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Outline

A short reminder: why
√
s and how?

[s = (EK− + EN)
2 − (~pK− + ~pN)

2].

Pionic atoms: smooth variation of amplitudes
with energy.

π± scattering: sensitive tests of ‘minimal
subtitution’ (E → E − Vc).

Kaonic atoms: resonance structure of
amplitudes.

Results for kaonic atoms.

Summary



WHY?

When describing meson-nucleus interaction by a tρ
potential, with a free or effective t, the results could
depend sensitively on t(E , ρ).

Strong dependences on E near resonances require
careful handling of these dependences.

Kaonic atoms: proximity of Λ(1405).
PLB 702 (2011) 402, PRC 84 (2011) 045206, NPA 881
(2012) 150 and 159, NPA 899 (2013) 60.

Low energy pions: smooth dependence on E.
NPA 928 (2014) 128.



HOW?

Using the Mandelstam variable s in the nuclear medium
s = (EK− + EN)

2 − (~pK− + ~pN)
2,

EK = mK − BK , EN = mN − BN .

In the nuclear medium ~pK− + ~pN 6= 0.
Averaging over angles, (~pK− + ~pN)

2 → (pK−)2 + (pN)
2.

Substituting locally:

p2
K

2mK
→ −BK − Re V K−

opt − Vc ,

p2
N

2mN
→ TN(ρ/ρ̄)

2/3



Defining δ
√
s =

√
s − Eth with Eth = mK +mN , then to first order

in B/Eth and (p/Eth)
2 one gets

δ
√
s = −BNρ/ρ̄−ξN [TN(ρ/ρ̄)

2/3+BKρ/ρ0]+ξK [Re Vopt+Vc(ρ/ρ0)
1/3],

with ξN = mN/(mN +mK ), ξK = mK/(mN +mK ), and ρ̄ the
average nuclear density.

The specific ρ/ρ0 and ρ/ρ̄ dependence ensures that δ
√
s → 0

when ρ → 0.
E.F. and A. Gal, NPA 899 (2013) 60.
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when ρ → 0.
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Another variant is obtained when imposing minimal substitution
(MS) requirement where E is replaced by E − Vc :

δ
√
s = −BNρ/ρ̄−ξN [TN(ρ/ρ̄)

2/3+BKρ/ρ0+Vc(ρ/ρ0)
1/3]+ξKRe Vopt.

Self-consistent solution required for Re Vopt.
Identical numerical results obtained when the 1st order expressions
are replased by

√
s −mK −mN .



The Klein-Gordon equation is obtained by the ‘Minimal
Substitution’ (MS) where E → E − V , in analogy with the
introduction of the Coulomb potential in a gauge invariant
way.

Kolomeitsev, Kaiser and Weise, PRL 90 (2003) 092501:
‘Importance of systematic incorporation of gauge invariance at
all places where the pion energy appears explicitly, when
solving the Klein-Gordon equation in the presence of
electromagnetic interactions’.



Exotic atoms and nuclear densities

Proton densities ρp assumed known from nuclear charge.
Various mean-field calculations show linear dependence of
differences between rms radii on (N − Z )/A:

rn − rp = γ
N − Z

A
+ δ .

Use 2pF densities

ρn,p(r) =
ρ0n,0p

1 + exp((r − Rn,p)/an,p)
,

different shapes for ρn are ‘skin’ (an = ap),
‘halo’ (Rn = Rp) and their average.
Fits to exotic atoms data vs neutron radius parameter γ.
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Low energy pions: the power of experimental constraints.

The Ericson-Ericson extension of the Kisslinger potential.

2µVopt(r) = q(r) + ~∇ · α(r)~∇

q(r) = −4π(1 +
µ

M
){b0[ρn(r) + ρp(r)] + b1[ρn(r)− ρp(r)]}

−4π(1 +
µ

2M
)4B0ρn(r)ρp(r),

α(r) = 4π(1 +
µ

M
)−1{c0[ρn(r) + ρp(r)] + c1[ρn(r)− ρp(r)]}

+4π(1 +
µ

2M
)−14C0ρn(r)ρp(r).

Dependence on α is confined to the surface.
Medium modifications: study q(r), mostly b1. ( b0 ≈ 0).
Experimental: 100-120 good quality data points for pionic atoms.
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Amplitudes in the medium:

Double-scattering contributions for Pauli correlated nucleons
b0 = b0 − 3

2π
(b20 + 2b21)pF ,

where pF is the local Fermi momentum corresponding to the
local nuclear density ρ = 2p3F/(3π

2).

