

SPHERE MEETING 9TH SEPTEMBER 2014

Satoshi N Nakamura, Tohoku University

Experimental study of hypernuclei with electron beams

JLab E05-115 collaboration, 2009, JLab Hall-C

Characteristics of Λ hypernuclear study by (e,e'K⁺) reaction

EM Interaction p to Λ primary e beam Electron BG Small C.S. Coin. measure

High Quality Beam Sophisticated Detectors Three generation experiments at Hall-C

E89-009 (2000) : Existing spectrometers, SOS + Enge Proof of Principle

E01-011 (2005) : Construction of HKS, Tilt Method $\Lambda, \Sigma^{0}, \ ^{7}{}_{\Lambda}\text{He}, \ ^{12}{}_{\Lambda}\text{B}, \ ^{28}{}_{\Lambda}\text{Al}$ Light Hypernuclei

E05-115 (2009) : HKS+HES, new Beamline, Splitter Λ , Σ^{0} , $_{\Lambda}^{7}$ He , $_{\Lambda}^{12}$ B, $_{\Lambda}^{52}$ V Light to medium-heavy Hypernuclei

Facilities for (e,e'K⁺) HY study

JLab Hall-C HNSS (2000) HKS (2005) HKS+HES (2009)

JLab Hall-A HRS+HRS (2004)

Mainz MAMI-C A1 KaoS (2008-)

JLab E05-115 (Hall-C) setup EXPERIMENTAL SETUP

$^{12}C(e,e'K^{+})^{12}{}_{\Lambda}B$

0.54 MeV (FWHM)

Absolute MM calibration

0.71 MeV (FWHM)

L.Tang, C.Chen, T.Gogami et al. PRC in press ArXiv 1406.2353.

 $^{12}C(\pi^+, K^+)^{12} K^-$

1.45 MeV (FWHM)

¹² _AC_{gs} energy from emulsion

$^{12}\Lambda$ C EMULSION DATA

Nuclear Physics A484 (1988) 520-524

Decay mode	Range of the hypernucleus (µm)	$\begin{array}{c} B_A \ (\text{as} \ {}^{12}_A\text{C}) \\ (\text{MeV}) \end{array}$	Ref
1. ${}^{12}_{\Lambda}C \rightarrow \pi^- + {}^{12}N(g.s.)$		11.14±0.57	4)
2. ${}^{12}_{A}C \rightarrow \pi^- + p + {}^{4}He + {}^{7}Be$	3.0 ± 0.8	10.45 ± 0.33	3)
3. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{11}C$	4.3 ± 0.7	10.50 ± 0.47	3)
4.	3.5 ± 0.4	10.65 ± 0.33	1,2)
5.	3.5 ± 0.5	10.85 ± 0.44	1.2)
6.	3.4 ± 0.5	11.59 ± 0.45	1.2)
7.	3.2 ± 0.4	15.67 ± 0.50	1,2)

¹¹C (3/2-) : Ex = 4.8MeV

situation is not the case for π^- mesonic decay modes of ${}_{A}^{12}C$: $(\pi^{-12}N)$, $(\pi^-p^{11}C)$, $(\pi^-p^3He^4He^4He)$ and $(\pi^-p^4He^7Be)$. Every one of these decay topologies is easily confused with those of other hypernuclei.

The value obtained for B_A of ${}^{12}_A$ C, (10.80 ± 0.18) MeV.

Statistical errors quoted, systematic errors (~0.04 MeV) reduced by measuring M_A in same emulsion stack.

Reference for all (π , K) B_A data:

 $B_{\Lambda} ({}^{12}_{\Lambda}Cg.s.) = 10.76 + 0.19 MeV$

Nuclear Physics A547 (1992) 369

¹²∧C

10.76 ± 0.19

Statistical error only

Totally independent measurement

POSSIBLE SHIFT OF ${}^{12}_{\Lambda}C_{GS}B_{\Lambda}$

 -0.57 ± 0.19

T. Gogami, Doctor thesis, (2014) Tohoku U.

POSSIBLE SHIFT OF ${}^{12}_{\Lambda}C_{GS}B_{\Lambda}$

T. Gogami, Doctor thesis, (2014) Tohoku U.

Comparison between ${}^{51}{}_{\Lambda}V$ by (π ,K) and ${}^{52}{}_{\Lambda}V$ by (e,e'K⁺) supports the existence of the shift.

