lax-Wendroff

$$\mathbf{u}_{i}^{n+1} = \mathbf{u}_{i}^{n} - a \frac{\Delta t}{2\Delta x} (\mathbf{u}_{i+1}^{n} - \mathbf{u}_{i-1}^{n}) + a^{2} \frac{\Delta t^{2}}{2\Delta x^{2}} (\mathbf{u}_{i+1}^{n} - 2\mathbf{u}_{i}^{n} + \mathbf{u}_{i-1}^{n}) + K(\mathbf{r}_{i}^{+}, \mathbf{r}_{i+1}^{-}) (\mathbf{u}_{i+1}^{n} - \mathbf{u}_{i}^{n}) - K(\mathbf{r}_{i-1}^{+}, \mathbf{r}_{i}^{-}) (\mathbf{u}_{i}^{n} - \mathbf{u}_{i-1}^{n}),$$

$$\begin{split} K(\mathbf{r}_{i}^{+},\mathbf{r}_{i+1}^{-}) &= \frac{|a|\Delta t}{2\Delta x} (1 - \frac{|a|\Delta t}{\Delta x}) \left[1 - \Phi(\mathbf{r}_{i}^{+}) + 1 - \Phi(\mathbf{r}_{i+1}^{-}) \right] \\ \Phi(\mathbf{r}) &= \max\left(0,\min(2\mathbf{r},1)\right). \\ \mathbf{r}_{i}^{+} &= (\mathbf{u}_{i}^{n} - \mathbf{u}_{i-1}^{n}) / (\mathbf{u}_{i+1}^{n} - \mathbf{u}_{i}^{n}) \\ \mathbf{r}_{i}^{-} &= (\mathbf{u}_{i+1}^{n} - \mathbf{u}_{i}^{n}) / (\mathbf{u}_{i}^{n} - \mathbf{u}_{i-1}^{n}). \end{split}$$

High order TVD schemes - slope limiting approach

- $f_{i+1/2} = f(u_i, u_{i+1})$,
- first order scheme,

- $f_{i+1/2} = f(u_{i+1/2}^L, u_{i+1/2}^R)$,
- $\mathbf{u}_{i+1/2}^L = \mathbf{u}_i + \frac{\Delta x}{2} \mathbf{\sigma}_i$, $\mathbf{u}_{i+1/2}^R = \mathbf{u}_{i+1} + \frac{\Delta x}{2} \mathbf{\sigma}_{i+1}$,
- $\sigma_i = \frac{u_{i+1} u_{i-1}}{2\Delta x}$, unstable scheme,

• $\sigma_i = \frac{1}{\Delta x} minmod(\mathbf{u}_{i+1} - \mathbf{u}_i, \mathbf{u}_i - \mathbf{u}_{i-1}),$ • minmod(x, y) = sign(x) min(|x|, sign(x)y)

Theory of TV stability

• Lax-Wendroff theorem + TVD property \Rightarrow numerical solution u converges to a weak solution of initial value problem as Δx and $\Delta t \rightarrow 0$,

Properties of TVD schemes

- TVD schemes are stable and convergent even for non-linear case and nonsmooth solutions,
- the solution is free of spurious oscillations,
- the accuracy is usually reduced to low order near discontinuities and extremas,
- the extension to multidimensional case is limited to first order schemes!

ENO schemes

- uniformly high order schemes but no more TVD,
- possible to extend to arbitrary order,
- the oscillations are (hopefully) small,
- sometimes problems with convergence to steady state.

Weighted ENO schemes

•
$$\sigma_i = w_{i-1/2}\sigma_{i-1/2} + w_{i+1/2}\sigma_{i+1/2}$$
, with $\sigma_{i+1/2} = \frac{u_{i+1}-u_i}{\Delta x}$,

•
$$w_{i-1/2} = \frac{w(\sigma_{i-1/2})}{w(\sigma_{i+1/2}) + w(\sigma_{i+1/2})}$$
, $w_{i+1/2} = \frac{w(\sigma_{i+1/2})}{w(\sigma_{i+1/2}) + w(\sigma_{i+1/2})}$, $\Rightarrow w_{i-1/2} + w_{i+1/2} = 1$,

•
$$w(\sigma) = \mathcal{O}(1)$$
 for small $|\sigma|$, $w(\sigma) \to 0$ for large $|\sigma|$,

• eg.
$$w(\sigma) = \frac{1}{1+C|\sigma|^p}$$
, with $C > 0$, $p > 0$.

