next up previous contents
Next: INPUT Up: Elastostatics Previous: OUTPUT

  
Surface traction, BEAM56S1

Problem description: The cantilever beam shown is subjected to uniformly distributed loading ly, lz per unit length and the end force Fx, Fy, Fz. Calculate deflection and stresses for two load cases: i) the in-plane problem using lyFxFy only and ii) the complete three-dimensional loading ly, lz, Fx, Fy, Fz.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam56s1.ps}
\end{figure}

Mesh: Four hexahedra--see appendix B.1.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$.
Support: Clamped at x=0. Statically determinate.

u=v=w=0 node:	 1 
u=w=0 nodes: 	 2 21       
u=v=0 nodes: 	 4 24       
u=0 nodes: 	 3 22 23      
Loading: Given as

ly=-100 lz=200 unit: N/m 
Fx=20000 Fy=-20 Fz=10 unit: N      
Solution: First, the end force is replaced with the equivalent surface traction as

\begin{displaymath}q_x=\frac{20000}{0.01\times 0.02}=100\times 10^6
\,\mbox{[Pa]...
...times 10^6\,\mbox{[Pa]} ~,~~~
q_z=0.05\times 10^6\,\mbox{[Pa]}
\end{displaymath}

Similarly, the distributed loading is replaced with

\begin{displaymath}q_n(\verb*\vert S3\vert)=\frac{l_y}{0.01}=-0.01\times 10^6\,\...
...\vert S2\vert)=-\frac{l_z}{0.02}=-0.01\times 10^6\,\mbox{[Pa]}
\end{displaymath}

where the normal surface tractions qn's are now defined in the local coordinate systems of the elements faces S3, S2 forming the y=0.02 and z=0 planes, respectively.
Execute from prompt:
>rmd3 beam56s1.I1
>rpd3 beam56s1.I2
>srh3 beam56s1.I3
>fefs beam56s1.I4
>str3 beam56s1.I5