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Outline

o A short reminder: why /s and how?
[s = (Ex- + En)* — (Pk- + Bn)*].

e Pionic atoms: smooth variation of amplitudes
with energy.

o T scattering: sensitive tests of ‘minimal
subtitution” (E — E — V).

o Kaonic atoms: resonance structure of
amplitudes.

o Results for kaonic atoms.

e Summary



WHY?

When describing meson-nucleus interaction by a tp
potential, with a free or effective t, the results could
depend sensitively on t(E, p).

Strong dependences on E near resonances require
careful handling of these dependences.

Kaonic atoms: proximity of A(1405).
PLB 702 (2011) 402, PRC 84 (2011) 045206, NPA 881
(2012) 150 and 159, NPA 899 (2013) 60.

Low energy pions: smooth dependence on E.
NPA 928 (2014) 128.



HOW?

Using the Mandelstam variable s in the nuclear medium
s = (Ex- + En)*> — (Px- + Pn)?,

EK:mK—BK, EN:mN—BN.

In the nuclear medium px- + py # 0.
Averaging over angles, (Bx- + pn)? — (pk-)? + (pn)°.
Substituting locally:

p—KK — —Bx — Re VK. —V,

opt

s — Tu(p/p)*>



Defining §v/s = /s — Egy, with Ei, = mk + my, then to first order
in B/Ey, and (p/Ew)? one gets

5v/s = —Bnp/p—EnTrn(p/5)* 3+ Bk p/ pol+ek [Re Vip+Ve(p/po) 3],

with &y = my/(my + mk), €k = mk/(my + mk), and p the
average nuclear density.

The specific p/po and p/p dependence ensures that §y/s — 0
when p — 0.
E.F. and A. Gal, NPA 899 (2013) 60.



Defining §+/s = \/s — Eg, with Ey, = mk + myy, then to first order
in B/Egy, and (p/E1)? one gets

5v/s = —Bnp/p—EnTrn(p/5)? 3+ Bk p/pol+Ek[Re Vip+Ve(p/po) 3],

with &y = mN/(mN + mK), ¢k = mK/(mN + mK), and p the
average nuclear density.

The specific p/po and p/p dependence ensures that §1/s — 0
when p — 0.
E.F. and A. Gal, NPA 899 (2013) 60.

Another variant is obtained when imposing minimal substitution
(MS) requirement where E is replaced by E — V:

5v/s = —Bnp/p—EnTrn(p/5)? 3+ B p/po+Ve(p/ po) 3| +ExRe Vips.

Self-consistent solution required for Re V.
Identical numerical results obtained when the 15t order expressions
are replased by /s — mx — my.



The Klein-Gordon equation is obtained by the ‘Minimal
Substitution’ (MS) where E — E — V, in analogy with the
introduction of the Coulomb potential in a gauge invariant
way.

Kolomeitsev, Kaiser and Weise, PRL 90 (2003) 092501:
‘Importance of systematic incorporation of gauge invariance at
all places where the pion energy appears explicitly, when
solving the Klein-Gordon equation in the presence of
electromagnetic interactions’.



Exotic atoms and nuclear densities
Proton densities p, assumed known from nuclear charge.
Various mean-field calculations show linear dependence of
differences between rms radii on (N — Z)/A:

N—-2Z
rn—rpsz+§.

Use 2pF densities

_ £on,0p
1+ exp((r — Rap)/anp)

pn,p(r)

Y

different shapes for p, are ‘skin’ (a, = a,),
‘halo’ (R, = R,) and their average.
Fits to exotic atoms data vs neutron radius parameter ~.
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Examples of the density-to-energy transformation, without MS.
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Low energy pions: the power of experimental constraints.

The Ericson-Ericson extension of the Kisslinger potential.

2 Vops(r) = q(r) + ¥ - a(r)¥

q(r) = —4r(l+ %){bo[pn(r) + pp(r)] + balpn(r) — pp(r)]}

—4r(1+ ﬁ)[lBOpn(r)pp(r)?



Low energy pions: the power of experimental constraints.

The Ericson-Ericson extension of the Kisslinger potential.

2Vope(r) = q(r) + ¥ - a(r)¥

a(r) = —4n(L+ 2){bolpa(r) + pp(r)] + bilea(r) = py(r)]}

_an(1 + ﬁ)[lBOpn(r)pP(r)?

7
a(r) = 4n(l+7) Haolon(r) + pp(N)] + calon(r) = pp(r]}
+4m(1+ o) 4Copn(r)pe(r).
Dependence on « is confined to the surface.
Medium modifications: study q(r), mostly b;. ( by =~ 0).

Experimental: 100-120 good quality data points for, pionic atoms.
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Empirical pion-nucleon s-wave amplitudes



Amplitudes in the medium:

Double-scattering contributions for Pauli correlated nucleons
by = by — 5=(b5 + 2b7) pr,

where pg is the local Fermi momentum corresponding to the

local nuclear density p = 2p? /(372).

