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1. Introduction   
 Computational fluid dynamics (CFD) - new scientific discipline 

- fast progress of computational technique (hardware and software) 
- demand for adequate simulation of flows in technical applications   

(mechanical and civil engineering, environment)  
 Numerical simulation of flow 

- allows solution of many alternatives of projected machine and/r device  
- substitutes in some measure expensive experiments, necessary for design of machines and 

devices up to now 
- can not replace the need of experimental investigation of turbulent flows in any case 

(study of structure of turbulent flows, testing and verification of numerical models) 
 Computational programs  

 commercial software (FLUENT, CFX, Star-CD etc.)  
- lead users to application without foregoing study of physical and mathematical models  

- general feature of these programs is robustness, i.e. ability to give results for any prescribed 
boundary conditions, obtained results can not always correspond to reality     

 in-house programs developed at research institutions  
- are usually fitted to solved problem, allow the solution of special tasks   
    (for example laminar/turbulent transition, transonic flow with shock waves) 
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2. Physical and mathematical model of flow 
 

 Physical and mathematical model of fluid flow – basis of each computational program  
 Mathematical model   
- numerical method, i.e. way of transformation of partial differential equations to system  

of algebraic equations - discretization method  (finite difference method, finite volume method 
and/or finite element methods) 

- numerical schemes for discretization of individual terms in equations  
- choice and generation of grid 
- assignment of boundary conditions 

 
 Physical model  
- model of fluid (viscous or inviscid, newtonian or non-newtonian, laminar or turbulent, 

compressible or incompressible), 
- so called constitutive relations giving dependence between state variables (equation of state), 
- dependence of thermodynamic coefficients on state variables  
    (for example Sutherland´s relation for dependence of viscosity on temperature) 
- turbulence model and model of laminar/turbulent transition respectively 
 

 simplest and most used model  - laminar or turbulent flow of incompressible fluid  
  without heat transfer 
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3. Fundamental equations of flow 
basic system of movement equations is formed by so called conservation laws – conservation  
of mass, momentum, and energy  
• conservation of mass (equation of continuity) 

( )∂ρ ∂
j

j
U 0

t x
+ ρ =

∂ ∂
 

• conservation of momentum (Navier-Stokes equations) 
∂τ

( ) ( ) ij
i i j i

j i j

PU UU f
t x x x

∂ ∂ ∂
ρ + ρ = − + +

∂ ∂ ∂ ∂
ρ  

total acceleration pressure friction  volume   
(local + convective) force   force     force 

 
xi - Cartesian coordinates (i=1,2,3)   ρ - fluid density 
t - time          µ - dynamic viscosity 
Ui - velocity component in direction xi   µb - so called bulk viscosity  µb = 2/3 µ 
P - static pressure              

ji
ij ij b

j i k

UU U
x x

 ∂ k

x
∂ ∂

τ = µ + + δ µ  ∂ ∂ ∂ 
 - tensor of viscous stresses 

fi - volume acceleration (for example gravitational acceleration) 
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• conservation of energy 
∂ ∂( ) ( ) ji

j j ij
j j j j

QUP Ph U h U
t x t x x x

∂∂∂ ∂
ρ + ρ = + + τ −

∂ ∂ ∂ ∂ ∂ ∂
 

total change      work       energy     heat   
of enthalpy h      of pressure  dissipation  transfer 

                                     forces 
T∂

j
j

Q
x

= −λ
∂

 - vector of heat flux (Fourier law)  

h=cpT - enthalpy    cp - specific heat at constant pressure 
T  - temperature  λ - thermal conductivity 

• constitutive relations 

equation of state (for perfect gas)  P RT=
ρ

    R - perfect-gas constant 

relations for thermodynamic parameters (fluid properties)  ( )p, ,c f P,Tµ λ =  
 
• simplest model   - flow of incompressible fluid without heat transfer (considered further) 

 system of governing equations  - continuity equation and Navier-Stokes equations  
  with constant density and viscosity 

 laminar flow  - closed system of equations for unknown velocity components and pressure 
 turbulent flow - Navier-Stokes equations are valid for instantaneous values 
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4. Closure of equations of motion

a) separation of flow field into the free stream and boundary layer
o Prandtl(1904)- classicalapproachfor fluidswith verysrnallviscosity(Re=UeL/v» 1)
- free stream - Euler equations (N-S equations with neglected viscous terms)
- boundary layer - Prandtl equations cornpleted by a turbulence model

