next up previous contents
Next: Mode synthesis, BEAM53D2 Up: Dynamics Previous: OUTPUT

  
Steady-state response

Problem description: The cantilever beam shown is subjected to kinematic excitation of its basis $W(t)=W_0\sin\omega t$ in the z direction. Approximate solution for a slightly damped system can be written in the form

\begin{displaymath}w(x,t)=w_h(x,t)+w_p(x)\sin(\omega t + \varphi)
\end{displaymath}

where the transient part $w_h\to 0$ as $t\to \infty$. Establish the steady-state deflection wp(x) with the aid of the following methods: i) the mode synthesis, ii) the direct integration method, and iii) the response spectrum method. Compare the results.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam3d2.ps}
\end{figure}

Mesh: Four beam elements--see appendix B.3.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$, $\rho=7800$ kg/m3.
Damping: Modal damping parameters $\xi_k=0.1$ for $k=1,2,\ldots$.
Support: All the degrees of freedom fixed at x=0.



$u=v=w=\varphi_x=\varphi_y=\varphi_z=0$ node: 1
Loading: Kinematic excitation $W(t)=W_0\sin\omega t$.



$W_0=1\,\mbox{mm},~~~\omega= 25.7~\mbox{rad/sec}$.
(Given as 

$\omega=\textstyle\frac{1}{2}\omega_1= \pi f_1 =\pi\times8.18 = 25.7$--see section IV.1.)
Solution: The results of computation detailed in next sections are shown in table.
node 1 2 3 4 5
wp(MS) [mm] 1.00 1.05 1.18 1.34 1.51
wp(DI) [mm] 1.00 1.05 1.16 1.30 1.44
wp(RSM)[mm] 1.00 1.05 1.18 1.34 1.52

It is interesting to compare these solutions with the shape of the first eigenvector plotted below.


\begin{figure}
\centering\hspace{0pt}\rotate{
\epsfclipon\epsfxsize=6cm\epsffile{bea3d2.ps}}
\end{figure}



 
next up previous contents
Next: Mode synthesis, BEAM53D2 Up: Dynamics Previous: OUTPUT