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Summary 12 

 13 

Protein kinases, transcription factors and other apoptosis- and proliferation-related proteins 14 

can regulate reproduction, but their involvement in sexual maturation remains to be 15 

elucidated. The general aim of the in-vivo and in-vitro experiments with porcine ovarian 16 

granulosa cells was to identify possible intracellular regulators of female sexual maturation. 17 

For this purpose, proliferation (expression of proliferating cell nuclear antigen - PCNA, 18 

mitogen-activated protein kinases - ERK 1,2 related MAPK and cyclin B1),  apoptosis 19 

(expression of the apoptotic protein Bax and apoptosis regulator Bcl-2 protein), expression 20 

of some protein kinases (cAMP dependent protein kinase - PKA, cGMP-dependent protein 21 

kinase - PKG, tyrosine kinase - TK) and cAMP responsive element binding protein 1 22 

(CREB-1) was examined in granulosa cells isolated from ovaries of immature and mature 23 
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gilts. Expression of PCNA, ERK1,2 related MAPK, cyclin B1, Bcl-2, Bax, PKA, CREB-1, 24 

TK and PKG in porcine granulosa cells were detected by immunocytochemistry. Sexual 25 

maturation was associated with significant increase in the expression of Bcl-2, Bax, PKA, 26 

CREB-1 and TK and with decrease in the expression of ERK1,2 related MAPK, cyclin B1 27 

and PKG in granulosa cells. No significant difference in PCNA expression was noted. The 28 

present data obtained from in vitro study indicate that sexual maturation in females is 29 

influenced by puberty-related changes in porcine ovarian signalling substances: increase in 30 

Bcl-2, Bax, PKA, CREB-1, TK and decrease in ERK1,2 related MAPK, cyclin B1 and 31 

PKG. It suggests that these signalling molecules could be potential regulators of porcine 32 

sexual maturation. 33 
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Introduction  43 

 44 

Sexual maturation is associated with ovarian follicular growth and differentiation 45 

(Onagbesan et al., 2009; Palma et al., 2012). These processes are governed by hormones, 46 
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growth factors (Kolesarova et al., 2009a,b; 2010a,b; Roychoudhury et al., 2009, 2014), 47 

which through protein kinases and transcription factors, affect ovarian cell proliferation, 48 

apoptosis and secretion activity (Onagbesan et al., 2009; Sirotkin, 2013). There is indirect 49 

evidence for involvement of several candidate signalling substances in control of sexual 50 

maturation and/or related ovarian follicle development.  51 

Action of hormones and growth factors on ovarian follicullogenesis and functions is 52 

mediated via protein kinases and related proliferation- and apoptosis-related peptides 53 

(Sirotkin et al., 2000, 2008). The involvement of cAMP/protein kinase A (PKA)-dependent 54 

intracellular mechanisms (Makarevich et al., 2000; Sirotkin and Grossmann, 2003, 2006) in 55 

the regulation of proliferation- and apoptosis-related substances (Sirotkin and Grossmann, 56 

2003, 2006) has already been reported. Furthermore, cAMP/PKA can regulate the secretion 57 

activity of mammalian ovarian cells as noted in cases of porcine (Sirotkin et al., 2004), 58 

chicken (Sirotkin and Grossmann, 2006) and human (Sirotkin et al., 2008) ovarian cells and 59 

also mediate the action of hormones and growth factors on ovarian functions (Makarevich 60 

et al., 2004a,b). Apoptosis-related substances are crucial in follicular selection, atresia and 61 

corpus luteum regression (Greenfeld et al., 2007; Maeda et al., 2007; Parborell et al., 2001, 62 

2008). Mitochondrial apoptotic protein Bax is considered as the key pro-apoptotic 63 

substance (Elmore, 2007), whilst apoptosis regulator Bcl-2 protein, which binds and 64 

inactivates Bax, has an opposite, anti-apoptotic action (Greenfeld et al., 2007; Lomonosova 65 

and Chinnadurai, 2008). The mitogen-activated protein kinases (MAPK) signalling cascade 66 

including intracellular regulated kinases (ERK) also act as promoters of cell cycle 67 

progression as well as mediators of mitogenic action of hormones and growth factors 68 

(Cameron et al., 1996; Lapthorn et al., 1994; Sirotkin and Grossmann, 2003), stimulators of 69 
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ovarian cell proliferation, differentiation and secretion activity (Sirotkin and Grossmann, 70 

2003) and suppressors of apoptosis (Dent et al., 1998; Gunter et al., 2013; Kyriakis, 1999; 71 