(sirnplified N-S equations provided that 8« L a aI iJx« aI ay)

free stream transition separation

stagnation
point

laminar
boundary layer

turbulent
boundary layer

wake

b) solution of fu II Navier-Stokes equations
- validity of Navier-Stokes equations for turbulent flow - flow is variable in time and space

(non-deterrninistic variability of flow parameters)
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Solution of the full Navier-Stokes equations 
i) direct numerical simulation  (DNS – Direct Numerical Simulation)  

•  solution of unsteady Navier-Stokes equations using supercomputers 
- not very large Reynolds numbers, simple geometry (flow around flat plate, channel flow) 
- enormous demands on computer memory and speed (can be used for more complex boundary 

conditions) 
•  importance for the analysis of the structure of turbulent flow and for testing of turbulence models   

- numerical simulation allows determination of arbitrary parameters of turbulent flow 
 

ii) solution of averaged Navier-Stokes equations – Reynolds equations  
•  statistical approach – instantaneous value as the sum of a mean and a fluctuating part 

- solution of steady Reynolds equations containing the tensor of Reynolds turbulent stresses 
•   closure of the system equations, i.e. suitable expression of Reynolds stresses is made using  
     a turbulence model (statistical models) 

 
iii) simulation of the motion of large eddies (LES – Large Eddy Simulations) 

•   combination of the both foregoing methods 
- solution of unsteady Navier-Stokes equations for large eddies and solution of averaged 
 Navier-Stokes equations closed by turbulence model pro smallest eddies (so called „subgrid“ model) 
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Schematic illustration of turbulent motion

LES DNS
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5. Statistical turbulence models

CJsplitting into mean and fluctuating motion - Reynolds(1895)
- - -. 1'tfU. = Ui + u. Ui = O Ui = hm - U.dtI I I

't~oo 't o

CJaveraged equations of motion

continuity equation

aUi = O
ax.

I

Reynolds equations
- - -

(

-

J

aUj - aUi 1 ap a aUi -
- + Uj - = g. - - - + - v - - u.u.at ax. I P ax. ax. ax. I J

J I J J

viscous turbulent
stress stress

D equations of turbulent motion

equation for the velocity fluctuation Uj

aUj U aUj aUi a(UjUk ) aUiuk 1 ap a2Ui O-+ k-+Uk-+ - +---y-=
at aXk aXk aXk aXk P 8xj ax~
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equations for components of turbulent stress 

( )ii j i j j i j
k k j k i i j k ik j jk i

k k k k k

uu uu U uuU pU u u u u uu u u u
t x x x x x

 ∂ ∂ ∂ ∂∂ ∂
+ = − − − + δ + δ − ν − 

∂ ∂ ∂ ∂ ∂ ρ ∂  
 

     (i)     (ii)            (iii)a      (iii)b    

        j ji i

k k j i

u uu up2
x x x x

   ∂ ∂∂ ∂
− ν + +     ∂ ∂ ρ ∂ ∂  

 

  (iv)   (v) 
where are 
(i)    advection   - transport of turbulent stress by mean flow 
(ii)    production  - origin of turbulent stress by interaction with mean flow 
(iii)a    turbulent diffusion  - transport of turbulent stress due to velocity and pressure fluctuations 
(iii)b    viscous diffusion  - transport of turbulent stress due to viscosity 
(iv)    dissipation  - transport of energy between turbulent and molecular motion 
(v)    redistribution  - transport of energy between individual components of turbulent motion 
 
 
approximation of marked terms is necessary for the closure of the system of governing equations  
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Ways of the closure of averaged Navier-Stokes equations 
 