(r)

Oz(r)%m

(¢ ~ 1 EELL correction.)
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Using empirical by(E), b1 independent of p.
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by by . -3
bi(p) = - fm 3.
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Tests with low-energy pion scattering

Precision measurements of elastic scattering of 21.5 MeV
77 AND 7~ by several nuclei were performed at PSI with parallel
measurements of Coulomb scattering of muons for normalization.
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Testing in-medium algorithms with pions

Pionic atoms (x?2/df=1.74)

0+/s no yes yes
MS(E — V¢) no no yes
x? for 100 points | 176 164 165




Testing in-medium algorithms with pions

Pionic atoms (x?/df=1.74)

0+/s no yes yes
MS(E — V) no no yes
x2 for 100 points | 176 164 165

7+ scattering (21.5 MeV, x?/df=1.25)

dy/s no yes yes
MS(E — V) yes yes yes
Veinlm G yes no yes
x2 for 72 points | 92 88 83

“Im Gy = Cg + BV.. Good consistency between 21.5 MeV and
atoms. Disagreement with free by if ‘no MS’.



Pionic atoms: very good fits, significantly reduced x? when using
the d+/s with empirical E-dependence.

Pion scattering (£): very good fits, significantly reduced x? when
using the d+/s with empirical E-dependence.

Significantly reduced x? when applying E — E — V. (MS).

Good consistency between 21.5 MeV and atoms.

Introducing §+/s allows differences between different elements.
More so when MS is also included.

Best-fit values of by are insensitive to variations in models, both
for atoms and for scattering fits to experiment.
Best-fit by supports the Weise's ansatz.



Kaonic atoms: resonance structures
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From Y. lkeda, T. Hyodo, W. Weise, NPA 881 (2012) 98.



Kaonic atoms: resonance structures
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Kaonic atoms: resonance structures
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Kaonic atoms: resonance structures
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From Y. lkeda, T. Hyodo, W. Weise, NPA 881 (2012) 98.
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Kaonic atoms: resonance structures
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K~ amplitudes in the medium:

(2?K*p - ?K*n) %pp 1 ?K*n(%pp + pn)

20, VP (p) = —an = f
MK Vi (p) 1+ L6 ofop(r 1+ lfk:oflp r
ry P 4

For kaonic atoms k ~ 0 and then &,_o = 97/p?, with pr the
local Fermi momentum.

E.F and A. Gal, NPA 899 (2013) 60.



Kaonic atoms: adding a phenomenological multi-nucleon term:

b+ B(£)Tp

MS Re b Re B Im B a  x3(65)

no - - - - 747
no -0.514+0.07 1.48+0.07 -0.414+0.06 4.24+0.4 223



Kaonic atoms: adding a phenomenological multi-nucleon term:

b+ B(£)Tp

dv/s MS Re b Re B Im B Q@ 3(65)
0. no - - - - 747
0. no -0.51£0.07 1.48+0.07 -0.41+0.06 4.2+0.4 223
yes  no - - - - 2115



Kaonic atoms: adding a phenomenological multi-nucleon term:

[b+ B(£)]p

5yv/s MS Re b Re B Im B o x3(65)
0. no - - - - 747

0. no -0.51£+0.07 1.48+£0.07 -0.41+0.06 4.2+0.4 223

yes no - 2115

yes no -0.36+0.08 1.90£0.21 0.83+0.19 1.07£0.17 117
yes yes -0.23+0.06 1.80£0.21 0.95+0.19 1.44+0.21 108

x?/df=1.8

Again MS (E — E — V) introduces additional flexibility
without adding parameters.
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Summary

Exotic-atom potentials constructed from meson-nucleon
amplitudes near threshold and tested on pionic atoms, 7
scattering and kaonic atoms.

+

In-medium §+/s improve fits to data without additional
parameters.

Minimal substitution E — E — V¢ further improves fits.

Previous conclusions confirmed, including support for
medium-modification of f. and empirical multi-nucleon
terms for kaonic atoms.
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Tomozawa-Weinberg (TW) lowest-order chiral limit is:
by =0, by = — &= — —0.079 m;l.

8nf2 —
Double-scattering contributions lead to by = by — %(bg + 2b2)pr,
where pr is the local Fermi momentum.

In-medium renormalization of the pion decay constant f;, given to
fi(p) _ <89>p ~ 1 _ _op

2 = <agse m2 2
where < gq >, stands for the in-medium chiral condensate and
o =~ 50 MeV is the pion-nucleon o term.

This leads to the Weise's ansatz:

B by b
C l—op/m2f2  1-23p

first order in the nuclear density p by

bi(p)

when p is in fm 3.