Xia et al., 1995). Tyrosine kinase (TK) localized in growth factor receptors and cytoplasm 72 

plays an important role in promoting cell proliferation, differentiation and mediation effects 73 

of some hormones and growth factors in signal transduction (Arora and Scholar, 2005; 74 

Okamura et al., 2001; Sirotkin and Grossmann, 2003). TK may be involved in activation of 75 

ovarian porcine follicle growth and maturation (Okamura et al., 2001) and in control of 76 

chicken ovarian cell proliferation and hormone release (Sirotkin and Grossmann, 2003). 77 

The involvement of cGMP dependent protein kinase (PKG) along with cGMP in control of 78 

the production of steroid, nonapeptide hormone, growth factor, cAMP and cAMP-79 

dependent PKA, as well as the induction of apoptosis in porcine ovarian cells has been 80 

reported, too (Sirotkin et al., 2000). Protein kinases (PKA, MAPK) can also target cAMP 81 

responsive element binding protein 1 (CREB-1). It is required for mediating stimulatory 82 

influence of FSH on granulosa and luteal cells differentiation and steroidogenesis during 83 

the follicular recruitment estrous cycle and pregnancy of mouse (Mendelson and Kamat, 84 

2007). There exist indirect evidences for involvement of CREB in control of sexual 85 

maturation (He et al., 2006; Sirotkin et al., 2004). Cell cycle peptides especially 86 

proliferating cell nuclear antigen PCNA (Naryzhny and Lee, 2001) and cyclin B1 (Wyllie 87 

et al., 1998) are also involved in ovarian cell proliferation, growth and development 88 

(Tomanek and Chronowska, 2006). Proliferation-related peptide PCNA is a known 89 

promoter of the cell cycle transition through G1 and G2 phases. Furthermore, it activates 90 

the cyclin/cyclin dependent kinase complex (McHugh and Sarkar, 2006; Moldovan et al., 91 

2007), which promotes the
 
G2-M transition of the cell cycle (Hassan et al., 2001). 92 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Tom%C3%A1nek%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Chronowska%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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Expression of PCNA and cyclin B1 in ovarian cells has been reported from different 93 

mammalian species (Hutt et al., 2006; Sirotkin et al., 2008).   94 

The general aim of the in-vivo and in-vitro experiments with porcine ovarian granulosa 95 

cells was to identify possible intracellular regulators of female sexual maturation. For this 96 

purpose, expression of these signalling molecules were evaluated in granulosa cells 97 

collected from sexually mature and immature gilts of the same age.   98 

   99 

Materials and methods 100 

  101 

Animals  102 

 103 

Healthy gilts of Slovakian White breed (100-120 days of age) were reared under standard 104 

conditions at the Experimental Station of the Slovak University of Agriculture in Nitra, 105 

Slovakia. Conditions of their care and handling corresponded to the instructions of the 106 

European Commission (EC) no. 178/2002 and related EC documents and as approved by 107 

local ethics committee. Animals (n=35) were assigned at slaughter into two groups: 108 

sexually immature (n=18) and animals of the same age having reached sexual maturity 109 

(n=17) according to visual characteristics of ovaries (presence of follicles larger than 5 110 

mm). 111 

 112 

Preparation, culture and processing of granulosa cells 113 

 114 



 6 

Ovaries were transported to the laboratory at 4ºC and washed in sterile physiological 115 

solution. Ovaries from immature and mature gilts were processed separately. Follicular 116 

fluid was aspirated from 3-5 mm follicles, granulosa cells were isolated by centrifugation 117 

for 10 min at 200xg followed by washing in sterile DMEM/F12 1:1 medium 118 

(BioWhittaker™, Verviers, Belgium) and resuspended in the same medium supplemented 119 

with 10% fetal calf serum (BioWhittaker™) and 1% antibotic-antimycotic solution (Sigma, 120 

St. Louis, Mo, USA) at a final concentration of 10
6
 cells/mL of medium. Portions of the 121 

cell suspension were dispensed to 24-welled culture plates (Nunc™, Roskilde, Denmark, 1 122 

ml/well; for RIA) or Lab-Tek 16-welled chamber slides (Nunc Inc., International, 123 