approximation of Reynolds stress 
 

 
hypothesis on turbulent viscosity    equations for Reynolds stress 

U∂
tuv

y
− = ν

∂
 

a) νt = f(mean motion)      a) transport equations for iuuj  

2
t m

UL
y

∂
ν =

∂
        i j

ij ij ij ij

Duu
P D

Dt
= + + Π − ε  

  - mixing length Lm 

b) νt = f(turbulent motion)     b) algebraic equations for  iuuj  

t C V Lµ t tν =         i j ij k
ij ij ij ij

uu P P2a fce , S ,
k 3

 
,= − δ = Ω ε ε 

 

 
 

characteristic scales   - velocity scale tV k=  

          - length scale  Lt  
3 / 2

t

k
L

ε =  
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Turbulence models with turbulent viscosity

o Boussinesq(1897)- analogywith molecularmomentumtransfer
- au

-uv = v -
tay

o Harlow, Nakayama (1967)

(

- -

)

- aUi au. 2
-UjUj = Vt - + ~ - -8ijk - complexturbulentshearflowax. ax. 3

j I

a) determination of turbulent viscosity by means of mean motion - algebraic models
o Prandtl (1925)- theoryof mixinglength

v t = L~ au algebraic relation Lm/8 = f (Y/8) .
ay 100 r

i

O Cebeci, Smith (1968) - boundarylayer I

O Baldwin, Lomax (1978) - shearflow

. inner region

Lm=FDKY=[1-eXp(-Y+/A)JKY
O van Driest (1956) Fo - dumping function

. outer region

[
6

J

-1

Vt = aFk81Ue= a 1+ 5.5(Y /8) 81Ue

o Klebanoff (1954) Fk - intermittencefunction

- boundary layer
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b) determination of turbulent viscosity by means of turbulent motion 
C V Lν = Prandtl (1945)   turbulent viscosity   t tµ µ  

•  velocity scale  tV k=  

transport equation for turbulent energy  i
1k uu
2

= i     

t
k k

k k k k

k k kU P
t x x x

  ν∂ ∂ ∂ ∂
+ = + ν + − ε  ∂ ∂ ∂ σ ∂  

   

 
        advection production viscous   turbulent dissipation   

        diffusion  diffusion 
 

i i j i
k i t ijj

j j i j

U U U 2 UP uu k
x x x 3

  

x
∂ ∂ ∂ ∂

= − = ν + − δ    
∂ ∂ ∂ ∂   

  - production of turbulent energy 

•  length scale  
 algebraic relation  (one-equation model) 

usually used near the wall only (two-layer model) 
 Chen, Patel (1988) 

 ( )yL C y 1 exp Re Aµ µ µ
 = − −    ( )L yL C y 1 exp Re Aε ε

 = − −   

 
3 / 2k
Lε

ε =        y
k yRe =
ν

    A 70 A 5µ ε= =  
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 transport equations - so called two-equation models 
- length scale is usually determined by the dissipation rate 
- frequently used k-ε model 

 Rotta (1951) - assumption on local symmetry of the smallest eddies    
2

3 / 2
i

j t

u k
x L

 ∂
ε = ν =  ∂ 

 

turbulent viscosity  
2

t
kCµν =
ε

 

 Launder, Spalding (1974) 
transport equation for the dissipation rate ε 

2
t

k 1 k 2
k k k

U C P C
t x k x x kε ε

ε

  ν∂ε ∂ε ε ∂ ∂ε ε
+ = + ν + −  ∂ ∂ ∂ σ ∂  

 

 

model constants  µ ε ε ε= = = σ = σ =1 2 kC 0.09 C 1.45 C 1.9 1.0 1.3

- basic version of the model for large turbulent Reynolds numbers  t
tRe 1ν

=
ν
�  

- model is valid in the certain distance from the wall only ( for y 0→   is  ) tRe 0→
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Application of turbulence models near walls (for small values Ret)

a) Application of universal features of the boundary layer - 50 called wall functions

- boundary conditionson the wall(y = O)replaced by boundary conditions in the point Yc

