next up previous contents
Next: BEAM6P3 Up: Plasticity Previous: OUTPUT

  
Isotropic hardening

Problem description: Consider the rod shown subjected to cyclic loading. Compute elastic-plastic response using linear isotropic hardening. See also examples V.4, V.5 and V.6.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{beam6c1.ps}
\end{figure}

Mesh: Use the following element types:
ITE=6--see appendix A.1, four quadrilaterals
ITE=56--see appendix B.1, four hexahedra.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$.
Prandtl-Reuss-von Mises model with linear isotropic hardening.
$\epsilon_p$:    0.000 0.015 0.040  
$\sigma_Y$:    350 650 1150 [MPa]
QY:    0 0 0 [MPa]
Support: Clamped at x=0. Statically determinate.
Loading: $\sigma_{xx}=\pm 400$ MPa, 3 cycles.
Solution: Under uniaxial stress loadings the kinematic/isotropic yield condition implemented in the PMD package reduces to

\begin{displaymath}\vert\sigma-h\vert\le
H(\epsilon_p)=\sigma_Y(\epsilon_p)-Q_Y(\epsilon_p)
\end{displaymath}

where $\sigma$, h, $\sigma_Y$, QY, $\epsilon_p$ are the applied stress, backstress, subsequent yield stress, kinematic function, and the cumulated plastic strain, respectively. Denoting by $\sigma_{Yt}=h+H$, $\sigma_{Yc}=h-H$ the yield stresses in `tension' and `compression' and lifting the absolute from the above equation, the yield condition can be recast as

\begin{displaymath}\sigma_{Yc} \le \sigma \le \sigma_{Yt}
\end{displaymath}

It should be noted, however, that for pronounced Bauschinger's effect situations with $\sigma_{Yc}>0$, $\sigma_{Yt}<0$ might be encountered. See picture on next page.
\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{plastpp3.ps}
\end{figure}

If for some fixed values of internal variables $\epsilon_p$, h, further denoted as `old', we observe that $\vert\sigma-h_{old}\vert>H_{old}$, these internal variables must change so that $\vert\sigma-h_{new}\vert=H_{new}$. This is done as follows. Define $\Delta\sigma=\vert\sigma-h_{old}\vert-H_{old}>0$ and compute $\Delta\epsilon_p$ such that

\begin{displaymath}\sigma_Y(\epsilon_p+\Delta\epsilon_p)-\sigma_Y(\epsilon_p)=\Delta\sigma
\end{displaymath}

For linear hardening this equation becomes

\begin{displaymath}E_p\Delta\epsilon_p=\Delta\sigma
\end{displaymath}

where $E_p=\,\mbox{\rm d}\sigma_Y/\,\mbox{\rm d}\epsilon_p$ is the plastic modulus. New value of backstress hnew is computed from

\begin{displaymath}\vert\sigma-h_{new}\vert=\sigma_Y(\epsilon_p+\Delta\epsilon_p)
-Q_Y(\epsilon_p+\Delta\epsilon_p)
\end{displaymath}

Graphically, the right edge of the elastic domain $\sigma_{Yt}=h+H$ is stretched by $\Delta\sigma$ to the right and its centroid h is then updated according to QY. If $Q_Y\equiv 0$ then hnew=hold=0; the elastic range 2H extends symmetrically by $2\Delta\sigma$ each time and material hardens isotropically. If QY has the same slope as $\sigma_Y$, the elastic range remains constant and the yield surface moves about in stress space as a rigid body--hardening is said to be kinematic. In general, a proper adjustment of QY allows the elastic domain to move and stretch simultaneously--see sections V.5 and V.6.

In this example we have

\begin{displaymath}E_p=\frac{650-350}{0.015}=\frac{1150-350}{0.04}=2\times10^4\,\mbox{[MPa]}
\end{displaymath}


\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=8cm\epsffile{plastpp4.ps}
\end{figure}

In the course of first loading the yield stresses in tension and compression increase to $\pm 400\,$MPa so that all the subsequent cycles proceed in elastic regime.

Loading $\Delta\sigma$ $\epsilon_p$ H $\sigma_{Yc}$ $\sigma_{Yt}$
0 0 0 350 -350 350
+400 50 $2.5\times10^{-3}$ 400 -400 400
-400 0 $2.5\times10^{-3}$ 400 -400 400
+400 0 $2.5\times10^{-3}$ 400 -400 400
-400 0 $2.5\times10^{-3}$ 400 -400 400
+400 0 $2.5\times10^{-3}$ 400 -400 400
-400 0 $2.5\times10^{-3}$ 400 -400 400


\begin{figure}
\centering\hspace{0pt}%
\epsfclipon\epsfxsize=9cm\epsffile{plastp3.ps}%
\end{figure}



 
next up previous contents
Next: BEAM6P3 Up: Plasticity Previous: OUTPUT