Numerical experiment

ENO schemes for spatial discretisation, TVD RK3 for time discretisation

Linear equation:
$$u_t + u_x = 0$$
,
Initial condition:
 $u_0(x) = \begin{cases} \sin^2(\pi x/0.25) & \text{for } x \in (0.25, 0.5) \\ 0 & \text{otherwise.} \end{cases}$

n	ENO	order	WENO	order]			
100	8802.7		5964.6					
200	3567.2	1.3	1608.2	1.9				
400	1083.7	1.7	374.4	2.1				
800	307.6	1.8	85.4	2.1				
1600	83.8	1.9	18.3	2.2				
3200	23.4	1.9	3.6	2.3				
L_1 error multiplied by 10^6 .								

Jiří Fürst

Extension to 2D - Finite Volume method

Numerical flux: $\int_{\partial \Omega_i} \mathbf{f}(u) \cdot \mathbf{n} \, dS = \sum_j \int_{\Gamma_{ij}} \mathbf{f}(u) \cdot \mathbf{n} \, dS \approx \sum_j |\Gamma_{ij}| \mathbf{f}(\mathbf{u}_i, \mathbf{u}_j, \mathbf{n}_{ij}),$

Semi-discrete finite volume method: $\frac{du_i(t)}{dt} + \frac{1}{|\Omega_i|}\sum_j |\Gamma_{ij}| f(u_i, u_j, \mathbf{n}_{ij}) = 0.$

Discrete (explicit) finite volume method:

$$\frac{\mathsf{u}_i^{n+1}-\mathsf{u}_i^n}{\Delta t}=-\frac{1}{|\Omega_i|}\sum_j|\Gamma_{ij}|\mathsf{f}(\mathsf{u}_i^n,\mathsf{u}_j^n,\mathsf{n}_{ij})=-R(\mathsf{u}^n)_i.$$

Choice of mesh topology

Structured meshes

- simple coding,
- possible to use one-dimensional schemes in each index direction,
- good results for simple geometry,
- complicated meshing for complex geometry,

Unstructured meshes

- more complicated coding,
- ability to handle complex geometry,
- mesh adaptation,

Choice of the control volume

Primary volumes

- values stored at the centers of mesh cells,
- more control volumes, less interfaces,

Dual volumes

- values stored at the nodes of mesh,
- lower # of volumes, higher # of interfaces (⇒ more flux evaluations)
- nodes of the mesh are not in centers of control volumes!

Monotone methods

$$\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \Delta t R(\mathbf{u}^n)_i = \mathcal{H}(\mathbf{u}^n).$$

Example: $u_t + \mathbf{a}\nabla u = 0$, $\mathbf{a} = const.$, first order upwind method:

- numerical flux $f(u_i, u_j, \mathbf{n}_{ij}) = \left\{ \begin{array}{ll} (\mathbf{a} \cdot \mathbf{n}_{ij}) u_j & \text{for } \mathbf{a} \cdot \mathbf{n}_{ij} < 0, \\ (\mathbf{a} \cdot \mathbf{n}_{ij}) u_i & \text{for } \mathbf{a} \cdot \mathbf{n}_{ij} \ge 0. \end{array} \right\},$
- upwind scheme: $\mathbf{u}_i^{n+1} = \mathbf{u}_i^n \frac{\Delta t}{|\Omega_i|} \sum_j |\Gamma_{ij}| \left[(\mathbf{a} \cdot \mathbf{n}_{ij})^- \mathbf{u}_j^n + (\mathbf{a} \cdot \mathbf{n}_{ij})^+ \mathbf{u}_i^n \right],$
- stability (monotonicity) condition: $\Delta t \leq \frac{|\Omega_i|}{\sum_j |\Gamma_{ij}| (\mathbf{a} \cdot \mathbf{n}_{ij})^+}$,

Properties of monotone methods:

- convergent to weak (or entropy) solution,
- satisfy maximum principle,
- unfortunatelly, their accuracy is limited to first order.

