next up previous contents
Next: BEAM6P2 Up: Plasticity Previous: OUTPUT

  
Uniaxial stress

Problem description: Consider the rod shown for an elastic-plastic analysis. The yield stress $\sigma_Y$ is assumed to be a function of the cumulated plastic strain  $\epsilon_p$.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam6c1.ps}
\end{figure}

Mesh: Use the following element types:
ITE=6--see appendix A.1, four quadrilaterals
ITE=56--see appendix B.1, four hexahedra.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$.
Prandtl-Reuss-von Mises model with piece-wise linear isotropic hardening.
$\epsilon_p$:    0 0.02 0.03 0.04
$\sigma_Y$:    350 350 375 390   [MPa]
Support: Clamped at x=0. Statically determinate.
Loading: $\sigma_{xx}=375$ MPa.
Solution: The total strain is easily computed as a sum of elastic and plastic parts

\begin{displaymath}\epsilon_{xx}=\frac{\sigma_{xx}}{E}+\epsilon_p
\end{displaymath}

for the uniaxial monotonic tensile loading. The magnitude of plastic component $\epsilon_p$, responsible for hardening, follows from the material table. For the loading given, the initial yield stress $\sigma_Y=350$ MPa must be increased to $\sigma_Y=375$ MPa, which neccesitates plastic straining $\epsilon_p=0.03$. Therefore

\begin{displaymath}\epsilon_{xx}=\frac{375}{2\times10^5}+0.03=0.031875
\end{displaymath}

It is interesting to note that the ratio

\begin{displaymath}\bar\nu=\frac{-\epsilon_{yy}}{\epsilon_{xx}}=
\frac{\nu\sigma_{xx}/E+\frac{1}{2}\epsilon_p}
{\sigma_{xx}/E+\epsilon_p}
\end{displaymath}

approaches 1/2 as $\epsilon_p\to\infty$, whereas for $\epsilon_p=0$ it becomes the Poisson's ratio $\nu$. In this example $\bar\nu=0.488$.
\begin{figure}
\centering\hspace{0pt}\rotate{
\epsfclipon\epsfxsize=9cm\epsffile{plastp2.ps}}
\end{figure}



 
next up previous contents
Next: BEAM6P2 Up: Plasticity Previous: OUTPUT