MATHEMATICA BOHEMICA, Vol. 136, No. 3, pp. 301-310, 2011

Le minimum de deux fonctions plurisousharmoniques et une nouvelle caracterisation des fonctions holomorphes

Jamel Abidi, Mohamed Lassaad Ben Yattou

Jamel Abidi, Mohamed Lassad Ben Yattou, Département de Mathématique, Faculté des Sciences de Tunis, 1060-Tunis, Tunisia, e-mail: abidijamel1@yahoo.fr

Abstract: We prove, among other results, that $\min(u,v)$ is plurisubharmonic (psh) when $u,v$ belong to a family of functions in $ psh(D)\cap\Lambda_{\alpha}(D),$ where $\Lambda_{\alpha}(D)$ is the $\alpha$-Lipchitz functional space with $1<\alpha<2.$ Then we establish a new characterization of holomorphic functions defined on open sets of $\mathbb{C}^n.$

Keywords: maximum principle, plurisubharmonic function

Classification (MSC 2010): 32A10, 32D20, 32U05, 32U30


Full text available as PDF.

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at EMIS]