High order methods

- application of one-dimensional schemes (structured meshes):
 - dimensional splitting: $u^{n+1} = Lu^n = L_I L_J u^n = (I \Delta t R_I)(I \Delta t R_J)u^n$,
 - directional TVD (ENO): $u^{n+1} = (I \Delta t R_I \Delta t R_J)u^n$ where $I \Delta t R_{I,J}$ define one-dimensional TVD (ENO) schemes,
- multidimensional reconstruction (unstructured meshes):

$$\iint_{\Omega_i} P_i(\mathbf{x}; \mathbf{u}^n) d\mathbf{x} = |\Omega_i| \mathbf{u}_i^n$$
$$\iint_{\Omega_j} P_i(\mathbf{x}; \mathbf{u}^n) d\mathbf{x} = |\Omega_j| \mathbf{u}_j^n + O(|\mathbf{x}_j - \mathbf{x}_i|^p)$$

TVD schemes in 2D

time-space discretisation: $x_i = i\Delta x$, $y_j = j\Delta y$, $t_n = n\Delta t$, $u_{i,j}^n \approx u(x_i, y_j, t_n)$. explicit conservative scheme:

$$\mathbf{u}_{i,j}^{n+1} = \mathbf{u}_{i,j}^n - \frac{\Delta t}{\Delta x} \left[\mathbf{f}_{i+1/2,j}^n - \mathbf{f}_{i-1/2,j}^n \right] - \frac{\Delta t}{\Delta y} \left[\mathbf{g}_{i,j+1/2}^n - \mathbf{g}_{i,j-1/2}^n \right]$$
(**)

where $f_{i+1/2,j}^n = f(u_{i-p,j}^n, ..., u_{i+q,j}^n)$ and $g_{i,j+1/2}^n = g(u_{i,j-p}^n, ..., u_{i,j+q}^n)$.

Total variation is:
$$TV(u^n) = \Delta x \Delta y \sum_{i,j} \left| u_{i,j}^n - u_{i-1,j}^n \right| / \Delta x + \left| u_{i,j}^n - u_{i,j-1}^n \right| / \Delta y.$$

It is possible to construct a multidimensional TVD scheme, but the strong TV bound implies first order of accuracy for any multidimensional scheme (Goodman, LeVeque).

Two-dimensional schemes of the form (**) constructed using two onedimensional high-order TVD schemes <u>are no more TVD</u>, nevertheless, they perform well in practical computations.

Jiří Fürst

Schemes with weak TV bound

Assume a two-dimensional scheme of the form(**) with numerical fluxes f and g of the form: $f_{i+1/2,j}^n = p_{i+1/2,j}^n + \frac{\Delta x}{\Delta t} a_{i+1/2,j}^n$, $g_{i,j+1/2}^n = q_{i,j+1/2}^n + \frac{\Delta y}{\Delta t} b_{i,j+1/2}^n$, where p and q are monotone fluxes and a and b are high order corrections.

<u>Theorem</u>: (Coquel, LeFloch 1991) Consider a family of approximate solutions U_h constructed by the scheme (**) on the grid with $\Delta x \rightarrow 0$ ($\Delta t / \Delta x = const.$, $\Delta y = \Delta x = h$). Assume that:

$$||\mathsf{U}_{h}||_{\infty} \leq C, \qquad \frac{\Delta t}{\Delta x} \max |f'(u)| \leq \frac{1}{4}, \qquad \frac{\Delta t}{\Delta y} \max |g'(u)| \leq \frac{1}{4}$$
$$\left|\mathsf{a}_{i+1/2,j}^{n}\right| \leq M\Delta t^{\alpha}, \qquad \left|\mathsf{b}_{i,j+1/2}^{n}\right| \leq M\Delta t^{\alpha}, \qquad \alpha \in \left(\frac{2}{3}, 1\right)$$

Then U_h converges to the unique entropy solution in L^1_{loc} .

