next up previous contents
Next: INPUT Up: Elastostatics Previous: OUTPUT

  
Plane stress, BEAM4S1

Problem description: The cantilever beam shown is subjected to uniformly distributed loading ly per unit length and the end force Fx, Fy. Calculate deflection and stresses for plane stress conditions.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam6s1.ps}
\end{figure}

Mesh: Eight triangles--see appendix A.2.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$.
Support: Clamped at x=0. Statically determinate.

u=v=0 node:	 1 
u=0 nodes: 	 2 11      
Loading: Given as

ly=-100 unit: N/m 
Fx=20000 Fy=-20 unit: N      
Solution: First, the end force is replaced with the equivalent surface traction as

\begin{displaymath}q_x=\frac{20000}{0.01\times 0.02}=100\times 10^6
\,\mbox{[Pa]}~,~~~
q_y=-0.1\times 10^6\,\mbox{[Pa]} ~,~~~
\end{displaymath}

Similarly, the distributed loading is replaced with

\begin{displaymath}q_n(\verb*\vert S2\vert)=\frac{l_y}{0.01}=-0.01\times 10^6\,\mbox{[Pa]}~,
\end{displaymath}

where the normal surface traction qn acts on the top areas $0.25\times0.01$m2 denoted as S2 of elements 2, 4, 6 and 8.
 
Execute from prompt:
>rmd2 beam4s1.I1
>rpd2 beam4s1.I2
>srh2 beam4s1.I3
>fefs beam4s1.I4
>str2 beam4s1.I5