next up previous contents
Next: INPUT Up: Creep Previous: OUTPUT

  
Relaxation, BEAM6C2

Problem description: The rod shown is subjected to the initial temperature change $\Delta T$ after which the temperature has been kept constant. Compute the relaxation history of the thermal stress.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam6c2.ps}
\end{figure}

Mesh: Four quadrilaterals--see appendix A.1.
Material properties: $\alpha=10^{-5}$ 1/K, $E=2\times 10^5$ MPa, $\nu=0.3$.

Norton's law: 

$\dot\epsilon_c=\gamma(\sigma_e/\sigma_0)^n$


$\gamma=2\times 10^{-28}\,\mbox{1/h},~n=3,~\sigma_0=1\,\mbox{Pa}$
Support: Clamped at x=0, x=l. Statically indeterminate.

u=v=0 nodes:	 1 9
u=0 nodes: 	 2 10 11 23      
Loading: $T_0=650^\circ\mbox{C},~T=600^\circ\mbox{C},~
\Delta T=-50^\circ\mbox{C}$
Solution: Norton's law with the whole exponent number n=3 can be written in the polynomial form

\begin{displaymath}\dot\epsilon_c=a_1 +a_2\sigma_e+a_3\sigma_e^2+a_4\sigma_e^3
\end{displaymath}

where

\begin{displaymath}a_1=a_2=a_3=0~,~~~a_4=2\times 10^{-28}\,\mbox{1/h}
\end{displaymath}

which is directly inserted into the PMD input file.

Numerical results may be compared with the theoretical solution. The equation of relaxation for $\sigma>0$ reads

\begin{displaymath}\dot\epsilon=\dot\sigma/E+\gamma\sigma^n=0
\end{displaymath}

with the initial condition

\begin{displaymath}\sigma(0)=-E\alpha\Delta T
\end{displaymath}

Hence

\begin{displaymath}\sigma(t)=\left[(n-1)E\gamma t+(-E\alpha\Delta T)^{1-n}\right]
^{\frac{1}{1-n}}
\end{displaymath}

The results of computation (black points) and the theoretical curve (full line) are shown in the next figure.
\begin{figure}
\centering\hspace{0pt}\rotate{
\epsfclipon\epsfxsize=9cm\epsffile{bea6c2.ps}}
\end{figure}

Execute from prompt:
>rmd2 beam6c2.I1
>rpd2 beam6c2.I2
>srh2 beam6c2.I3
>fefs beam6c2.I4
>hpp2 beam6c2.IP
>hpls beam6c2.IL
>str2 beam6c2.I5


 
next up previous contents
Next: INPUT Up: Creep Previous: OUTPUT