Physiological Research Pre-Press Article

Repolarisation Descriptors and Heart Rate Variability

in Hemodialyzed Patients

by

Dimitrios Poulikakos^{1,2}, Debasish Banerjee^{1,2*}, Marek Malik^{3*}

¹Renal and Transplantation Unit, ²Cardiovascular Sciences Research Centre, St. George's University of London, ³Imperial College of Science Technology and Medicine, London, United Kingdom

* Equal contributions as last author

Short title: Repolarisation and HRV during dialysis

Corresponding Author

Dimitrios Poulikakos,

Cardiovascular Sciences Research Centre, St. George's University of London, Medical School,

Cranmer Terrace, London SW17 ORE, UK,

telephone 44(0) 2087251673, e-mail: dimitrios.poulikakos@stgeorges.nhs.uk

Summary

Background: T wave morphology (TWM) descriptors derived from Holter electrocardiograms during hemodialysis (HD) are of potential value for cardiac risk assessment in HD patients. Our knowledge on autonomic regulation of TWM descriptors is limited. The purpose of this study was to investigate the association between TWM parameters and heart rate variability (HRV) during intradialytic monitoring.

Methods: In each of 81 patients on maintenance HD, continuous electrocardiograms were recorded 5 times during HD on alternate weeks. TWM descriptors were calculated every 5 seconds in overlapping 10-second ECG segments and Low Frequency (LF) (0.04 Hz to 0.15 Hz), High Frequency (HF) (0.15 Hz to 0.40 Hz) powers of the spectrum of HRV were calculated every five minutes. The calculated values of TWM and HRV were averaged during the first hour of the recordings and subsequently over all recordings in each subject.

Results: Analyzable data for HRV and TWM were available in 71 HD patients (aged 61±15, 36% diabetics, 32% females). LF in normalized units correlated positively with Total Cosine R to T (r= 0.374, p=0.001) and negatively with T wave morphology dispersion (r=-0.253, p =0.033) after adjusting for HR.

Conclusion: A heart rate independent association between repolarization descriptors and HRV exists in HD patients. Autonomic modulation needs to be considered when using TWM characteristics for risk profiling of HD patients.

Key Words: TMD, TCRT, QRS-T angle, HRV, autonomic, Hemodialysis

Introduction

Uremic cardiomyopathy and autonomic imbalance are important predisposing factors of ventricular arrhythmias observed, at particularly high rates, in patients with advanced chronic kidney disease (Herzog *et al.* 2008, Poulikakos *et al.* 2013b). Descriptors of repolarization aberration derived from surface 12 lead electrocardiogram (ECG) have shown promising results for risk stratification purposes not only in cardiac patients (Zabel *et al.* 2000) but also in small cohorts of hemodialysis (HD) patients (Lin *et al.* 2007, de Bie *et al.* 2013, Poulikakos *et al.* 2013c). Abnormal cardiac autonomic modulation has been consistently reported in patients with advanced chronic kidney disease (Poulikakos *et al.* 2013b) and autonomic abnormalities are also known to carry prognostic information both in cardiac patients (Bigger *et al.* 1993) and in patients on maintenance HD (Fukuta *et al.* 2003, Oikawa *et al.* 2009, Suzuki *et al.* 2012).

The autonomic system plays a role in synchronizing naturally existing electrical differences between ventricular myocytes (Conrath & Opthof 2006) both directly at the cellular level via autonomic receptors that influence ionic channels and regulate the spatiotemporal electrical and contractile performance of the heart (Ogrodnik & Niggli 2010), and indirectly by controlling heart rate (HR).

Although it has been shown that selected descriptors of repolarisation aberration are HR dependent (Smetana *et al.* 2004) it is not known whether and if yes, by which mechanisms autonomic system affects repolarisation heterogeneity independent of HR changes. At the cellular level, it is difficult to differentiate the pure chronotropic effect from the adrenergic effect as they occur concomitantly. However this distinction is important and may have

clinical implications. Chronic adrenergic stimulation may result in increased repolarisation heterogeneity via heart rate independent mechanisms relating to the distribution and the signalling of adrenoreceptors (Nikolaev *et al.* 2010). Increased repolarization heterogeneity predisposes to ventricular tachycardias (Kuo *et al.* 1983, Chauhan *et al.* 2006). Combination of factors predisposing to repolarisation heterogeneity and of sympathetic overdrive may thus lead to particularly increased risk of ventricular arrhythmias and of arrhythmic death.

