

First determination of the one-proton induced NMWD width for p-shell A-hypernuclei

Elena Botta INFN -Torino and Torino University

UNIVERSITÀ DEGLI STUDI DI TORINO

ALMA UNIVERSITAS TAURINENSIS

on behalf of the FINUDA Collaboration

SPHERE meeting 2014 Prague, Czech Republic September 9 - 11, 2014

✓ Previous FINUDA results: Γ_{2N} from proton spectra (PLB 685 (2010) 247) Γ_{2N} from n&p coincidences (PLB 701 (2011) 556)

- ✓ Revisited analysis
- $\checkmark \Gamma_p$ for p-shell Λ -hypernuclei

NMWD data: Indian Summer school 2010

References	Exp.	Measurement
Szymanski PRC 43 (1991) 849	BNL AGS, LESB I (Κ ⁻ ,π ⁻) 800 MeV/c	p spectrum, Γ_p , Γ_n , Γ_{nm} , Γ_n/Γ_p for ${}^5_{\Lambda}He$, Γ_{nm} , Γ_n/Γ_p for ${}^{12}_{\Lambda}C$
Noumi PRC 52 (1995) 2936	KEK PS E160 (π ⁺ , K ⁺) 1.05 GeV/c	p spectrum for ${}^{12}{}_{\Lambda}C$, $\Gamma_p/\Gamma_{\Lambda}$, $\Gamma_{nm}/\Gamma_{\Lambda}$, Γ_n/Γ_p for ${}^{11}{}_{\Lambda}B$ and ${}^{12}{}_{\Lambda}C$
Hashimoto PLR 88 (2002) 045203	KEK PS E307 (π ⁺ , K ⁺) 1.05 GeV/c	p spectrum and Γ_n/Γ_p for ${}^{12}_{\Lambda}C$ and ${}^{28}_{\Lambda}Si$ (theory)
H.J.Kim PRC 68 (2003) 065201	KEK PS E369 (π ⁺ , K ⁺) 1.05 GeV/c	n spectrum for $^{12}{}_{\Lambda}C$ and $^{89}{}_{\Lambda}Y$ and Γ_n/Γ_p for $^{12}{}_{\Lambda}C$ (theory)
Okada PLB 597 (2004) 249	KEK PS E462-E508 (π ⁺ , K ⁺) 1.05 GeV/c	p, n spectra and Γ_n/Γ_p for ${}^5_\Lambda$ He and ${}^{12}_\Lambda C$ (exp)
Sato PRC 71 (2005) 025203	KEK PS SKS E307 (π ⁺ , K ⁺) 1.05 GeV/c	p spectrum and $\Gamma_{nm}/\Gamma_{\Lambda}$ for ${}^{11}_{\Lambda}B$, ${}^{12}_{\Lambda}C$, ${}^{27}_{\Lambda}AI$, ${}^{28}_{\Lambda}Si$, ${}_{\Lambda}Fe$ (theory)
Kang PRL 96 (2006) 062301	KEK PS E462 (π ⁺ , K ⁺) 1.05 GeV/c	p & n spectra, Γ_n/Γ_p for ${}^5_\Lambda$ He
M.J.Kim PLB 641 (2006) 28	KEK PS E508 (π ⁺ , K ⁺) 1.05 GeV/c	p & n spectra, Γ_n/Γ_p for ${}^{12}{}_{\Lambda}C$
Bhang EPJ A33 (2007) 259	KEK PS E462-E508 (π ⁺ , K ⁺) 1.05 GeV/c	re-analysis of p & n spectra for ${}^5_{\Lambda}$ He and ${}^{12}_{\Lambda}C$, Γ_n/Γ_p for ${}^{12}_{\Lambda}C$
Parker PRC 76 (2007) 035501	BNL AGS, LESB II (Κ ⁻ ,π ⁻) 750 MeV/c	$\Gamma_{n}, \Gamma_{p}, \Gamma_{n}/\Gamma_{p} \text{ for } {}^{4}_{\Lambda}\text{He}$
Agnello NPA 804 (2008) 151	LNF (Κ ⁻ stop, π ⁻)	p spectrum for ${}^5_{\Lambda}$ He, ${}^7_{\Lambda}$ Li and ${}^{12}_{\Lambda}$ C
M.Kim PRL 103 (2009) 182502	KEK PS E508	re-analysis of p & n spectra, $\Gamma_{n},\Gamma_{p},\Gamma_{2N}$ for $^{12}{}_{\Lambda}{\mbox{C}}$
Agnello PLB 685 (2010) 247	LNF (K ⁻ stop, π ⁻)	p spectrum for ⁵ _A He, ⁷ _A Li, ⁹ _A Be, ¹¹ _A B ¹² _A C, ¹³ _A C, ¹⁵ _A N and ¹⁶ _A O

