next up previous contents
Next: BEAM6P7 Up: Plasticity Previous: OUTPUT

  
Residual stress

Problem description: The rod shown is subjected to thermal loading $\Delta T$. Compute residual stress after cooling to the initial temperature.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam6c2.ps}
\end{figure}

Mesh: Use the following element types:
ITE=6--see appendix A.1, four quadrilaterals
ITE=56--see appendix B.1, four hexahedra.
Material properties: $\alpha=10^{-5}$, $E=2\times 10^5$ MPa, $\nu=0.3$, $\sigma_Y=350$ MPa.
Prandtl-Reuss-von Mises elastic-perfectly plastic model.
Support: Clamped at x=0, x=l. Statically indeterminate.
Loading: $\Delta T=200^\circ\mbox{C}$
Solution: Thermal strain $\epsilon^0$ is computed as

\begin{displaymath}\epsilon^0=\alpha\Delta T = 2\times10^{-3}
\end{displaymath}

Elastic strain $\epsilon_Y^e$ on the onset of yielding

\begin{displaymath}\epsilon_Y^e=\frac{\sigma_Y}{E} = 1.75\times10^{-3}
\end{displaymath}

Since $\epsilon=\epsilon^e+\epsilon^p+\epsilon^0=0$ and $\epsilon^e=-\epsilon_Y^e$ at $T=T_0+\Delta T$, we have

\begin{displaymath}\epsilon^p=\epsilon_Y^e-\epsilon^0=-0.25\times10^{-3}
\end{displaymath}

After cooling the thermal strain disappears, therefore $\epsilon_0^e=-\epsilon^p$ and the residual stress

\begin{displaymath}\sigma_0=E\epsilon_0^e=50\,\mbox{[MPa]}
\end{displaymath}