Naperville, USA, 100 µl/well; for immunocytochemistry). Both the plate wells and 124 

chamber slides were incubated at 37.5ºC and 5% CO2 in humidified air until a 75 % 125 

confluent monolayer was formed (5-7 days), at which point the medium was replaced with 126 

fresh medium. Further culture was performed in 300 µl medium in 16-welled chamber slide 127 

cells or 1 ml of culture plate. After 2 days of culture the media from wells were removed, 128 

wells from chamber slides were washed in ice-cold PBS (pH 7.5). Cells were fixed for 1 h 129 

at room temperature in 4% paraformaldehyde, dehydrated in alcohols (70, 80, 96%; 10 min 130 

each) and stored in 96% alcohol at -4ºC to await immunocytochemical analysis. Media 131 

from plate wells were aspirated and kept at -70 ºC to await RIA. 132 

 133 

Immunocytochemistry 134 

 135 

Immunocytochemistry was used to detect PKA, PKG, TK, ERK1,2 related MAP kinase, 136 

CREB-1,  PCNA, cyclin B1, Bax, Bcl-2 in granulosa cells plated on chamber slides 137 
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(Osborn and Isenberg, 1994). Primary mouse monoclonal antibodies to each petide IGFBP-138 

3, IGFBP-4, PKA, PKG, TK, CREB-1, PCNA, cyclin B1, Bax, Bcl-2  (cross-reacting with 139 

corresponding rat, human, porcine and chicken substances; all from Santa Cruz 140 

Biotechnology Inc., Santa Cruz, CA, USA) were used as directed by the manufacturer at a 141 

dilution of 1:100 and ERK1,2 at a dilution of 1:50. Visualisation of the primary antibody 142 

binding sites was done with a secondary rabbit polyclonal antibody against mouse IGs, 143 

labelled with horseradish peroxidase (Sevac, Prague, Czech Republic; dilution 1:500) and 144 

diaminobenzidine (DAB) reagent (Roche Diagnostics Corporation, IN, USA, 10%). The 145 

presence of each peptide was determined by light microscopy. To verify these data, in some 146 

selected cases primary antibodies were visualised by secondary rabbit or goat monoclonal 147 

antibodies against mouse IGs labelled with FITC (Sevac, Prague, Czech Republic) and 148 

fluorescent microscopy.  Negative control was presented by stained cells omitting primary 149 

antibody. During microscopic inspection, the percentage of cells containing visible antigen 150 

was determined. 151 

 152 

Statistics 153 

 154 

Each experimental group was represented by four culture wells with granulosa cells. 155 

Assays of hormonal substances in incubation medium were performed in duplicate. The 156 

data presented concerning the effects of each substance are means of values obtained in 157 

three separate experiments performed on separate days using separate ovaries, and blood 158 

samples obtained from 10-12 animals. The values of blank controls were subtracted from 159 

the values determined by RIA in cell-conditioned medium to exclude any non-specific 160 
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background (less than 13% of total values). The rates of hormone secretion were calculated 161 

per 10
6
 cells per day. The proportion of cells containing each analysed substance was 162 

calculated following immunocytochemical analysis by counting at least 1000 cells per 163 

chamber slide well. Firstly, the data obtained in each experiment were processed by 164 

ANOVA. Thereafter, significant differences between the immature groups and mature gilts 165 

were evaluated by paired t-test or chi-square (
2
) test by using statistical software Sigma 166 

Plot 9.0 (Jandel, Corte Madera, USA). Differences from controls (P<0.05) were considered 167 

as significant.   168 

 169 

Results 170 

Percentage of ovarian granulosa cells containing PCNA did not differ between sexually 171 

mature (22.4±4.1%) and immature gilts (17.5±1.2%) (Fig. 1). On the contrary, the 172 

expression of ERK1,2 related MAPK and cyclin B1 was  significantly (p<0.05)  lower in 173 

granulosa cells of sexually mature gilts (ERK1,2 35.3±1.6%, cyclin B1 21.8±0.6%) in 174 

comparison to their immature counterparts (ERK1,2 46.2±1.8%, cyclin B1 38.2±1.6%) 175 

(Fig. 1). The expression of Bcl-2 and Bax by ovarian granulosa cells was significantly 176 

(p<0.05) higher in sexually mature gilts in comparison to immature animals (37.7±1.8% vs. 177 

28.7±1.0% for Bcl-2 and 48.7±2.6% vs. 31.9±2.3% for Bax, respectively) (Fig. 2). 178 

Proportion of cells containing PKA was also significantly (p<0.05) higher in sexually 179 

mature gilts than in sexually immature animals (PKA 54.4±1.2% vs. 32.7±1.7%) (Fig. 3). 180 