NMWD data: SPHERE meeting 2014

References	Exp.	Analysis
Agnello PLB 685 (2010) 247	LNF (Κ- _{stop} , π-)	Γ_{2N}/Γ_{p} from (π , p) coincidences for ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, ${}^{9}_{\Lambda}$ Be, ${}^{11}_{\Lambda}$ B, ${}^{12}_{\Lambda}$ C, ${}^{13}_{\Lambda}$ C, ${}^{15}_{\Lambda}$ N, ${}^{16}_{\Lambda}$ O
Agnello PLB 701 (2011) 556	LNF (Κ- _{stop} , π ⁻)	Γ_{2N}/Γ_{p} from (π , p, n) coincidences for ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, ${}^{9}_{\Lambda}$ Be, ${}^{11}_{\Lambda}$ B, ${}^{12}_{\Lambda}$ C, ${}^{13}_{\Lambda}$ C, ${}^{15}_{\Lambda}$ N, ${}^{16}_{\Lambda}$ O
Agnello NPA 881 (2012) 322	LNF (Κ- _{stop} , π ⁻)	2N-NMWD evidence (π , p, n, n)
Bufalino NPA 914 (2013) 160	LNF (Κ- _{stop} , π ⁻)	p spectra revision
Agnello sub. to PLB July 2014	LNF (Κ ⁻ _{stop} , π ⁻)	$ \begin{array}{l} \Gamma_{2N} \mbox{ revisited analysis} \\ \Gamma_p / \Gamma_\Lambda \mbox{ for } {}^5_\Lambda \mbox{He}, {}^7_\Lambda \mbox{Li}, {}^9_\Lambda \mbox{Be}, {}^{11}_\Lambda \mbox{B}, {}^{12}_\Lambda \mbox{C}, {}^{13}_\Lambda \mbox{C}, \\ {}^{15}_\Lambda \mbox{N}, {}^{16}_\Lambda \mbox{O} \end{array} $
K. Itonaga, T. Motoba, <i>Progr.</i> <i>Theor. Phys. Suppl.</i> 185 (2010) 252		theoretical calculations on MWD and NMWD of p-shell Λ -hypernuclei
H. Bhang <i>et al., JKPS</i> 59 (2011) 1461	KEK (π⁺, K⁺)	final KEK results on ${}^{12}{}_{\Lambda}C$ WD widths

NMWD p inclusive spectra

FSI and 2N induced non-mesonic decay

Γ_{2N} improved determination (π , p, n)

- it is not possible to disentangle 1N, 2N and FSI contributions on an event basis
- enrich the 2N contribution by rejecting 1N-like events, FSI from $A=(5 \pm 16)$
- 1N NMWD: ΛN→NN: ~2-body reaction, daughter nucleus ~ spectator → Λp→np: (n, p) b.t.b angular correlation, T(p)+T(n)~160 MeV (+ nuclear medium effects) if no FSI

KEK PS E462 ⁵ He: B.H. Kang et al., PRL 96 (2006) 062301 KEK PS E508 ¹² ^AC: M.J. Kim et al., PLB 641 (2006) 28, M. Kim et al., PRL 103 (2009) 182502

Γ_{2N} improved determination (π , p, n)

2N induced weak decay

- importance of the effect: ~20-25% of the total NMWD width
- several experimental evidences, but indirect