EOS OF NUCLEAR MATTER WITH HYPERONS To solve hyperon puzzle

Microscopic nuclear force model $\bigcirc \rho_0 \rightarrow 2 \rho_0$

Density dependence with hyperons

Importance of 3B/4BF

Furumoto, Sakuragi, Yamamoto, PRC 79 (2009) 0011601(R)

Mass dependence of B_{Λ} General tendency is well understood. 30 Need more precise data. $(e,e'\mathbb{K}^+)$ S_{Λ} 20 B_{Λ} (MeV) p_{Λ} 10 d_{Λ} 0 D f_{Λ} ESC08c 0 MPa g_{Λ} 50 150 100 200 Mass number A

Lines: Calc. by Yamamoto & Rijken

Mass dependence of B_{Λ}

 $^{7}_{\Lambda}$ He = 6 He + Λ

⁶He : 2n halo

$^{7}{}_{\Lambda}$ He spectrum of E01-01

SNN et al., PRL 110, 012502 (2013)

E05-115(HKS-HES) >500 counts

unbound ⁶He excited state + Λ = bound ⁷_{Λ}He excited state

 7 _AHe spectrum of E05-115

E05-115(HKS-HES) >500 counts

unbound ⁶He excited state + Λ = bound ⁷_{Λ}He excited state

CSB INTERACTION TEST IN A=7 ISO-TRIPLET COMPARISON

SNN et al., PRL 110, 012502 (2013)

T.Gogami, Doctor Thesis (2014) Tohoku Univ.

CSB INTERACTION TEST IN A=7 ISO-TRIPLET COMPARISON

T.Gogami, Doctor Thesis (2014) Tohoku Univ.

¹⁰B(e,e'K+)¹⁰_ABe

 ^{10}AB and ^{10}ABe

0

n

0

¹⁰Be

T.Gogami, Doctor Thesis (2014) Tohoku Univ.

COMPARISON OF THE GROUND STATES (A=10)

$$B_{\Lambda}(^{10}_{\Lambda}\text{Be}) - B_{\Lambda}(^{10}_{\Lambda}\text{B})$$

= 0.45 ± 0.12(stat.) ± 0.61(sys.) MeV (JLab - KEK),
-0.27 ± 0.07(stat.) ± 0.23(sys.) MeV (JLab - emulsion),

CSB(even) on : 20 keV CSB off: -180 keV

A=4 SYSTEM CSB ΛΝ POTENTIAL

${}^{4}{}_{\Lambda}H$, ${}^{4}{}_{\Lambda}He~~emulsion~data$

Nuclear Physics B52 (1973) 1-30.

A NEW DETERMINATION OF THE BINDING-ENERGY VALUES OF THE LIGHT HYPERNUCLEI ($A \le 15$)

Emulsion Result (M.Juric et al.)

A=4 SYSTEM CSB ΛΝ POTENTIAL

POSSIBLE FUTURE PROGRAMS @ JLAB 1. Elementary Λ , Σ^0 Reliable data ¹H(e,e'K⁺) Λ , Σ^0 in low Q² $^{3}t(e,e'K)[nn\Lambda]$ 2. Few-body 6,7 Li(e,e'K) 6 _He, 7 _He $^{2}D(e,e'K^{+})[\Lambda N]$ Exotic bound state, ΛN int. 4 He(e,e'K⁺) 4 4 H 4 N CSB 3. Medium-heavy ¹⁹F(e,e'K)¹⁹,O $\frac{40,44,48}{Ca(e,e'K^{+})} = \frac{40,44,48}{\Lambda} K = \Lambda' s S.E., iso-spin$ ²⁷Al(e,e'K⁺) ²⁷, Mg Tri-axial deformation 48 Ti(e, e'K⁺) 48 Sc Level inv. due to Λ 4. Heavy ²⁰⁸Pb(e,e'K⁺) ²⁰⁸, TI Λ in heaviest nucleus 5. Decay π Weak decay of light hyper-fragments

FEW-BODY PHYSICS WITH STRANGENESS

Search of $[n\Lambda]$ bound state and study of $n-\Lambda$ interaction through FSI.

Established lightest hypernyclei = ${}^{3}_{\Lambda}H$

Indication of a $n\Lambda$, $nn\Lambda$ bound state ?

Direct method to search these exotic systems.

Tri-axially deformed ²⁶Mg core + Λ in p-shell

Totally new method to search shape of nucleus with A!

3. ¹⁹F TARGET : SIMPLEST SD-SHELL

PRESENT STATUS OF Λ HYPERNUCLEAR SPECTROSCOPY

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

SUMMARY

- We have been developing large magnetic spectrometers (HKS, HES) and techniques in the last decade at JLab and (e,e'K⁺) HY spectroscopy is *now established*.
- Best spectroscopy of ${}^{12}{}_{\Lambda}B$ was performed and absolute binding energy calibration implies a shift of ${}^{12}{}_{\Lambda}C$ emalsion B_{Λ} which is the reference to all (π^+ ,K⁺) spectrosopy binding energies.
- Binding energy of ⁷_ΛHe^{gs} was determined. Important input for ΛN CSB potential. Excited state of ⁷_ΛHe was clearly observed.
- New data on ${}^{10}_{\Lambda}Be_{qs}$ was obtained.

We are designing next program at JLab. systematic study of B_A for wide A range up to 208, tri-axial deformed HY, CSB study with light HY and elementary study with exotics (nnA)