Consequently, we aimed at investigating the relationship between the T wave morphology (TWM) descriptors and cardiac autonomic modulation in HD patients. We have previously shown that selected TWM descriptors (Poulikakos *et al.* 2013a) from continuous intradialytic electrocardiograms demonstrate intra-subject stability and reproducibility in stable patients on maintenance hemodialysis. In this study we measured spectral parameters of heart rate variability (HRV) and studied their associations with TWM descriptors.

Materials and Methods

Study population

Eligible patients in sinus rhythm from the HD population of St George's Hospital NHS Trust were recruited to undergo digital intradialytic ECGs. The recordings were performed during dialysis on the same day of the week on weekdays and were repeated 5 times in each patient, with 2-week periods between repetitions. Patients with infections or malignancies were excluded. Patients with obstructive coronary artery disease were eligible if they have been asymptomatic and free of any cardiac events for at least 12 months before the first recording. Patients with fasting plasma glucose \geq 7.0 mmol/L and/or A1C \geq 6.5 percent (48 mmol/mol) and/or those receiving anti-diabetic medications were classified as diabetics. Patients received 4 hour sessions of regular HD treatment three times weekly and delivered dialysis treatment adhered to national guidelines (Shaw *et al.* 2012). The study was approved by the local Ethics Committee and all participants consented in writing.

ECG Acquisition and Analysis

Using the Mason Likar electrode positions, continuous 12-lead ECGs were started approximately 30 minutes before the HD session and finished after the end of the HD session. CardioMem[®] CM 3000-12 (Getemed, Teltow, Brandenburg Germany) recorders were used programmed to capture the signals at 1024 Hz.

TWM parameters

The calculation of the TWM descriptors has been previously described (Acar *et al.* 1999) and included the Total Cosine R to T (TCRT), the T Wave Morphology Dispersion (TMD) and the Principal Component Analysis ratio (PCA). Using a custom developed software package, the 12-lead digital electrocardiographic signal is reconstructed by singular value decomposition into an orthogonal eight-lead system in which the first three leads contain most of the non-redundant information. In these dominant three leads, the detection points of the QRS complex and T wave is made in the representative median beats of each 10-second ECG segments. The total cosine R-to-T (TCRT) represents the spatial angle between repolarization and depolarization propagation 3-dimensional loop. Increased angle indicates global repolarisation heterogeneity. T wave morphology dispersion (TMD) is the measure of the differences of the projections of the 3-dimensional T wave loop into different leads of the standard electrocardiogram. It reflects regional repolarisation heterogeneities. The principal component analysis (PCA) ratio is the ratio of the second to the first determinant of the reconstructed spatial T-wave vectors. It measures the scale of the T wave loop

between a narrow band and a broad pattern. It is a measure of the repolarization complexity.

These descriptors were calculated in representative QRS-T complexes of each 10-second ECG segments with moving the segments in 5-seconds steps.

HRV parameters

HRV parameters were calculated using the software of the analyzer (Anonymous 2006). Every 5-minute window the absolute (denoted with the subscript a) and normalized (denoted by the subscript n) values, of the Low Frequency (LF) (0.04 Hz to 0.15 Hz) and High Frequency (HF) (0.15 Hz to 0.40 Hz) powers of the spectrum and the HR were computed. The normalized values were calculated automatically by the software of the analyzer using the formulas $LF_n = LF_a$ / (total power – Very Low Frequency) x 100 and $HF_n = HF_a$ / (total power – Very Low Frequency) x 100 and Hz power of the spectrum. Although the principal calculation was based on Fast Fourier Transform, the calculation of the normalized components corresponded fairly to the established HRV standards (Anonymous 1996).

The absolute difference between the HR during the last and first 5-minutes of the first hour was also calculated and denoted Δ HR.

Statistical Analysis

We used the single recording average values during the first hour of separate recordings to investigate the reproducibility of TWM and HRV parameters, and overall averaged values of all completed recordings (i.e. averages of the first hour of all repeated recordings in the same patient) to characterise individual patients and to examine relationship between HRV

and TWM. For the purposes of this analysis LF_a and HF_a were used after decadic logarithmic transformation. Repeated measures Anova was used to test reproducibility.

