next up previous contents
Next: INPUT Up: Steady-state response Previous: OUTPUT

  
Response spectrum method, BEAM53D4

Mesh: Four beam elements--see appendix B.3.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$, $\rho=7800$ kg/m3.
Damping: Modal damping parameters $\xi_k=0.1$ for $k=1,2,\ldots$.
Support: All the degrees of freedom fixed at x=0.



$u=v=w=\varphi_x=\varphi_y=\varphi_z=0$ node: 1
Loading: Kinematic excitation $W(t)=W_0\sin\omega t$.



$W_0=1\,\mbox{mm},~~~\omega= 25.7~\mbox{rad/sec}$.
Solution: The only input for the response spectrum method is the set of spectral accelerations corresponding to the loading and damping given. Denote the base acceleration as

\begin{displaymath}a(t)=\ddot W(t)=-\omega^2 W_0 \sin\omega t
\end{displaymath}

A characteristic equation of the linear harmonic oscillator $(\omega_k,\xi_k)$ exited kinematically by W(t) has the form

\begin{displaymath}\ddot x_k(t) + 2\xi_k\omega_k \dot x_k(t) + \omega_k^2x_k(t) = -a(t)
\end{displaymath}

with the solution being

\begin{displaymath}x_k(t) = A_ke^{-\xi_k\omega_k t}\sin(\bar\omega_k t + \varphi_k)
+ x_{pk}(t)
\end{displaymath}

where Ak, $\varphi_k$ are constants to be determined from the initial conditions

\begin{displaymath}x_k(0)=\dot x_k(0) = 0
\end{displaymath}

and $\bar\omega_k$ is the damped angular frequency

\begin{displaymath}\bar\omega_k=\omega_k\sqrt{1-\xi_k^2}
\end{displaymath}

Global acceleration can be computed as

\begin{displaymath}g_k(t)=a(t)+\ddot x_k(t)
\end{displaymath}

and its maximum

\begin{displaymath}G_k=\max_t \vert g_k(t)\vert=G_k(\omega_k,\xi_k)
\end{displaymath}

which is also called the spectral acceleration.

Thus, it is sufficient for us to calculate Gk's as functions of $(\omega_k,\xi_k)$ for the base acceleration a(t) defined above. In this particular example we make use of the steady-state part of the solution only, which yields

\begin{eqnarray*}G_k &\simeq& \max_t\vert a(t) + x_{pk}(t)\vert
\le \max_t\vert...
...ega_k^2-\omega^2)^2 + 4(\xi_k\omega_k\omega)^2]
^{-\frac{1}{2}}
\end{eqnarray*}


Substituting for $\omega_k=2\pi f_k$ with fk read from the table shown in section IV.1 for the ITE=53 element type we finally obtain
k 1 2 3 4 5
Gk [m/s2] 0.8787 0.7045 0.6647 0.6615 0.6610
  6 7 8 9 10
  0.6606 0.6606 0.6605 0.6605 0.6605
Note that the FEM results are related to the reference frame that moves with the basis. For example, the total z-displacement must be calculated as

\begin{displaymath}w_p=W_0+w(\mbox{FEM})
\end{displaymath}

Execute from prompt:
>rmd3 beam53d4.I1
>rpd3 beam53d4.I2
>srh3 beam53d4.I3
>hmot beam53d4.IM
>fefs beam53d4.I4
>heig beam53d4.IE
>hmod beam53d4.ID


next up previous contents
Next: INPUT Up: Steady-state response Previous: OUTPUT