α(r) → α(r)

1+ 1
3ξα(r)

(ξ ≈ 1 EELL correction.)
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Tests with low-energy pion scattering

Precision measurements of elastic scattering of 21.5 MeV
π+ AND π− by several nuclei were performed at PSI with parallel
measurements of Coulomb scattering of muons for normalization.
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Testing in-medium algorithms with pions

Pionic atoms (χ2/df=1.74)

δ
√
s no yes yes

MS(E − Vc) no no yes
χ2 for 100 points 176 164 165

π± scattering (21.5 MeV, χ2/df=1.25)

δ
√
s no yes yes

MS(E − Vc) yes yes yes
Vc in Im C ∗

0 yes no yes
χ2 for 72 points 92 88 83

∗ Im C0 = C 0
0 + βVc . Good consistency between 21.5 MeV and

atoms.
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χ2 for 100 points 176 164 165

π± scattering (21.5 MeV, χ2/df=1.25)

δ
√
s no yes yes

MS(E − Vc) yes yes yes
Vc in Im C ∗

0 yes no yes
χ2 for 72 points 92 88 83

∗ Im C0 = C 0
0 + βVc . Good consistency between 21.5 MeV and

atoms. Disagreement with free b1 if ‘no MS’.



Pionic atoms: very good fits, significantly reduced χ2 when using
the δ

√
s with empirical E-dependence.

Pion scattering (±): very good fits, significantly reduced χ2 when
using the δ

√
s with empirical E-dependence.

Significantly reduced χ2 when applying E → E − Vc (MS).
Good consistency between 21.5 MeV and atoms.

Introducing δ
√
s allows differences between different elements.

More so when MS is also included.

Best-fit values of b1 are insensitive to variations in models, both
for atoms and for scattering fits to experiment.
Best-fit b1 supports the Weise’s ansatz.



Kaonic atoms: resonance structures

From Y. Ikeda, T. Hyodo, W. Weise, NPA 881 (2012) 98.
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Kaonic atoms: resonance structures
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K− amplitudes in the medium:

2µKV
(1)

K−
(ρ) = −4π

[

(2f̃K−p − f̃K−n)
1
2
ρp

1 + 1
4
ξk=0f̃0ρ(r)

+
f̃K−n(

1
2
ρp + ρn)

1 + 1
4
ξk=0f̃1ρ(r)

]

.

For kaonic atoms k ≈ 0 and then ξk=0 = 9π/p2F , with pF the
local Fermi momentum.

E.F and A. Gal, NPA 899 (2013) 60.



Kaonic atoms: adding a phenomenological multi-nucleon term:

[b + B( ρ
ρ0
)α]ρ

δ
√
s MS Re b Re B Im B α χ2(65)

0. no - - - - 747
0. no -0.51±0.07 1.48±0.07 -0.41±0.06 4.2±0.4 223
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Kaonic atoms: adding a phenomenological multi-nucleon term:

[b + B( ρ
ρ0
)α]ρ

δ
√
s MS Re b Re B Im B α χ2(65)

0. no - - - - 747
0. no -0.51±0.07 1.48±0.07 -0.41±0.06 4.2±0.4 223
yes no - - - - 2115
yes no -0.36±0.08 1.90±0.21 0.83±0.19 1.07±0.17 117
yes yes -0.23±0.06 1.80±0.21 0.95±0.19 1.44±0.21 108

χ2/df=1.8

Again MS (E → E − Vc) introduces additional flexibility
without adding parameters.
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The role of experimental constraints
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The role of experimental constraints
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Summary

Exotic-atom potentials constructed from meson-nucleon
amplitudes near threshold and tested on pionic atoms, π±

scattering and kaonic atoms.

In-medium δ
√
s improve fits to data without additional

parameters.

Minimal substitution E → E − VC further improves fits.

Previous conclusions confirmed, including support for
medium-modification of fπ and empirical multi-nucleon
terms for kaonic atoms.
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Tomozawa-Weinberg (TW) lowest-order chiral limit is:
b0 = 0, b1 = − µπN

8πf 2
π

= −0.079 m−1
π .

Double-scattering contributions lead to b0 = b0 − 3
2π (b

2
0 + 2b21)pF ,

where pF is the local Fermi momentum.
In-medium renormalization of the pion decay constant fπ, given to

first order in the nuclear density ρ by f 2
π
(ρ)
f 2
π

=
<q̄q>ρ

<q̄q>0
≃ 1− σρ

m2
π
f 2
π

,

where < q̄q >ρ stands for the in-medium chiral condensate and
σ ≃ 50 MeV is the pion-nucleon σ term.
This leads to the Weise’s ansatz:

b1(ρ) =
b1

1− σρ/m2
πf

2
π

=
b1

1− 2.3ρ
.

when ρ is in fm
−3.