Two sided independent-sample t-tests and chi square tests were used for comparison of numerical means and of categorical values, respectively. Pearson correlation coefficient was used to investigate correlations between variables; partial correlation was used to measure the correlation after adjusting for other variables. For the final analysis, IBM SPSS statistics 19 was used for the statistical analysis; p value <0.05 was considered statistically significant.

Results

Baseline Characteristics

The study population has been described previously (Poulikakos *et al.* 2013a). In brief, we obtained 350 intradialytic recordings; analyzable data for HRV and TWM parameters were available in 348 and 319 recordings respectively.

Data for both HRV and TWM during the first hour were available in 72 HD patients. One patient who had excessive Δ HR (35) was excluded from the analysis. All calculated HRV and TWM parameters showed intrasubject stability (p>0.05).

Baseline characteristics of the population of this study are shown in Table 1.

There was no difference in mean LF_a , HF_a , LFn, HFn, HR and TCRT, TMD and PCA values between patients receiving and not receiving beta blockers and between patients receiving and not receiving alpha adrenergic blocker.

There was a difference in LF_n and HF_n but no difference in LF_a and HF_a between diabetics and non-diabetics (Table 1).

Females had higher values of LF_a and HF_a compared to males (-5.01±0.43 vs. -5.29±0.41 p=0.009 and -5.32±0.43 vs -5.57±0.51 p=0.047 respectively) but there was no sex difference in normalized values. As expected, females had higher TCRT values (Smetana *et al.* 2002) compared to males (0.49±0.38 vs.-0.07±0.54 p=0.000) but there was no sex difference in TMD and PCA ratio.

Associations between TWM and HRV indices

In the total study population, LF_n correlated positively with TCRT (r= 0.374, p=0.001) and negatively with TMD (r=-0.253, p =0.033) after adjusting for HR (Figure 1). HF_a correlated positively with TMD (r=0.235, p=0.048). There was no correlation between the PCA ratio and any of the calculated HRV indices.

Discussion

The study shows heart rate independent association between TCRT, TMD and LF_n in hemodialyzed patients.

Our results thus suggest that in HD patients a link may exist between chronic autonomic imbalance and repolarization aberration. Decreased TCRT and increased TMD are known to predict worse outcomes in cardiac patients (Zabel *et al.* 2000, Zabel *et al.* 2002) and the risk of sudden cardiac death in the general population (Porthan *et al.* 2013). Lower LFn may indicate reduced baroreflex sensitivity which is also a risk factor for adverse outcomes (La Rovere *et al.* 2001). Thus risk profiling in dialysis patients might be served by looking at these two interlinked parameters. Dialysis patients with lower LFn and TCRT and high TMD might be a good population to investigate prophylactic strategies.

The potential link between chronic autonomic imbalance and repolarization heterogeneity in dialysis patients warrants further investigation as it may have important clinical therapeutic implications to prevent arrhythmic complications in patients with chronic kidney disease. In patients with ischemic cardiomyopathy sympathetic stimulation increases repolarization aberration (Vaseghi *et al.* 2012) whereas research in animal models suggests that the underlying pathology may be related to redistribution of β_2 adrenergic receptors with subsequent altered cAMP signalling (Nikolaev *et al.* 2010).

Previous studies have investigated the relationship between descriptors of repolarization aberration and autonomic nervous system in subjects with structurally normal hearts. TCRT and the ventricular gradient angle have been shown to decrease in response to autonomic provocations induced by postural changes (sitting, standing) (Batchvarov *et al.* 2002) and ventricular gradient decreased following pharmacological autonomic provocation with isoprenaline infusion (Vahedi *et al.* 2011) beyond the expected HR effects. Our results extend these observations suggesting a potential impact of autonomic system independent of heart rate and are in line with a study in patients with diabetes mellitus showing increased QRS-T angle in patients with depressed HRV (Voulgari *et al.* 2010).

We did not detect differences in absolute values of spectral parameters of HRV between diabetics and non-diabetics that would normally be seen in other populations. This should be interpreted considering the expected global reduction of HRV in dialysis patients due to chronic sympathetic over activation (Converse *et al.* 1992, Hausberg *et al.* 2002) related to chronic kidney disease irrespective of the diabetic status. Abnormally saturated sympathetic tone leads to decreased HRV components reflecting a decrease of the

physiologic oscillations of the autonomic system (Malik & Camm, 1993) and is known to predispose to ventricular arrhythmias.