Jiří Fürst

Example: 2D version of the scheme proposed by Causon

Linear equation: $u_t + au_x + bu_y = 0$

$$\begin{aligned} \mathsf{u}_{i,j}^{n+1} &= \mathsf{u}_{i,j}^n - a \frac{\Delta t}{2\Delta x} (\mathsf{u}_{i+1,j}^n - \mathsf{u}_{i-1,j}^n) + a^2 \frac{\Delta t^2}{2\Delta x^2} (\mathsf{u}_{i+1,j}^n - 2\mathsf{u}_{i,j}^n + \mathsf{u}_{i-1,j}^n) + \\ &+ K(\mathsf{r}_{i,j}^+, \mathsf{r}_{i+1,j}^-) (\mathsf{u}_{i+1,j}^n - \mathsf{u}_{i,j}^n) - K(\mathsf{r}_{i-1,j}^+, \mathsf{r}_{i,j}^-) (\mathsf{u}_{i,j}^n - \mathsf{u}_{i-1,j}^n) + \\ &+ \text{ similar terms in } j \text{ direction} \end{aligned}$$

$$\begin{split} K(\mathbf{r}_{i,j}^{+},\mathbf{r}_{i+1,j}^{-}) &= \frac{|a|\Delta t}{2\Delta x} (1 - \frac{|a|\Delta t}{\Delta x}) \left[1 - \Phi(\mathbf{r}_{i,j}^{+}) + 1 - \Phi(\mathbf{r}_{i+1,j}^{-}) \right] \\ \Phi(\mathbf{r}) &= \min \left[\max\left(0,\min(2\mathbf{r},1)\right), \frac{M'\Delta x^{\alpha}}{|\mathbf{u}_{i+1,j}^{n} - \mathbf{u}_{i,j}^{n}|} \right], \\ \mathbf{r}_{i,j}^{+} &= (\mathbf{u}_{i,j}^{n} - \mathbf{u}_{i-1,j}^{n}) / (\mathbf{u}_{i+1,j}^{n} - \mathbf{u}_{i,j}^{n}) \\ \mathbf{r}_{i,j}^{-} &= (\mathbf{u}_{i+1,j}^{n} - \mathbf{u}_{i,j}^{n}) / (\mathbf{u}_{i,j}^{n} - \mathbf{u}_{i-1,j}^{n}). \end{split}$$

Multidimensional reconstruction

- using "central" method for computation *P_i* and applying limiters [Barth],
- extending ENO or WENO methods

Multidimensional reconstruction - third order ENO/WENO

 $P_i \text{ is selected between } P_i^{(A)}, P_i^{(B)}, P_i^{(C)} \text{ in order to minimize } \sum_{1 \le |\alpha|} |a_{\alpha}|.$ $\frac{\text{WENO reconstruction:}}{P_i = (w_i^{(A)} P_i^{(A)} + w_i^{(B)} P_i^{(B)} + w_i^{(C)} P_i^{(C)}) / (w_i^{(A)} + w_i^{(B)} + w_i^{(C)})}$

Multidimensional reconstruction - weighted least-square method

conservation:
$$\int_{\Omega_i} P_i(\mathbf{x}) d\mathbf{x} = |\Omega_i| u_i$$

accuracy: $\forall j : \int_{\Omega_j} P_i(\mathbf{x}) d\mathbf{x} = |\Omega_j| u_j \Rightarrow \text{overdetermined!}$

Linear least-square method: (unstable for non-smooth data): $\min \sum_{j} \left(\int_{\Omega_{j}} P_{i}(\mathbf{x}) d\mathbf{x} - |\Omega_{j}| u_{j} \right)^{2} \text{ with respect to } \int_{\Omega_{i}} P_{i}(\mathbf{x}) d\mathbf{x} = |\Omega_{i}| u_{i}.$

