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Standard Completeness

Completeness of a logic with respect
to algebras whose lattice reduct is the real interval [0, 1].
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Standard Completeness

Completeness of a logic with respect
to algebras whose lattice reduct is the real interval [0, 1].

* Intended semantics for Fuzzy logic (Hajek 1998)
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Examples: standard complete logics

* HL : Logic of Continuous t-norms
* MTL: Logic of Left-continuous t-norms
* UL : Logic of Left-continuous uninorms
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Our results

We prove standard completeness for
* (Classes of axiomatic extensions of U L
* (Classes of axiomatic extensions of MT'L
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The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras

|
Density Elimination and Standard Completeness for extensions of UL and MTL — p. 6/61



The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains (linearly ordered
L-algebras).
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The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains.
e UL <~ UL-chains
e MTL <~ MTL-chains
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The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains.
* UL + « <= UL-chains satisfying 1 < «
* MTL + « <= MTL-chains satisfying 1 < «
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The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains.
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The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains.

3. Completeness w.r.t countable dense L-chains (rational
completeness).
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The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains.

3. Completeness w.r.t countable dense L-chains (rational
completeness).
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The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains.

3. Completeness w.r.t countable dense L-chains (rational
completeness).

* (Metcalfe, Montagna JSL 2007)
Add the density rule to L

(a—=p)V(p—B)Vy
(= B)Vry

(density)

L + (density) is rational complete.
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Density Elimination and Rational completeness

L + (density) is rational complete. We prove that L is rational
complete as follows

* Find a suitable hypersequent calculus HL for L
* Show that the density rule is eliminable in H L
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The way to Standard Completeness

Given a logic L

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains.

3. Completeness of L = L + (density) w.r.t countable dense
L-chains (rational completeness).

4. Standard Completeness (via Dedekind-MacNeille
completion)
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Results on uninorm logic U L

UL=FL.+ ((a—=B)ANt)V((B—a)At)

We will show standard completeness for axiomatic extensions of
U L with any knotted axiom, i.e.:

* UL+ (a— a-a)
* UL+ (a-a— a)
° UL+ (of = a") (forn, k> 1)
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Our basic calculus F'L.: sequent calculus

_ — (fl
() =
L
F,J_iA()
F = '=a a A=11
=y U TAasT e
a;, ' =11 I' = a;
a1 Nag, I’ = 11 (/\l) I' = a1 Vas (\/T)
'=a B,A=1I l a,'=p
I'a— B8,A =11 (= 1) I'=>a—p (=)
a, 3, 1" = 11 (1)
a-p,I' =11
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Hypersequent calculus HU L for U L

(Avron '89): Hypersequent

where forall: = 1,...n, I'; = II; is an ordinary sequent
| is intended to denote a meta-level disjunction.
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Hypersequent calculus HU L for U L

Embedd sequent rules for F'L. into hypersequents

(tr) (init) (fl)

G| =t Gla = « G|f =
———— (T) (L)
GI'=T GII', L= A
GI'=>a Gla,A=1I GII' =11 (t1) G|II' = ()
GIT,A =TI Glt,T = II Gr= "
GIl=a GI'=2p Gla;, ' = 11 GII' = o4
(AD) (Vr)
G|F2>Oé/\,3 G|a1/\a2,F:>H G|F:>Oél\/042
Gla,T' =11 G|, =11 GI'=a G|B,A=1I Gla,T'=
(V1) (—1) (—7r)
GlaVv g, T' =11 Gl'a — 8,A =11 GI'=sa—p
GII' = « G|A$B( ) Gla, 5, = 11 D
G, A=a-8 Gla-B,T = 10
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Hypersequent calculus HU L for U L

We add:

* Suitable rules to manipulate the additional layer of
structure.

G|T=a|ll =«

G
G|T'=a (ec)

G|I= «

(ew)

|
Density Elimination and Standard Completeness for extensions of UL and MTL — p. 20/61



Hypersequent calculus HU L for U L

We add:
* Suitable rules to manipulate the additional layer of
structure.
G GIT=all =«
G|F:>oz(ew) G|T'=a (ec)

* A hypersequent structural rule corresponding to
prelinearity :

((a = B)At)V((B = a)At)

G‘Fl,Al = 114 G‘FQ,A2:>H2
G\Fl,F2:>H1\A1,A2:>H2

(com)
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Hypersequent calculi for extensions of U L?