Limitations

The main limitations of the study are related to the small number of the patients and the purely observational nature of the study that did not include autonomic provocations. The physiologic scope of the study would have been increased by including postural provocations that might unveil stronger correlations between the repolarization characteristics and expressions of cardiac autonomic regulation. However, we found it difficult to include such postural provocations for practical reasons in the given clinical setting.

Heart rate variability is reduced in patients with severe depressive and/or anxiety disorders that are not uncommon in HD patients. However, none of the patients in this study were treated for these disorders and we were thus unable to add relevant sub-analyses.

Echocardiographic examinations are not routinely repeated in HD patients at our institution. We are therefore unable to comment on the possible relationship of our findings with increased left ventricular mass and/or cardiac fibrosis that belong to the possible mechanisms of sudden death in these patients."

We limited our analysis to the first hour of the recordings but we were not able to correct our data for possible electrolyte changes that could potentially have an impact on both TWM and HRV. In addition, for ethical reasons a number of our patients remained on cardiovascular medications that may influence both repolarization characteristics and HRV parameters. Finally our observations were performed during HD and we do not have data

on the circadian patterns on TWM and HRV in these patients that might be of additional value for risk profiling.

Conclusion

In hemodialyzed patients, LF_n is associated with decreased TCRT and increased TMD independent of heart rate. Elucidating the electrophysiological link between cardiac autonomic regulation and ventricular repolarization is likely to be of value for the characterization of high risk profiles in hemodialyzed patients.

References

ANONYMOUS CardioDay[®], holter ECG analysis software, user manual. REF 90270-US 0505S1-LAB-Rev-C-GA-CardioDay-2-0-ENG_US.doc 12/16/2006 (2006)

ANONYMOUS Heart rate variability: Standards of measurement, physiological interpretation and clinical use. task force of the european society of cardiology and the north american society of pacing and electrophysiology. *Circulation* **93**:1043-1065, 1996.

ACAR B, YI G, HNATKOVA K, MALIK M: Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. *Medical & Biological Engineering & Computing* **37**:574-584, 1999.

BATCHVAROV V, KASKI J C, PARCHURE N, DILAVERIS P, BROWN S, GHURAN A, FARBOM P, HNATKOVA K, CAMM A J, MALIK M: Comparison between ventricular gradient and a new descriptor of the wavefront direction of ventricular activation and recovery. *Clinical Cardiology* **25**:230-236, 2002.

BIGGER J T,JR, FLEISS J L, ROLNITZKY L M, STEINMAN R C: Frequency domain measures of heart period variability to assess risk late after myocardial infarction. *Journal of the American College of Cardiology* **21**:729-736, 1993.

CHAUHAN V S, DOWNAR E, NANTHAKUMAR K, PARKER J D, ROSS H J, CHAN W, PICTON P: Increased ventricular repolarization heterogeneity in patients with ventricular arrhythmia vulnerability and cardiomyopathy: A human in vivo study. *American Journal of Physiology.Heart and Circulatory Physiology* **290**:H79-86, 2006.

CONRATH C E & OPTHOF T: Ventricular repolarization: An overview of (patho)physiology, sympathetic effects and genetic aspects. *Progress in Biophysics and Molecular Biology* **92**:269-307, 2006.

CONVERSE R L,JR, JACOBSEN T N, TOTO R D, JOST C M, COSENTINO F, FOUAD-TARAZI F, VICTOR R G: Sympathetic overactivity in patients with chronic renal failure. *The New England Journal of Medicine* **327**:1912-1918, 1992.

DE BIE M K, KOOPMAN M G, GAASBEEK A, DEKKER F W, MAAN A C, SWENNE C A, SCHERPTONG R W, VAN DESSEL P F, WILDE A A, SCHALIJ M J, RABELINK T J, JUKEMA J W: Incremental prognostic value of an abnormal baseline spatial QRS-T angle in chronic dialysis patients. *Europace : European Pacing, Arrhythmias, and Cardiac Electrophysiology : Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology* **15**:290-296, 2013.

FUKUTA H, HAYANO J, ISHIHARA S, SAKATA S, MUKAI S, OHTE N, OJIKA K, YAGI K, MATSUMOTO H, SOHMIYA S, KIMURA G: Prognostic value of heart rate variability in patients with end-stage renal disease on chronic haemodialysis. *Nephrology, Dialysis, Transplantation : Official Publication of the European Dialysis and Transplant Association -European Renal Association* **18**:318-325, 2003.