Mean velocity profile in the boundary layer 30 < y~ = u-rYc< 200v
30

law of the wall law of the wake universallaw of the wall25
u

5

~=!lnuTy +C
u K V

T

~ =f( U~Y J
UT

20

10 ~ = UTY
U VT

logarithmic region

friction velocity

Ut=t;

15

o
10° 101 102 UTY

V
103

15



 
Universal features of turbulent flow in the logarithmic region 
•  analysis of the boundary layer on the flat plate   experiment – Klebanoff (1954) 

      direct numerical simulation – Spalart (1988)  
 

u yU 1 ln C
u

τ

τ

= +
κ ν

  
uU

y y
τ∂

=
∂ κ

  κ=0.41   C=5 ÷ 5.2 

•  turbulent shear stress 

2
t

Uuv u
y τ

∂
− = ν ≈

∂
     t u yτν = κ  

•  assumption of the balance of turbulent energy (production = dissipation rate) 

k
UP uv
y

∂
= − ≈ ε

∂
    

3u
y
τε =

κ
 

• turbulent viscosity 
2

t
kCµν =
ε

     
2uk

C
τ

µ

=  

• ratio of turbulent stress and turbulent energy 
−

≈
uv 0.3
k

     µ =C 0.09  

 16



 
b)  Modification of the model for low turbulent Reynolds numbers 

 Launder, Sharma (1974), Patel, Rodi, Scheuerer (1985) 

- original model constants depend on the turbulent Reynolds number Ret 

so called dumping functions – express the effect of the vicinity of the wall on turbulent 
fluctuations 

- non-isotropic character of dissipation near the wall is supposed  Dε = ε +%  

 
isotropic part  correction 

•  turbulent viscosity            of dissipation rate 

       
2

t
kC fµ µν =
ε%

     

•  transport equation for turbulent energy 

t
k k

k k k k

k k kU P
t x x x

  ν∂ ∂ ∂ ∂
+ = + ν + − ε  ∂ ∂ ∂ σ ∂  

 

•  transport equation for dissipation rate  

  
2

t
k 1 1 k 2 2

k k k

U C f P C f E
t x k x x kε ε

ε

  ν∂ε ∂ε ε ∂ ∂ε ε
+ = + ν + − +  ∂ ∂ ∂ σ ∂  

% % % % %
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Modification of the model for low turbulent Reynolds numbers (cont.) 
•  dumping functions – express the effect of the wall on turbulent velocity fluctuations 

( )µ

 
= − 

+  
2

t

3.4f exp
1 Re / 50

      f1=1  ( )= − − 2
2 tf 1 0.3exp Re  

 
•  correction functions 

  
2

kD 2
y

 ∂
= ν ∂ 

    

22

t 2
UE 2

y
 ∂

= νν  ∂ 
 

 
    increases dissipation rate  increases production of dissipation rate 
    near the wall      (decreases the maximum of turbulent energy) 
 
•  model constants Cµ=0.09 Cε1=1.44 Cε2=1.92        σk=1      σε=1.3  
 
•  boundary conditions on the wall (y=0)  iU k 0= = ε =%  
 

- with growing distance from the wall    →     (basic version of k-ε model) 1 2f ,f ,f 1 D,E 0µ →

- application of the model needs at least 80-100 grid points across the boundary layer 
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c)  Two-layer turbulence models – combination of two models 
i) combination of k-L/k-ε turbulence models 

 Chen, Patel (1988) 
•  one-equation k-L model near the wall 

turbulent viscosity  t C k Lµ µν =  

transport equation for turbulent energy        dissipation rate 

t
k k

k k k k

k k kU P
t x x x

  ν∂ ∂ ∂ ∂
+ = + ν + − ε ∂ ∂ ∂ σ ∂  

      
3 / 2k
Lε

ε =  

algebraic relation for length scales 

 ( )L yL C y 1 exp Re 70µ
 = − −    ε =

+
L

y

C yL
1 5.3 Re

 y
k yRe =
ν

 Norris, Reynolds (1975)  

