next up previous contents
Next: INPUT Up: Elastostatics Previous: OUTPUT

  
Edge traction, BEAM61S1

Problem description: The cantilever beam shown is subjected to uniformly distributed loading ly, lz per unit length and the end force Fx, Fy, Fz. Calculate deflection and stresses for two load cases: i) the in-plane problem using lyFxFy only and ii) the complete three-dimensional loading ly, lz, Fx, Fy, Fz.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam56s1.ps}
\end{figure}

Mesh: Four semi-loofs--see appendix B.2.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$.
Support: Clamped at x=0. Statically determinate.

u=v=w=0 node: 		 1 
u=w=0 node: 		 2 


$u=w=\alpha=\beta=0$ node:            11
Loading: Given as

ly=-100 lz=200 unit: N/m 
Fx=20000 Fy=-20 Fz=10 unit: N      
Solution: The end force is replaced with the equivalent edge traction as

\begin{displaymath}l_x=\frac{20000}{0.02}=1000\times 10^3\,\mbox{[N/m]}~,~~~
l_y=-10^3\,\mbox{[N/m]} ~,~~~
l_z=0.5\times 10^3\,\mbox{[N/m]}
\end{displaymath}

The distributed loading in y direction is transformed to the local coordinate systems of the elements edges L2 that coincide with the line $y=0.02\,,~z=0$. According to numbering shown in appendix B.2, we have

\begin{displaymath}l_{xh}(\verb*\vert L2\vert)=l_y=-100\,\mbox{[N/m]}
\end{displaymath}

for all the elements 1 to 4.

The distributed loading in z direction is replaced with the normal surface traction qn acting on the only semi-loof's face S1 . This is carried out in the same way as in example II.4, therefore

\begin{displaymath}q_n(\verb*\vert S1\vert)=-\frac{l_z}{0.02}=-0.01\times 10^6\,\mbox{[Pa]}
\end{displaymath}

Execute from prompt:
>rmd3 beam61s1.I1
>rpd3 beam61s1.I2
>srh3 beam61s1.I3
>fefs beam61s1.I4
>str3 beam61s1.I5


 
next up previous contents
Next: INPUT Up: Elastostatics Previous: OUTPUT