HAUSBERG M, KOSCH M, HARMELINK P, BARENBROCK M, HOHAGE H, KISTERS K, DIETL K H, RAHN K H: Sympathetic nerve activity in end-stage renal disease. *Circulation* **106**:1974-1979, 2002.

HERZOG C A, MANGRUM J M, PASSMAN R: Sudden cardiac death and dialysis patients. *Seminars in Dialysis* **21**:300-307, 2008.

KUO C S, MUNAKATA K, REDDY C P, SURAWICZ B: Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. *Circulation* **67**:1356-1367, 1983.

LA ROVERE M T, PINNA G D, HOHNLOSER S H, MARCUS F I, MORTARA A, NOHARA R, BIGGER J T, JR, CAMM A J, SCHWARTZ P J, ATRAMI INVESTIGATORS. AUTONOMIC TONE AND REFLEXES AFTER MYOCARDIAL INFARCTON: Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: Implications for clinical trials. *Circulation* **103**:2072-2077, 2001.

LIN C Y, LIN L Y, CHEN P C: Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in patients initiating haemodialysis. *Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association* **22**:2645-2652, 2007.

MALIK M & CAMM A J: Components of heart rate variability--what they really mean and what we really measure. *The American Journal of Cardiology* **72**:821-822, 1993.

NIKOLAEV V O, MOSHKOV A, LYON A R, MIRAGOLI M, NOVAK P, PAUR H, LOHSE M J, KORCHEV Y E, HARDING S E, GORELIK J: Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. *Science (New York, N.Y.)* **327**:1653-1657, 2010.

OGRODNIK J & NIGGLI E: Increased ca(2+) leak and spatiotemporal coherence of ca(2+) release in cardiomyocytes during beta-adrenergic stimulation. *The Journal of Physiology* **588**:225-242, 2010.

OIKAWA K, ISHIHARA R, MAEDA T, YAMAGUCHI K, KOIKE A, KAWAGUCHI H, TABATA Y, MUROTANI N, ITOH H: Prognostic value of heart rate variability in patients with renal failure on hemodialysis. *International Journal of Cardiology* **131**:370-377, 2009.

PORTHAN K, VIITASALO M, TOIVONEN L, HAVULINNA A S, JULA A, TIKKANEN J T, VAANANEN H, NIEMINEN M S, HUIKURI H V, NEWTON-CHEH C, SALOMAA V, OIKARINEN L: Predictive value of electrocardiographic T-wave morphology parameters and T-wave peak to T-wave end interval for sudden cardiac death in the general population. *Circulation.Arrhythmia and Electrophysiology* **6**:690-696, 2013.

POULIKAKOS D, BANERJEE D, MALIK M: T wave morphology changes during hemodialysis. Journal of Electrocardiology **46**(6):492-6, 2013a

POULIKAKOS D, BANERJEE D, MALIK M: Risk of sudden cardiac death in chronic kidney disease. *Journal of Cardiovascular Electrophysiology*. doi: 10.1111/jce.12328. [Epub ahead of print] 2013b

POULIKAKOS D, BANERJEE D, MALIK M: Major arrhythmic events and T wave morphology descriptors in hemodialyzed patients. *Journal of Electrocardiology*. doi: 10.1016/j.jelectrocard.2013.11.010. [Epub ahead of print] 2013c

SHAW C, STEENKAMP R, WILLIAMS A J: Chapter 7 adequacy of haemodialysis in UK adult patients in 2010: National and centre-specific analyses. *Nephron.Clinical Practice* **120** Suppl 1:c137-43, 2012.

SMETANA P, BATCHVAROV V N, HNATKOVA K, CAMM A J, MALIK M: Ventricular gradient and nondipolar repolarization components increase at higher heart rate. *American Journal of Physiology.Heart and Circulatory Physiology* **286**:H131-6, 2004.

SMETANA P, BATCHVAROV V N, HNATKOVA K, CAMM A J, MALIK M: Sex differences in repolarization homogeneity and its circadian pattern. *American Journal of Physiology.Heart and Circulatory Physiology* **282**:H1889-97, 2002.

SUZUKI M, HIROSHI T, AOYAMA T, TANAKA M, ISHII H, KISOHARA M, IIZUKA N, MUROHARA T, HAYANO J: Nonlinear measures of heart rate variability and mortality risk in hemodialysis patients. *Clinical Journal of the American Society of Nephrology* **7(9)**:1454-60, 2012.