BNL-E788 [47] ≤ 0.24 ${}^{4}_{A}$ He, n and p spectraKEK-E508 [48] 0.27 ± 0.13 0.29 ± 0.13 ${}^{12}_{A}$ C, nn and np spectraFINUDA [8] 0.24 ± 0.10 $A = 5-16$, p spectraFINUDA [9] 0.21 ± 0.07 stat ${}^{\pm 0.03}$ sys $A = 5-16$, np spectra	Ref.	Γ_2/Γ_A	Γ_2/Γ_{NM}	Notes	within
KEK-E508 [48] 0.27 ± 0.13 0.29 ± 0.13 $\frac{12}{A}$ C, nn and np spectra Colored c	BNL-E788 [47]		≤ 0.24	$^{4}_{\Lambda}$ He, <i>n</i> and <i>p</i> spectra	nsistent with
FINUDA [8] 0.24 ± 0.10 $A = 5-16$, p spectra FINUDA [9] $0.21 \pm 0.07_{\text{stat}} \pm 0.03_{\text{sys}}$ $A = 5-16$, p spectra	KEK-E508 [48]	0.27 ± 0.13	0.29 ± 0.13	$^{12}_{\Lambda}$ C, nn and np spectra	construe en large en l
FINUDA [9] $0.21 \pm 0.07_{\text{rtot}} \pm 0.03 \text{ sys}$ $4 = 5 \pm 16$ <i>pp</i> spectra	FINUDA [8]		0.24 ± 0.10	A = 5-16, p spectra	
A = 5-10, np spectra	FINUDA [9]		$0.21 \pm 0.07_{stat} + 0.03 \text{ sys} \\ -0.02 \text{ sys}$	A = 5-16, np spectra	

"smoking gun" evidence missing!

experimental hardness:

3 nucleons emitted from Λ -hypernucleus g.s. 4-fold coincidence measurement (π^- , p, n, n)

2N induced decay exp. evidence

Triple coincidence (n+n+p) events @ FINUDA exclusive $\Lambda np \rightarrow nnp {}^{7}{}_{\Lambda}Li \rightarrow {}^{4}He+p+n+n$ decay event

TOFONE ST π-TOFINO ISIM n1 OSIM LMDC n2 10 cm X first, direct experimental evidence

M. Agnello *et al.*, NPA 881 (2012) 322

P _{π-} P _{miss} E _{tot} MM		276.9 ± 1.2 MeV/c 217 ± 44 MeV/c 178 ± 23 MeV 3710 ± 23 MeV/c ²
E(n1)	=	110 ± 23 MeV
E(n2)	=	16.9 ± 1.7 MeV
E(p)	=	51.11 ± 0.85 MeV
ϑ(n1 n2)	=	94.8° ± 3.8°
ϑ(n1 p)	=	102.2° ± 3.4°
ϑ(n2 p)	=	154° ± 19°

no n-n or p/n scattering

⁷ _A Li	MM (MeV/ c^2)
⁴ He	3727.4
3 He + n	3748.0
$^{3}H + p$	3747.2

2N induced decay exp. evidence

Triple coincidence (n+n+p) events @ FINUDA exclusive $\Lambda np \rightarrow nnp^{7} Li \rightarrow {}^{4}He+p+n+n$ decay event

no n-n or p/n scattering

p_{π-}

P_{miss}

2N induced decay exp. evidence

Triple coincidence (n+n+p) events @ FINUDA exclusive $\Lambda np \rightarrow nnp {}^{9}{}_{\Lambda}Be \rightarrow {}^{3}He + {}^{3}H + p + n + n$ decay event

vent		cut on Ep released
p _{π-}	=	286.7 ± 1.2 MeV/c
P _{miss}	=	253 ± 18 MeV/c
Etot	=	123.5 ± 4.9 MeV
MM	=	$5617.3 \pm 5.0 \text{ MeV/c}^2$
E(n1)	=	20.2 ± 2.5 MeV
E(n2)	=	31.5 ± 4.2 MeV
E(p)	=	71.77 ± 0.80 MeV
ծ(n1 n2)	=	133.6 °± 7.5°
ϑ(n1 p)	=	128.5°± 5.5°
ϑ(n2 p)	=	95.4°± 3.6°

no n-n or p/n scattering

$^{9}_{\Lambda}$ Be	MM (MeV/ c^2)
⁶ Li	5601.5
${}^{5}Li + n$	5607.2
4 He + d	5603.0
${}^{3}\text{He} + {}^{3}\text{H}$	5617.3

