next up previous contents
Next: INPUT Up: Creep Previous: Creep

  
Long-term creep, BEAM6C1

Problem description: Consider the rod shown for a steady-state creep analysis with the temperature T and the uniaxial stress $\sigma_{xx}$ being constant. The effective creep strain rate $\dot\epsilon_c$ is assumed to be a function of the cumulated creep strain  $\epsilon_c$.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam6c1.ps}
\end{figure}

Mesh: Four quadrilaterals--see appendix A.1.
Material properties: $\alpha=10^{-5}$ 1/K, $E=2\times 10^5$ MPa, $\nu=0.3$.

Creep curve: 

$\epsilon_c=a+b\tan(ct-d)$


$a=0.949,~b=0.6322435755,~c=0.01312784\,\mbox{1/h},~d=0.9831024372$
Support: Clamped at x=0. Statically determinate.

u=v=0 node:	 1 
u=0 nodes: 	 2 11      
Loading: $\sigma_{xx}=30$ MPa, $T=800^\circ$C
Solution: The strain rate, which description is required in the input file, is obtained by differentiating the creep curve

\begin{displaymath}\dot\epsilon_c=\frac{bc}{\cos^2(ct-d)}
\end{displaymath}

In order to derive the strain hardening form in terms of $\epsilon_c$ we must eliminate parameter t from the simultaneous expressions $\epsilon_c(t)$ and $\dot\epsilon_c(t)$. To this end we use the indentity

\begin{displaymath}\tan x =\frac{\sin x}{\cos x} = \frac{\sqrt{1-\cos^2 x}}{\cos x}
=\sqrt{\frac{1}{\cos^2 x}-1}
\end{displaymath}

and

\begin{displaymath}\frac{1}{\cos^2(ct-d)}=\frac{\dot\epsilon_c}{bc}
\end{displaymath}

Substituting for $\tan(ct-d)=\sqrt{\dot\epsilon_c/bc-1}$ into $\epsilon_c$ we arrive at

\begin{displaymath}\epsilon_c=a+b\sqrt{\frac{\dot\epsilon_c}{bc}-1}
\end{displaymath}

and finally

\begin{displaymath}\dot\epsilon_c=bc+a^2\frac{c}{b} -2a\frac{c}{b}\epsilon_c+
\frac{c}{b}\epsilon_c^2
\end{displaymath}

This polynomial can be written in the PMD format as

\begin{displaymath}\dot\epsilon_c=a_1 +a_2\epsilon_c+a_3\epsilon_c^2
\end{displaymath}

where

\begin{displaymath}a_1=2.7\times 10^{-2}\,\mbox{1/h},~~
a_2=-3.94099\times 10^{-2}\,\mbox{1/h},~~
a_3=2.07639\times 10^{-2}\,\mbox{1/h}
\end{displaymath}

Execute from prompt:
>rmd2 beam6c1.I1
>rpd2 beam6c1.I2
>srh2 beam6c1.I3
>fefs beam6c1.I4
>hpp2 beam6c1.IP
>hpls beam6c1.IL
>str2 beam6c1.I5


 
next up previous contents
Next: INPUT Up: Creep Previous: Creep