next up previous contents
Next: Hexahedra, BEAM56G1 Up: Geometrically Nonlinear Problems Previous: OUTPUT

  
Stability of a column

Problem description: Compute the stability limit of the column shown. The flexural stiffness EIy<EIz.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{stabg1.ps}
\end{figure}

Mesh: Use the following element types:
ITE=56--see appendix B.1, four hexahedra.
ITE=61--see appendix B.2, four semi-loofs.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$.
Support: Two point support. Statically determinate.
Solution: The minimum flexural stiffness EIy can be computed as

\begin{displaymath}EI_y=2\times10^{11}\,\frac{0.02\times0.01^3}{12}=333.3\,\mbox{[Nm$^2$ ]}
\end{displaymath}

and the critical force

\begin{displaymath}F_{\mbox{{\it crit}}}=\left(\frac{\pi}{l}\right)^2 EI_y=3290\,\mbox{[N]}
\end{displaymath}

In the FEM method we constitute the initial stress (geometric) matrix ${\bf K}_\sigma$ for some reference loading ${\bf R}_0$. Subsequently, the generalized eigenproblem is solved

\begin{displaymath}\det\vert{\bf K}_0 + \lambda {\bf K}_\sigma\vert= 0
\end{displaymath}

where $\lambda$ is the load parameter such that the crititical loading

\begin{displaymath}{\bf R}_{\mbox{{\it crit}}} = \lambda {\bf R}_0
\end{displaymath}

Therefore, it is convenient to choose a unit reference force in the $F_{\mbox{{\it crit}}}$ direction so that the load parameter directly represents the magnitude of the critical force.

Numerical solutions are shown below.

$F_{\mbox{{\it crit}}}$ ITE=56 ITE=61
3290 3490 3293


 
next up previous contents
Next: Hexahedra, BEAM56G1 Up: Geometrically Nonlinear Problems Previous: OUTPUT