Dynamics of NMWD: exclusive NMWD? p spectra A=(5-16)

Revised analysis of the proton spectra

Attempt of improving the fits by shifting down the lower edge for the fits to 50, 60 and 70 MeV:

better value of $\chi^2/n = 1.33$ when choosing the starting point at 70 MeV

Revised analysis of the proton spectra

- fits to Gaussians of experimental proton spectra starting from 80 MeV, with free centers (μ), widths and areas
- disagreement of values of μ from whose expected from exact Q-values (b-to-b kinematics and no-recoil of the residual nucleus) for ${}^{13}C_{\Lambda}$ and, especially, ${}^{15}N_{\Lambda}$ and ${}^{16}O_{\Lambda}$

17

Refined determination of $\Gamma_{2N} / \Gamma_{NMWD}$ inclusive proton spectra, (π -, p) coincidence

Following M. Agnello et al., PLB 685 (2010) 247.

 $\Gamma_{2N}/\Gamma_{NMWD}$, Γ_2/Γ_1 and Γ_n/Γ_p independent on A in the range A = 5 ÷ 16

 $\Gamma_{2N}/\Gamma_{p} = 0.43 \pm 0.25$ ($\Gamma_{2N}/\Gamma_{NMWD} = 0.24 \pm 0.10$)

With the new μ values we find:

 $\Gamma_{2N}/\Gamma_p = 0.50 \pm 0.24$ ($\Gamma_{2N}/\Gamma_{NMWD} = 0.25 \pm 0.12$)

Refined determination of $\Gamma_{2N} / \Gamma_{NMWD}$ (π -, p, n) coincidence

Following PLB 701 (2011) 556:

mass number [A] 19

fully compatible with the previous one, within the errors.

₼ M. Kim *et al., PRL* 103 (2009) 182502: 0.29 ± 0.13.

First determination of Γ_p/Γ_A for 8 Hypernuclei

Some information can be extracted by the proton spectra, but how it is possible to extract the "true" number of protons from NMWD? Spectra are severely distorted by several FSI effects

At least 3 effects: G. Garbarino, A. Parreño and A. Ramos, PRC 69 (2004) 054603.

- a) number of primary protons from NMWD decreased by FSI
- b) in a given region of the spectrum increase due to the FSI not only of higher energy protons, but of neutrons as well
- c) quantum mechanical interference effect among p of different sources

In the upper part, Ahigh, of the experimental spectrum b) and c) ~ negligible How to calculate a) or (a)+b)+c)) without resorting to any INC models, but only from experimental data? 21