                     =LC 2.5  

•  standard k-ε model far from the wall  
•  linking of both models 

 Rodi (1991) t 30ν
=

ν
  or ( )µ = − − =yF 1 exp Re A 0.95µ   i.e. Rey = 210  

- combination of two models gives good results for flows with separation as well 

- model needs less grid points across the boundary layer (at least 40 points) 
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ii) combination k-ω/k-ε turbulence models 
•  application of dissipation rate for the determination of the length scale near the wall is not 
    advantageous 

 Wilcox (1988)  - so called specific dissipation rate kω = ε  
•  k-ω model  
•  turbulent viscosity 

k
tν =

ω
 

•  transport equation for turbulent energy 

( )*

j k k t
j j j

k k kU P k
t x x x

∂ ∂ ∂ ∂
+ = − β ω + ν + σ ν 

∂ ∂ ∂ ∂  
 

•  transport equation for specific dissipation rate 

( ) [ ]2
j k t D

j j j

U P C
t x k x xω ω

 ∂ω ∂ω ω ∂ ∂ω
+ = α − βω + ν + σ ν + 

∂ ∂ ∂ ∂  
 

original k-ω model  - gives acceptable results near walls even without dumping functions 
- is sensitive to prescription of boundary conditions for ω in free stream  

• modification of k-ω model 
 Kok (2000) – term CD expresses the cross diffusion 

D d
i i

1 kC max ,0
x x

 ∂ ∂ω
= σ  ω ∂ ∂ 
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ii) combination of k-ω/k-ε turbulence models (cont.) 
 Menter (1994) - two-layer k-ω/k-ε model (in the form of k-ω model)     

– combination of advantages of both models 
•  BSL (baseline) model  

turbulent viscosity  t
k

ν =
ω

 

- k-ω model near the wall 
- standard k-ε model in free stream (transformed because of the simpler numerical realisation 

into the form of k-ω model using the blending function F1) 
•  SST (shear stress transport) model 
turbulent viscosity  - includes the transport of turbulent shear stresses 

a k     1
t

1 2
Umax a ; F
y

ν =
 ∂

ω ∂ 

  

 Bradshaw (1967)  - constant a1 = 0.3  (in the boundary layer 1a uv= − / k )   

•  model constants  ( )1 1 1F 1 F 2Φ = Φ + − Φ           
Φ    - constant of the new model  
Φ1  - constant of the original k-ω model 
Φ2  - constant of the transformed k-ε model 

•  blending functions F1 and F2   
F1 = F2 = 1 near the wall,   F1 = F2 = 0 in free stream  
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Turbulence models with equations for Reynolds stresses 
a) models with  transport equations for Reynolds stresses 
• transport equation for Reynolds stresses 

i j
ij ij ij ij

Duu
P D

Dt
= + + Φ − ε  

 Launder, Reece and Rodi (1975), Hanjalic, Launder (1976) 
• approximation of unknown terms  
turbulent diffusion  - so called gradient approximation (analogy with viscous diffusion) 

i j
i j k lk

l

uukuu u konst. u u
x

∂
= −

ε ∂
 

dissipation – conversion of turbulent energy in heat (assumption of local isotropy of smallest eddies) 
 Rotta (1951) 

ji
ij ij

k k

uu 22
x x 3

∂∂
ε = ν = δ ε

∂ ∂
  where is  

2 3 / 2
i

k

u k
x Lε

 ∂
ε = ν = ∂ 

 

 
redistrition – exchange of energy between individual components of velocity fluctuations 

ji
1 i ij 2 ij ijj

j i

uup 2 2C uu k C P P
x x k 3 3

 ∂∂ ε    + = − − δ − − δ      ρ ∂ ∂     
k  

      
tendency to isotropy  tendency to isotropy 
of turbulent stresses  of production of turbulent stresses 
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a) models with transport equations for Reynolds stresses (cont.) 
Launder, Reece a Rodi (1975) 
 

i ii jj j
j i s k ij 1 i ij 2 ij ij kk l jk

k k k l

Duu uuU U k 2 2 2u u uu C u u C uu k C P P
Dt x x x x 3 k 3 3

 ∂ ∂ ∂ ∂ ε    = − + + − δ ε − − δ − − δ       ∂ ∂ ∂ ε ∂       
 

 
equation for turbulent energy k  - velocity scale 

k
k s kl l

l k l

Dk U k ku u C u u
Dt x x x

 ∂ ∂ ∂
= − + − ε ∂ ∂ ε ∂ 

 

