next up previous contents
Next: BEAM6P8 Up: Plasticity Previous: OUTPUT

  
Thermo-plasticity

Problem description: Consider the rod shown subjected to uniaxial stress and thermal loadings. Compute elastic-plastic response using isotropic nonlinear hardening with temperature dependent yield stress.
\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{plastp8.ps}
\end{figure}

Mesh: Use the following element types:
ITE=6--see appendix A.1, four quadrilaterals
ITE=56--see appendix B.1, four hexahedra.
Material properties: $\alpha=10^{-5}$, $E=2\times 10^5$ MPa, $\nu=0.3$.
Prandtl-Reuss-von Mises model with isotropic hardening.
\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=8cm\epsffile{plastp81.ps}
\end{figure}


Initial yield stress $\sigma_Y^0$ varies linearly with temperature.
\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=8cm\epsffile{plastp82.ps}
\end{figure}

Support: Clamped at x=0. Statically determinate.
Loading: $\sigma_{xx}=300$ MPa, $T_0=0^\circ\mbox{C}$, $T=200^\circ\mbox{C}$.
Solution: The yielding function satisfying the data given in figures can be expressed in a polynomial form as

\begin{displaymath}\sigma_Y(\epsilon_p,T)=a_1+a_2\epsilon_p+a_3T+a_4\epsilon_p^2
+a_6\epsilon_pT+a_9\epsilon_p^2T
\end{displaymath}

where

\begin{displaymath}\begin{array}{rclrcl}
a_1 &=& 3.5\times10^8 \,\mbox{Pa}~~~~~~...
...a/K}~~~~~~& a_9 &=& -5.0\times10^{11}
\,\mbox{Pa/K}
\end{array}\end{displaymath}

Loading is prescribed as a series:

1.
Initially $\sigma_{xx}=0$, T=0.
2.
Increase stress to $\sigma_{xx}=300$ at constant temperature T=0. Material remains in an elastic state. Total strain $\epsilon=\epsilon^e=1.5\times10^{-3}$.
3.
Heating from T=0 to T=200 under constant stress $\sigma_{xx}=300$. The initial yield stress reduces to $\sigma_Y^0=250$. Then $\sigma_{xx}>\sigma_Y^0$ and material starts to yield until $\epsilon_p=0.134\times10^{-3}$ when the yield stress will harden to $\sigma_Y(\epsilon_p,T)=300$. Total strain $\epsilon=\epsilon^e+\epsilon^p+\epsilon^0=3.634\times10^{-3}$.
4.
Return to state 2. $\sigma_{xx}=300$, T=0. Total strain $\epsilon=\epsilon^e+\epsilon^p=1.634\times10^{-3}$.

Numerical computation gives $\epsilon_p=0.135\times10^{-3}$. A more precise result can be achieved by changing the default value NINT=10 to NINT=100 on IP line in the IL file.



 
next up previous contents
Next: BEAM6P8 Up: Plasticity Previous: OUTPUT