First determination of Γ_p/Γ_A for 8 Hypernuclei

First determination of Γ_p/Γ_A for 8 Hypernuclei

	$\Gamma_{T}/\Gamma_{\Lambda}$	α_{A}	$\Gamma_{ m p}/\Gamma_{\Lambda}$ this work	$\Gamma_{\rm p}/\Gamma_{\Lambda}$ previous works	$\Gamma_{p}/\Gamma_{\Lambda}$ [26]
⁵ ∧He	0.962±0.034 [4, 18] ^{S. k}	<mark>1.08±0.16</mark> (ameoka <i>et al.,</i> 754 (2005) 173c	0.22 <u>+</u> 0.05	0.21±0.07 [4] J.J. Szymansky <i>et al.</i> , PRC 43 (1991) 849	0.237
⁷ ∧Li	1.12±0.12	1.51±0.22	0.28±0.07		0.297
⁹ ∧Be	1.15±0.13	1.94±0.28	0.30±0.07	H. Noumi <i>et al.,</i> PRC 534 (1995) 2936	0.401
¹¹ _A B	1.28±0.10 [5]	2.37±0.34	0.47 <u>±</u> 0.11	0.30±0.07 [5]	0.444
¹² _A C	1.242±0.042 [18, 22] _{PRC 6}	2.58±0.37 . Park <i>et al.,</i> 1 (2000) 054004	0.65±0.19	0.31±0.07 [5] 0.45±0.10 [<mark>24</mark>]	0.535
¹³ $_{\Lambda} C$	1.21±0.16	2.80±0.40	0.60±0.14	H. Bhang <i>et al.,</i> <i>JKPS</i> 59 (2011) 1461	0.495
¹⁵ [^] N	1.26±0.18	3.23±0.47	0.49 <u>+</u> 0.11		0.555
¹⁶ ^{\Lambda} O	1.28±0.19	3.44±0.50	0.44 <u>+</u> 0.12		0.586

(0.990±0.094) + (0.018±0.010) • A M. Agnello et al., PLB 681 (2009) 139

Preliminary: sub. to PLB

K. Itonaga, T. Motoba, Progr. Theor. Phys. Suppl. 185 (2010) 252.

mass number [A]

Conclusions

- rightarrow First systematic determination of $\Gamma_p / \Gamma_{\Lambda}$ for *p*-shell Hypernuclei
- experimental data agree with the latest calculations by Itonaga & Motoba, (even though the errors are quite large...)

K. Itonaga, T. Motoba, Progr. Theor. Phys. Suppl. 185 (2010) 252.

First experimental verification of the complementary between MWD and NMWD, at least for charged channels

J-PARC scientific program restart...

FINUDA in a nutshell

FINUDA key features

* very thin nuclear targets $(0.1 \div 0.3 \text{ g/cm}^2)$

high resolution spectroscopy

* coincidence measurements with large acceptance (2π sr)

decay mode study

* event by event K⁺ tagging

continuous energy and rate calibration

* irradiation of different targets in the same run

FINUDA sub-detectors performances

☆ significant back-to-back correlation → this feature rules out completely the first event on ⁷Li

* the correlation between $\cos \vartheta(\pi p)$ and E_p was studied for the simulated background: major contribution from this source when π and p are emitted nearly back-to-back and $E_p \ge 100$ MeV

* evaluation of the number of simulated events surviving to a 3σ cut on $\cos\vartheta(\pi^{-}p)$ and E_{p} on ⁷Li and ⁹Be: ~10⁻³ events were found for both targets

the 2 $\Lambda np \rightarrow nnp$ real events DO NOT belong to background to a confidence level \geq 99%.

			limi	
	Q/2 ↓			
	$\dot{ ho}$	μ_0	μ_1	σ
	(MeV)	(MeV)	(MeV)	(MeV)
$^{5}_{\Lambda}\mathrm{He}$	76.65	68.5 ± 4.1	66.9 ± 11.8	22.3 ± 9.9
$^{7}_{\Lambda}$ Li	82.99	76.7 ± 5.2	74.9 ± 3.8	18.0 ± 2.1
$^{9}_{\Lambda}\mathrm{Be}$	76.48	78.2 ± 6.2	77.7 ± 9.1	20.8 ± 10.8
$^{11}_{\Lambda}\mathrm{B}$	79.72	75.1 ± 5.0	71.7 ± 10.8	23.8 ± 5.5
$^{12}_{\Lambda}\mathrm{C}$	78.36	80.2 ± 2.1	77.3 ± 2.9	$22.0{\pm}2.1$
$^{13}_{\Lambda}\mathrm{C}$	74.44	83.9±12.8	81.6 ± 5.8	22.6 ± 3.5
$^{15}_{\Lambda}{ m N}$	77.55	88.1±6.2	84.2 ± 4.5	18.6 ± 2.8
$^{16}_{\Lambda}{ m O}$	78.25	93.1 ± 6.2	85.0 ± 6.8	21.9 ± 3.5