Weighted least-square method:

 $\min \sum_{j} w_{ij}^2 \left(\int_{\Omega_j} P_i(\mathbf{x}) d\mathbf{x} - |\Omega_j| \mathbf{u}_j \right)^2 \text{ with respect to } \int_{\Omega_i} P_i(\mathbf{x}) d\mathbf{x} = |\Omega_i| \mathbf{u}_i, \text{ with data-dependent weight } w_{ij} = \frac{1}{(\mathbf{u}_i - \mathbf{u}_j)^2 / ||\mathbf{x}_i - \mathbf{x}_j||^2 + \varepsilon}.$

Example: WLSQR method for scalar case

Linear problem: $u_t + u_x + u_y = 0$, $u_0(x, y) = \sin(2\pi x)\cos(2\pi y)$.

	H	++	++	+	\rightarrow	\bot	11	+	H	t	H	-	
	+++	++	++	+	H	+	++	+	H	+	-	-	-
	+++	11	11	+	11	+	11	+	\rightarrow	+			ŀ
0.8		TI	71	1	\Box	1		1	11	T	\square	_	
	+++	+	++	+	\mapsto		++	\	++		H	-(
		++	++	-+-	1	+	\rightarrow	+	++	+	+1		-
u.e			17			1	T	1	H	1		4	1
		++	-++	Ŧ	++	1	+	+	H	4	++		ŀ
	+++	++	+	11	++	+	+	1	t +	+	H	-	ŀ
0.4		IT		T	T	L		1	4	1			
	\rightarrow	+	++	++	+	++		+	- 4	_	H		-
	+++	++	+	++	H	+	+	\leftarrow	\rightarrow	+	H	-	-
0.2	H		T	1	11	-	T	T	17	1			-
	H+	++	44	\mapsto	++	+-	H	++		++	\vdash	-	-
	\rightarrow	(+)	+	-	++	+	\rightarrow	+	H	+	+	-	ŀ
۰,		0.2			1.4		0.6	-		0.8		-	

	first or	der	second	order	third order		
1/N	$ e _1$	order	$ e _1$	e ₁ order		order	
0.1	0.339084	-	0.141348	-	0.134682	-	
0.05	0.253544	0.42	0.035086	2.01	0.021605	2.64	
0.025	0.157564	0.68	0.007567	2.21	0.002843	2.93	
0.0125	0.088477	0.83	0.001584	2.25	0.000377	2.92	

Non-linear problem: $u_t + uu_x + uu_y = 0$, $u_0(x, y) = \sin(2\pi x)\cos(2\pi y)$.

	first or	der	second	order	third or	rder				
1/N	$ e _1$	order	$ e _1$	order	$ e _1$	order				
	Smooth data ($t = 0.1$)									
0.1	0.054867	-	0.017641	-	0.012703	-				
0.05	0.040623	0.43	0.008839	1.00	0.002686	2.24				
0.025	0.024009	0.76	0.001963	2.41	0.000648	2.05				
0.0125	0.013414	0.84	0.000379	2.37	0.000116	2.48				
0.00625	0.007095	0.92	0.000081	2.23	0.000017	2.77				
	Non-smooth data ($t = 0.25$)									
0.1	0.112414	-	0.049627	-	0.047704	-				
0.05	0.069466	0.69	0.018373	1.43	0.018493	1.36				
0.025	0.039077	0.83	0.011098	0.73	0.009987	0.89				
0.0125	0.021665	0.85	0.005554	1.00	0.004837	1.05				

Hyperbolic systems

$$W_t + F(W)_x = W_t + A(W)W_x = 0,$$

The system is called hyperbolic iff A(W) real eigenvalues and full set of eigenvectors. Then: $A(W) = R(W)\Lambda(W)R^{-1}(W)$.

$$W_t + A(W)W_x = 0 \implies R^{-1}(W)W_t + \Lambda(W)R^{-1}W_x = 0,$$

Characteristic variables: $\delta V = R^{-1}(W)\delta W \Rightarrow V_t + \Lambda(W)V_x = 0.$

TVD schemes via flux limiting approach:

- scalar scheme for *V*, projection back to *W*,
- numerical flux: $\mathsf{F}_{i+1/2}^{TVD} = \mathsf{F}_{i+1/2}^{high} R\Psi(\Lambda)R^{-1}(\mathsf{W}_{i+1} Wi).$
- simplified method: $R\Psi(\Lambda)R^{-1} \approx \tilde{\Psi}I$.