Similarly, expression of TK was significantly (p<0.05) higher in sexually mature gilts in 181 

comparison to sexually immature ones (TK 41.4±1.1% vs. 32.4±3.3%) (Fig. 3). Also, 182 
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proportion of cells containing CREB-1 was significantly (p<0.05) higher in sexually mature 183 

gilts than the immature animals (CREB 46.3±1.0% vs. CREB 38.6±0.7%). However, the 184 

expression of PKG was significantly lower (p<0.05) in granulosa cells of sexually mature 185 

gilts than the immature animals (PKG 16.7±2.2% vs. PKG 61.3±2.1%) (Fig. 3).  186 

 187 

Discussion and conclusions 188 

 189 

Do peptides of cell proliferation (PCNA, ERK1,2 related MAPK and cyclin B1) relate 190 

to sexual maturation? 191 

 192 

Follicular growth and development in porcine ovary was associated with increased 193 

expression of PCNA in granulosa cell (Tomanek and Chronowska, 2006). Peng et al. 194 

(1998) reported decreased expression of PCNA in granulosa cells during apoptosis. Our 195 

investigation did not reveal any differences in PCNA in granulosa cells between immature 196 

and mature gilts (Peng et al., 1998). In contrast to PCNA, the expression of cyclin B1 was 197 

associated with sexual maturation. Since cyclin B1 is a promoter and marker of G-phase of 198 

cell cycle (Wyllie et al., 1998), it might be suggested that sexual maturation is associated 199 

with suppression of cell cycle at this phase. Since ERK1,2 related MAPK is an important 200 

marker and promoter of cell cycle (Grossmann, 2009), its role in stimulation of ovarian cell 201 

proliferation and related follicle growth during puberty may be suggested. During 202 

establishment of ovarian cyclicity the expression and probably the importance of ERK1,2 203 

related MAPK declines. Besides cell proliferation ERK1,2 related MAPK can control 204 

apoptosis. In mammalian cells, the MAPK pathway can prevent (Allen et al., 1999; 205 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Tom%C3%A1nek%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Chronowska%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Peng%20X%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Peng%20X%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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Anderson and Tolkovsky, 1999; Nishio et al., 1999) or induce (Bhat and Zhang, 1999; 206 

Goillot et al., 1997) apoptosis depending on the type of cell and the extracellular stimuli 207 

that initiate the pathway. Therefore, the changes in ERK1,2 related MAPK as observed in 208 

the present study could be due to its involvement in control of apoptosis during sexual 209 

maturation. Evidence also persists (Sirotkin and Grossmann, 2003) that MAPK could be 210 

involved not only in control of apoptosis, but also in control of ovarian secretion activity 211 

and in mediating the effect of hormonal regulators of reproduction. 212 

Results of the present study indicate that sexual maturation is associated with a reduction in 213 

the expression of ERK1,2 related MAPK and cyclin B1, but not of PCNA, which could 214 

result in reduction of ovarian cell proliferation, increase in their apoptosis and might even 215 

change their secretion activity and response to hormonal regulators during establishment of 216 

ovarian cycle.     217 

 218 

Do anti-apoptotic peptide Bcl-2 and pro-apoptotic peptide Bax relate to sexual 219 

maturation? 220 

 221 

In this study, sexual maturation in gilts was found to be associated with increased 222 

expression of both Bcl-2 and Bax by ovarian granulosa cells. Through their effect on 223 

apoptosis, these peptides could be involved in control of ovarian follicular growth, 224 

development and fertility. This is probably the first indication of involvement of ovarian 225 

Bax and Bcl-2 in control of porcine sexual maturation. The puberty-related increase in 226 

expression of both Bax and its antagonist Bcl-2 as observed in the present study suggest the 227 

involvement of these apoptosis-related peptides in regulation of porcine sexual maturation, 228 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Sirotkin%20AV%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Makarevich%20AV%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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although understanding their exact role in control of porcine reproduction requires further 229 

investigation. 230 

 231 

Do PKA, CREB-1, TK and PKG relate to sexual maturation? 232 

 233 

Stimulatory influence of PKA on ovarian secretory activity and in mediating the action of 234 

hormones and growth factors has been demonstrated previously (Makarevich et al., 235 

2004a,b). The present study for the first time reports involvement of PKA in regulation of 236 

not only basal ovarian functions, but also of sexual maturation. It is possible that sexual 237 

maturity-related increases in the expression of PKA as observed in this study are important 238 

for sexual maturity-associated increases in hormone and growth factor release and action.  239 

It was previously mentioned that TK can be involved in activation of porcine ovarian 240 

follicle growth and maturation (Okamura et al., 2001) and in control of chicken ovarian cell 241 

proliferation and hormone release (Sirotkin and Grossmann, 2003). Our observations 242 

present further involvement of TK in control of sexual maturity-related changes in ovarian 243 

functions. Our observations provide the first indications of involvement of PKG in 244 

regulation of porcine sexual maturation. Involvement of cGMP/PKG system in control of 245 

release of porcine ovarian hormones has been reported previously (Sirotkin et al., 2000). 246 