SVAHEDI F, HANEY M F, JENSEN S M, NASLUND U, BERGFELDT L: Effect of heart rate on ventricular repolarization in healthy individuals applying vectorcardiographic T vector and T vector loop analysis. *Annals of Noninvasive Electrocardiology : The Official Journal of the International Society for Holter and Noninvasive Electrocardiology, Inc* **16**:287-294, 2011.

VASEGHI M, LUX R L, MAHAJAN A, SHIVKUMAR K: Sympathetic stimulation increases dispersion of repolarization in humans with myocardial infarction. *American Journal of Physiology.Heart and Circulatory Physiology* **302**:H1838-46, 2012.

VOULGARI C, MOYSSAKIS I, PERREA D, KYRIAKI D, KATSILAMBROS N, TENTOLOURIS N: The association between the spatial QRS-T angle with cardiac autonomic neuropathy in subjects with type 2 diabetes mellitus. *Diabetic Medicine: A Journal of the British Diabetic Association* **27**:1420-1429, 2010.

ZABEL M, ACAR B, KLINGENHEBEN T, FRANZ M R, HOHNLOSER S H, MALIK M: Analysis of 12lead T-wave morphology for risk stratification after myocardial infarction. *Circulation* **102**:1252-1257, 2000.

ZABEL M, MALIK M, HNATKOVA K, PAPADEMETRIOU V, PITTARAS A, FLETCHER R D, FRANZ M R: Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. *Circulation* **105**:1066-1070, 2002.

Figure Legend

Figure 1

Scatter diagrams showing the relationship between LF_n and TCRT (A, left panel) and TMD (B, right panel). Patients with and without diabetes are shown with red diamonds and blue circles respectively. Linear regression line is plotted with its 95% confidence interval (curved lines). LF_n = the low frequency (0.04 Hz to 0.15 Hz) component of Heart Rate Variability in normalized units, TMD= T wave morphology dispersion, TCRT= Total Cosine of R to T.

Table 1 Baseline characteristics, TWM and HRV parameters according to the

presence or absence of diabetes mellitus.

	Diabetes		
	Present	Absent	P value
	(n=26)	(n=45)	
Age (years)	67±10	58±16	0.007
Females	35%	30%	0.715
Beta blocker use	29%	33%	0.768
Mean Beta Blocker dosing (% of maximum dose)	8±18	12±24	0.480
Alpha 1 receptor antagonist use	23%	11%	0.167
К	4.7±0.6	4.9±0.7	0.136
Р	1.6±0.4	1.6±0.4	0.944
Са	2.3±0.14	2.3±0.15	0.225
CRP	9±8	11±17	0.559
РТН	37±30	47±34	0.270
LFa	-5.32±0.55	-5.13±0.33	0.078
HFa	-5.47±0.62	-5.50±0.42	0.852
LFn	47±12	59±12	0.000
HFn	37±6	32±7	0.002
TCRT	-0.03±0.46	0.19±0.60	0.092
TMD	37±25	27±20	0.088
PCA ratio	0.17±0.07	0.16±0.07	0.562
HR	74±11	78±11	0.124

HRD	-1±5	-2±6	0.532

Ca=adjusted calcium (mmol/I), CRP= C - reactive protein (mg/I), HF_a =high frequency component (0.15 Hz to 0.40 Hz) of Heart Rate Variability (HRV) in absolute values, HF_n =high frequency component (0.15 Hz to 0.40 Hz) of Heart Rate Variability (HRV) in normalized units, HR=Heart Rate (beats per minute), HRD= difference between heart rate during the last and first five minutes(L-F) of the first hour of recording, K= potassium (mEq/I) LF_a = low frequency component (0.04 Hz to 0.15 Hz) of HRV in absolute values, LF_n = low frequency component (0.04 Hz to 0.15 Hz) of HRV in normalized units, n=number of subjects, P= phosphate (mmol/L), PTH=Parathyroid hormone in pmol/I, PCA ratio= Principal component analysis (PCA) ratio,TCRT =Total Cosine of R to T, , TMD= T wave Morphology Dispersion,

LF_a and HF_a values are presented after decadic logarithmic transformation

All numerical data are expressed as mean± SD.

Shaded areas highlight statistically significant differences.

Figure 1