Numerical flux for systems of hyperbolic equations

Exact Riemann solver

- solve exactly Riemann problems at the interfaces,
- usually to expensive, not possible for general hyperbolic system,

Upwinding (Roe)

• $F_{i+1/2} = \frac{1}{2} \left(F(W_i) + F(W_{i+1}) \right) - \frac{1}{2} |A_{i+1/2}| (W_{i+1} - W_i).$

Flux splitting (VanLeer, AUSM, ...)

- $F(W) = F^+(W) + F^-(W)$ where $\sigma(\frac{\partial F^+}{\partial W}) \ge 0$ and $\sigma(\frac{\partial F^-}{\partial W}) \le 0$.
- numerical flux $F_{i+1/2} = F^+(W_i) + F^-(W_{i+1})$.

Acceleration of convergence

- explicit methods \Rightarrow stability condition $\Delta t \leq C\Delta x$ or even $\Delta t \leq C'\Delta x^2$ for convection-diffusion problems,
- convergence can be accelerated using multigrid, residual smoothing or implicit methods.

Implicit methods

- backward Euler method: $u^{n+1} = u^n \Delta t R(u^{n+1})$,
- linearized version: $\mathbf{u}^{n+1} = \mathbf{u}^n \Delta t \left(R(\mathbf{u}^n) + \frac{\partial R(\mathbf{u}^n)}{\partial \mathbf{u}} (\mathbf{u}^{n+1} \mathbf{u}^n) \right) \Rightarrow$ $\left(\frac{I}{\Delta t} + \frac{\partial R(\mathbf{u}^n)}{\partial \mathbf{u}} \right) (\mathbf{u}^{n+1} - \mathbf{u}^n) = -R(\mathbf{u}^n).$
- semi-implicit version: $\left(\frac{I}{\Delta t} + \frac{\partial R^{(1)}(u^n)}{\partial u}\right)(u^{n+1} u^n) = -R^{(2)}(u^n).$

Inviscid flow through a channel

Jiří Fürst

Inviscid flow through a turbine cascade

- inlet Mach number $M_1 = 0.32$, inlet angle $\alpha_1 = 19.3^o$,
- outlet Mach number $M_2 = 1.18$.

Inviscid flow through 3D channels and cascades

Convection diffusion problems

- Model equation: $u_t + f(u)_x + g(u)_y = \mu(u_{xx} + u_{yy})$.
- Semi-implicit FVM: $\frac{d\mathbf{u}_i(t)}{dt} + \frac{1}{|\Omega_i|} \sum_j |\Gamma_{ij}| \mathbf{f}(\mathbf{u}_i, \mathbf{u}_j, \mathbf{n}_{ij}) = \mu \sum_j |\Gamma_{ij}| \nabla \mathbf{u}_{ij} \cdot \mathbf{n}_{ij}.$

• monotonicity condition for case of upwind scheme for linear eq.:

$$\Delta t \leq \frac{|\Omega_i|}{\sum_j |\Gamma_{ij}| \left[(\mathbf{a} \cdot \mathbf{n}_{ij})^+ + \frac{\mu}{(\mathbf{x}_j - \mathbf{x}_i) \cdot \mathbf{n}_{ij}} \right]}$$

Laminar flow around NACA-0012 profile

- $M_{\infty} = 0.85$, $\alpha_1 = 0^{\circ}$, Re = 500
- structured mesh with 168×40 cells, $\Delta y_1 \approx 0.005$.

Jiří Fürst

Laminar flow around NACA-0012 profile

Viscous flow through a 3D channel