Also, our data provide the first indications of the role of CREB-1 in sexual maturation and 247 

related processes in gilts. Although involvement of CREB-1 in control of sexual maturation 248 

(He et al., 2006; Sirotkin et al., 2004) and in mediating the effect of growth factor on these 249 

processes (Sirotkin and Grossmann, 2003) in non-porcine species has been documented, 250 

details of CREB-1 targets and action remain to be studied.  251 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Sirotkin%20AV%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Makarevich%20AV%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Sirotkin%20AV%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Makarevich%20AV%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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 252 

Possible interrelationships between studied substances 253 

 254 

Effect of hormones and growth factors on the ovary can be mediated by protein kinases and 255 

protein kinases-dependent transcription factors. PKA can mediate the action of hormones 256 

and growth factors (Makarevich et al., 2004a,b). Furthermore, hormones and growth factors 257 

can affect ovarian function during and after puberty through MAPK-dependent intracellular 258 

mechanisms. At least, growth factors can activate MAPK in a variety of cell types 259 

(Lapthorn et al., 1994), and inhibitors of MAPK cascade can block the mitogenic action of 260 

the growth factors (Alessi et al., 1995). Furthermore, ability of PKA and TK to affect 261 

MAPK and MAPK-activated CREB-1 in non-ovarian cells has been reported (Gao et al., 262 

2009; McAlees and Sanders, 2009; Sun et al., 2009; Zu et al., 2009). Therefore, the 263 

functional interrelationships between these substances within the ovary in regulating 264 

porcine sexual maturation can’t be excluded. Fine interrelationships between analysed 265 

processes occurring in porcine ovary during sexual maturation require further elucidation. 266 

Nevertheless, the present observations expand the existing knowledge concerning changes 267 

during sexual maturation in porcine ovarian hormones, growth factors and growth factors 268 

binding proteins. Furthermore, this is the first indication of involvement of some 269 

intracellular signalling substances in control of this process. Obtained results suggest that 270 

sexual maturation is associated with increase in expression of apoptosis-related substances 271 

(Bcl-2, Bax), PKA, TK, PKG, CREB-1, with decreases in the expression proliferation-272 

related substances of ERK1,2 related MAPK and cyclin B1, but not PCNA. Analyzed data 273 

indicate puberty-related changes in porcine ovarian signalling substances: Bcl-2, Bax, 274 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22McAlees%20JW%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Sanders%20VM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract


 13 

PKA, CREB-1, TK, ERK1,2 related MAPK, cyclin B1 and PKG. Results obtained from 275 

both in vivo and in vitro studies indicate the involvement of some apoptosis- and 276 

proliferation-related substances, protein kinases and transcription factor CREB-1 in porcine 277 

sexual maturation. The results of present study indicate that sexual maturation is associated 278 

with decrease in ovarian cells proliferation and increase in their secretory activity, 279 

apoptosis and expression of some protein kinases and transcription factor. Although the 280 

puberty-related changes don’t provide direct evidence of the involvement and physiological 281 

role of these signalling molecules in control of sexual maturation, our study enables to 282 

identify several extra-and intracellular signalling substances, which could be potential 283 

candidates for induction of porcine puberty and sexual maturation. 284 
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Figure Descriptions  461 

 462 

Fig. 1 Distribution of PCNA, ERK1,2 and cyclin B1 in ovarian granulosa cells of sexually 463 

immature and mature gilts. * significant difference (P<0.05) between corresponding groups 464 

of sexually immature (n=18, black column) and mature (n=17, grey column) gilts evaluated 465 

by t-test and chi-square (
2
) test. Immunocytochemistry.  466 

 467 

Fig. 2 Distribution of Bcl-2 and Bax in ovarian granulosa cells of sexually immature and 468 

mature gilts. * significant difference (P<0.05) between corresponding groups of sexually 469 

immature (n=18, black column) and mature (n=17, grey column) gilts evaluated by t-test 470 

and chi-square (
2
) test. Immunocytochemistry.  471 

 472 

Fig. 3 Distribution of PKA, CREB, TK and PKG in ovarian granulosa cells of sexually 473 

immature and mature gilts. * significant difference (P<0.05) between corresponding groups 474 

of sexually immature (n=18, black column) and mature (n=17, grey column) gilts evaluated 475 

by t-test and chi-square (
2
) test. Immunocytochemistry. 476 
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