next up previous contents
Next: Quadrilaterals, BEAM6T1 Up: Heat Transfer Previous: Heat Transfer

  
Steady-state analysis of a slab

Problem description: Consider the slab shown for a heat transfer analysis. The boundary conditions are characterized by the ambient temperatures T1, T2 and the surface coefficients $\alpha_1$, $\alpha_2$. Establish the steady-state solution for the surface coefficients being functions of the wall temperatures Tw1, Tw2.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=5cm\epsffile{slabt1.ps}
\end{figure}

Mesh: Use the following element types:
ITE=6--see appendix A.1, four quadrilaterals
ITE=4--see appendix A.2, eight triangles
ITE=56--see appendix B.1, four hexahedra.
ITE=61--see appendix B.2, four semi-loofs.
ITE=71--see appendix B.4, two hexahedra, two semi-loofs.
Material properties: $\lambda=20$ W/mK.
Boundary conditions: $T_1=-20^\circ$C, $T_2=25^\circ$C.

$\alpha_1=\alpha(T_{w1})$
$\alpha_2=\alpha(T_{w2})$

\begin{displaymath}\alpha(T)=
\left\{\begin{array}{ll}
30 \mbox{W/m$^2$ K} & \...
.../m$^2$ K} & \mbox{for}~T > 0^\circ\mbox{C}
\end{array}\right.
\end{displaymath}

Solution: Since the program does not support discontinuous distribution of the surface coefficients we must use some close but continuous approximation to the $\alpha$-function, for instance

\begin{displaymath}\alpha(T)=
\left\{\begin{array}{ll}
30 & \mbox{for}~T \le 0...
...T\in (0,0.1)\\
10 & \mbox{for}~T \ge 0.1
\end{array}\right.
\end{displaymath}

In the PMD tabular format we simply enter
T:    0 0.1
$\alpha$:    30 10
Furthemore, it is necessary for the nonlinear solver to start with an initial estimate of the temperature field, e.g. $T^{(0)}(x)\equiv 25=\mbox{\it constant\/}$.

It should be noted that the wall temperatures Tw1<0, Tw2>0, thus $\alpha_1=30$, $\alpha_2=10$. Once the surface coefficients become known we can easily compute the heat resistance

\begin{displaymath}\frac{1}{k}=\frac{1}{\alpha_1}+\frac{\mbox{{\it thickness}}}{\lambda}
+\frac{1}{\alpha_2}= 0.1833\,\mbox{[m$^2$ K/W]}
\end{displaymath}

and the heat flux

\begin{displaymath}q=k(T_1-T_2)=-245.45\,\mbox{[W/m$^2$ ]}
\end{displaymath}

Hence we obtain the exact solution

\begin{displaymath}T_{w1}=-11.81^\circ\mbox{C}~,~~~T_{w2}=0.45^\circ\mbox{C}
\end{displaymath}

verifying the FEM results.


 
next up previous contents
Next: Quadrilaterals, BEAM6T1 Up: Heat Transfer Previous: Heat Transfer