 

equation for dissipation rate ε   - length scale 
3 / 2k
Lε

ε =  

2
k

1 k k 2l l
l k l

D U kC u u C u u C
Dt k x x x kε ε ε

 ε ε ∂ ∂ ∂ε ε
= − + − ∂ ∂ ε ∂ 

 

 
model constants 
C1 = 1.5 homogeneous turbulence  ε =1C 1.45   logarithmic law of the wall 

0C2 = 0.6 homogeneous turbulence  ε =2C 2.   decay of turbulence behind a grid 
Cs = 0.1 numerical optimization   ε =C 0.13   numerical optimization 
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b)  models with algebraic equations for Reynolds stresses 
• assumption of small changes of the ratio of Reynolds stresses and turbulent energy 

uui j
ij ij

2a konst.
k 3

= − δ ≈     aij - parameter of asymmetry of turbulent stresses 

from transport equations for turbulent stresses i juu  and for turbulent energy k  

i ij j
ij k

Duu uu DkD D
Dt k Dt

 − = − 
 

    ( )i j
k ij ij ij

uu
P P

k
− ε = − ε + Φ  

(advection – diffusion)ij ≈  (advection – diffusion)k     
model depends on the approximation of redistribution Φij 

 implicit model  - Rodi (1976)   
2ε

ij 1 i ij 2 ij ij kj
2C uu k C P P

k 3 3
   Φ = − − δ − − δ  
  



 Launder, Reece a Rodi (1975) 

ij k
iji j 2

ij
k1

1

P P2
uu 1 C2 3

P1k 3 C 1 1
C

− δ− ε ε= δ +
 + − ε 

  - difficult numerical solution 

i j
ij k j k i

k k

UUP u u u u
x x

∂∂
= − −

∂ ∂
  -  production of turbulent stresses   

i
k i j

j

UP uu
x

∂
= −

∂
     - production of turbulent energy 
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b)  models with algebraic equations for Reynolds stresses (cont.) 

 explicit model   - Gatski, Speziale (1993) 
 

( )ij 1 ij 2 ij 3 ik jk jk ik ij kl kl 4 ik jk jk ik
2C a C k 2S C k a S a S a S C k a a
3

 Φ = − ε + + + − δ + Ω + Ω 
 

 

 
i j

ij
j i

1 U US
2 x x

 ∂ ∂
= + ∂ ∂ 

  - strain-rate tensor    i j
ij

j i

1 U U
2 x x

 ∂ ∂
Ω = − ∂ ∂ 

  - rotation tensor 

( )ij 1 ij 2 ik kj jk ki 3 ik kj ij mn nm
1a G S G S S G S S S S
3

 = + Ω + Ω + − δ 
 

 

with parameters k
1 2 3 ij ij ij ij

PkG ,G ,G f , ,S S , = Ω Ω ε ε 
      

• determination  kP
ε

  – either ≈
ε
kP const. (equilibrium state) or by means of turbulent viscosity 

 
• both models are completed by transport equations for turbulent energy and for dissipation rate 
 

k
k s kl l

l k l

Dk U k ku u C u u
Dt x x x

 ∂ ∂ ∂
= − + − ε ∂ ∂ ε ∂ 

  
2

k
1 k k 2l l

l k l

D U kC u u C u u C
Dt k x x x kε ε ε

 ε ε ∂ ∂ ∂ε ε
= − + − ∂ ∂ ε ∂ 
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6. Examples of solution of turbulent shear flows 

Solution of averaged Navier-Stokes equations using CFX software 
a) Two-dimensional wall jet on a circular cylinder (Příhoda, Sedlář 2002) 

Three-dimensional rectangular configuration (slot height h/R=0.04, slot aspect ratio b/h=50) 

• 

• 

• 

• 

Turbulence models 
- standard k-ε model 
- Menter´s two-layer BSL k-ω/k-ε model 
- Menter´s SST model modelling transport of turbulent shear stress 

Computation domain 
- divided into several zones 
- structured grids with local refinement (near walls and zone boundaries), 134325 nodes 

Investigation of the effect of the Reynolds number (Reh=Uvh/ν from 3500 to 21000) 
Coanda effect – the difference between the wall pressure and the ambient pressure  

     due to streamline curvature 
Two flow regimes 
subcritical  – distribution of wall jet parameters dependent on Reh 
supercritical  – only very slight dependence on Reh 

   position of flow separation approaches the value αsep
 ≈ 250 deg 
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Solution of averaged Navier-Stokes equations using CFX software (cont.) 
b) Turbulent flow in curved channel of the squared cross-section (Příhoda, Sedlář 2003) 

Channel of squared cross-section a x a = 0.2 x 0.2 m • 

• 
• 

•

• 

• 

• 

- inlet part (L1=15a) 
- bend (curvature angle 90 deg, curvature radius R/a=1) 
- outlet part (L2=23a) 

Simulations for water flow in the range Um=0.5 up to 2 m/s (Re= 97000 up to 388000) 
Turbulence models 

- standard k-ε model 
- Menter´s k-ω/k-ε SST model 
- RSM model proposed by Launder, Reece and Rodi (1975) 
 Structured grid refined in the bend and near all walls, especially near the inner wall where 

separation occurs 
Effect of the Reynolds number on the development of secondary flows in curved channel and on 
the position and extent of flow separation 
Determination of energy losses and their main causes (streamline curvature, secondary flow, 
separation) 
Comparison with experiments in a water channel using PIV method and with data for energy 
losses – best results obtained for two-layer SST model 
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Important years for Computational Fluid Dynamics 
 
Navier (1827), Stokes (1845)   - derivation of Navier-Stokes equations 
Boussinesq (1877)      - hypothesis of turbulent viscosity 
Reynolds (1895)      - averaging of Navier-Stokes equations 
Prandtl (1904)       - boundary layer theory 
Prandtl (1925)       - mixing length theory (algebraic model) 
Kolmogorov (1942)      - two-equation turbulence model  
Chou (1945), Rotta (1951)    - foundations of Reynolds Stress Models 
Smagorinski (1963), Deardorff (1970) - foundations of Large Eddy Simulation models 
Launder, Spalding (1972)    - modern two-equation k-ε turbulence model 
Pope (1975)       - foundations of algebraic RSM model 
Launder, Reece, Rodi (1976)   - modern RSM model 
Rodi (1976)        - algebraic RSM model (implicit) 
Moin, Kim (1982)      - application of LES (2D channel) 
Spalart (1988)       - application of DNS (2D flat plate) 
Speziale, Sarkar, Gatski (1991)   - algebraic RSM model (explicit) 
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• 

• 

• 

• 

• 

7. Conclusion 

The aim of the lecture was to demonstrate the fundamentals of current methods for modelling of 
turbulent flows with the emphasis on the physical assumptions used in models and on the 
possibilities of their practical application.  

The numerical simulation of flow allows the solution of complicated cases of turbulent flow 
important for technical applications not only in the field of construction of machines and devices 
(especially in turbomachinery and aeronautics) but in environment and biomechanics as well.  

Existing models are only an approximation of turbulent flow (much or less appropriate) – their 
validity is restricted to a certain category of flow fulfilling used assumptions and corresponding to 
used model constants.  

The most general turbulence model should not be always the most suitable one – more 
complicated models desirable require the assignment of more boundary conditions (often 
unknown).  

The used mathematical and physical models participate in the success of numerical simulation of 
turbulent flow by the same part – collaboration of specialists of both branches is a necessary 
condition for success (but not sufficient).  