(Ciabattoni, Galatos, Terui 2008).
: + Sets P, N, of formulas defined by:

P, A, Po, No = Atomic formulas

T><T P’rH—l ::Nn|73n—|—1-77n_|_1’77n_|_1\/73n+1|1’J_
Nos1 :=Pu | Pog1 = Nog1 | Nogt ANpar |0 T

| X T xampes

* To the class N, belong :

T><T a—=o-a a-a—a of =a”

P, —— N, ° Totheclass P; belong :
—aV-a  (a-B)V((aAB) = (a-B))
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Hypersequent calculi for extensions of U L?

Algorithm to convert axioms into “good” rules,
preserving cut-elimination.

T >< T * Axioms in Ny = Sequent structural

P No rules
T >< T * Axioms in (subclass of ) P; =
P, N Hypersequent structural rules
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Correspondence axioms - rules

Class Axiom Rule
G|Il= WV l G| = (wr)
w wr
No | (a= ) A(f = a) G|la= W G|I= a
G1|II,T, I = ¥
a— oo G1|IL,T = W
G1|H,F1 = U G1|H,F2 = U
(mgl)
a-a— A G1|II,T1, T2, = W
GILTT =¥ ... G1|H,I‘};‘¢\II
k (knot?)
a® — a” G1|H,F1,...Fk:>‘lf
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Density elimination

* Density rule in hypersequent calculus :

G|Il=plp=A
G|II'=A

where p does not occur in the conclusion (eigenvariable).

(density)
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Density elimination

* Density rule in hypersequent calculus :

G|Il=plp=A
G|II'=A

where p does not occur in the conclusion (eigenvariable).

(density)

e Similar to cut elimination

G| I'= A G|A,E:>A< .
GIT,= = A o

Proof by induction on the length of derivations
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Density elimination

(Ciabattoni, Metcalfe TCS 2008)
Given a density-free derivation, ending in

- d
G|IIl'=plp=A
G|I'= A

(density)
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Density elimination

(Ciabattoni, Metcalfe TCS 2008)
Given a density-free derivation, ending in

- d
G|IIl'=plp=A
G|I'= A

* Asymmetric substitution: p is replaced
o With A when occurring on the right
° With I when occurring on the left

(density)
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Density elimination

- d*
GII'=A|l'=A
G|T'= A

(EC)
* Asymmetric substitution: p is replaced

o With A when occurring on the right
° With I when occurring on the left
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A problem

p=.>p

G\I‘:>].9|p:>A
G|T'= A

(EC)

°* p=-paxiom
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A problem

I'= A
- d
G\F:>A\F:>A
G|II'=A

(EC)

°* p= paxiom
e I'= A not an axiom

|
Density Elimination and Standard Completeness for extensions of UL and MTL — p. 31/61



A possible solution

p=p

G\I’:>].9|p:>A
G|T'= A

(EC)
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A possible solution

(Ciabattoni, Metcalfe 2008)
= t
- d
G|T= A = A
G|T'= A

(EC)

* We substitute:
° p = p (axiom) with = ¢t (axiom).
° p with A when occurring on the right.
° p with I" when occurring on the left.

Works for HU L. What about extensions?
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Contraction and mingle

Consider U L extended with

o — OO

- —
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Contraction and mingle

Hypersequent calculus: HU L plus
]
Gi|II,I,\T = U
Gi[II,T = U (©)

G1|H,F1 =2 G1|H,F2 =2
G1|H,F1,F2 =

(mgl)
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Recall

(Ciabattoni, Metcalfe 2008)
= t
- d
G|T= A = A
G|T'= A

(EC)

* We substitute:
° p = p (axiom) with = ¢t (axiom).
° p with A when occurring on the right.
° p with I" when occurring on the left.
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Problematic case

Consider
ILp,p=p (0)
ILp=0p

Can we get:

ILI' =t )
II=t -
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Proof by cases

Recall: the hypersequent symbol ’|" is interpreted as disjunction.

* For any hypersequent calculus H L the following meta-rule
holds:

Girpr H Gaobpgp H
G1|Go Fgr H
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Proof by cases and Density Elimination

Recall our derivation

- d
G|IIl'=plp=A
G|T'= A

(density)
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Proof by cases and Density Elimination

In d we instantiate p with ¢, obtaining

X
G| IT=t|lt=A
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Proof by cases and Density Elimination

We instantiate p with ¢, obtaining
- dy
G| IT=t|lt=A
We find density free proofs of:

GII' =t G‘t%A
- da a2
GII'= A GII'= A

Density Elimination and Standard Completeness for extensions of UL and MTL — p. 41/61



Proof by cases and Density Elimination

We find density free proofs of:

GII' =t G|t,:>A
- da a2

Applying the proof by cases property, we get:

G =tlt=A

G = A
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Proof by cases and Density Elimination

We find density free proofs of:

GII' =t G|t,:>A
- da a2

Applying the proof by cases property, we get:

- dy
Gl =tlt=A

Gl = A
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Knotted rules

* Consider UL extended with
af = o

for k, n>1
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Knotted rules

* Consider UL extended with

ok = o

for k, n>1
* Hypersequent calculus: HUL plus

GILI? =¥ ... GII,I"=U
G1|II,Ty,...Ty = U

(knot})
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Knotted rules: Problematic case

ILp,p,p=p 1,p,p,p=0p
ILp,p=0p

(knots)

We would like to get:

IL I'=t ILI\I'=t )
IILI'= ¢ '
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Knotted rules: Problematic case

ILp,p,p=p 1,p,p,p=0p
ILp,p=0p

Using some derivabilities in HU L + (knot3), we can show:

(knots)

M0, T=¢ ILT,I'=t

1,T= ¢
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Standard completeness for extensions of U L

Let L = UL+ (of — a")

1. General algebraic completeness, i.e. completeness w.r.i.
L-algebras.

2. Completeness w.r.t. L-chains.
3. L =1L + (density) is Rational complete .

4. L is Standard complete (via Dedekind-MacNeille
completion).
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Closure under DM-completions

A »  (Ciabattoni, Terui, Galatos 2011) Axioms on
. FL <> equations over residuated lattices
Ps N3 o Asubclass of equations in class N5 are
T >< T preserved by Dedekind-MacNeille
P, No completion. All the axioms we

T >< T considered are in this class.

* A subclass of equations in class P5 are

preserved by Dedekind-MacNeille
T >< T completion, when applied to subdirectly

Py — Ng irreducible algebras
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Standard completeness for extensions of ML

* MTL=UL+ (f - a)A(a—1)
* Hypersequent calculus HMTL = HUL + (wl) + (wr)

G|II=WU (wl) G| =
G|l,a= W v G| = «

(wr)
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Standard completeness for extensions of ML

* Density Elimination holds for H MT L extended with any
structural sequent rule

° Any axiomatic extension of MT L with axioms within
N5 is standard complete ( 2008 Ciabattoni, Metcalfe).
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Standard completeness for extensions of ML

* Density Elimination holds for H MT L extended with any
structural sequent rule

° Any axiomatic extension of MT L with axioms within
N5 is standard complete ( 2008 Ciabattoni, Metcalfe).

* Density elimination holds for extensions of H MT' L with
structural hypersequent rules which do not “mix too much”
the components (convergent rules).

° Any axiomatic extension of MT' L with axioms within a
subclass of Ps is standard complete (2012 Baldi,
Ciabattoni, Spendier)
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Recall:Correspondence axioms-rules

(Ciabattoni, Galatos, Terui 2008).
s s Sets Py, N, of formulas defined by:

7;3 N3 Po, No := Atomic formulas

T >< T Pn—|—1 ::Nn | 73n—|—1'73n—|—1 ’ 7Dn—|—1\/77n—|—1 | 1 ’ 1
Nn—i—l ':Pn‘Pn—{—l _>Nn—i—1 ‘Nn—l—l/\-/\/‘n—i—llo ’ T

T >< T Examples:

* To the class N, belong :
T >< T a—a-a o-o—Q
P, —— N, * Totheclass P;belong :

—aV-oa (= B)A) V(B — a)At)
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Recall:Correspondence axioms - rules

Class Axiom Rule
G|Il= WV l G| = (wr)
w wr
No | (a= ) A(f = a) G|la= W G|I= a
G1|II,T, I = ¥
a— oo G1|IL,T = W
G1|H,F1:>\If G1|H,F2:>\If
(mgl)
a-a— A G1|II,T1, T2, = W
GILT? =¥ ... G|IT} =¥
k (knot?)
a® — a” G1|H,F1,...Fk:>‘lf
G|ILT =W
(em)
P2 aV oo GII'= |[I= W
GlFl,F2:>
(lq)
Ps oV o G|y = |2 =
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Examples of convergent rules

* Axioms in P3; extending MT'L
° (wnm) :

~(a-B)V ((aAB) = (a-B))
° (lg) :

—(Y \/ ——(Y
* Corresponding convergent rules

G|F2,F1,A1 = 11 G‘Fl,rg,Al = 1
G‘FlarhAl :>H1 G‘F27F37A1 :>Hl

© G‘FQ,F3:>‘F1,A1$H1

(wnm)

G‘F17F2:>
© G|F1=> |F2=>

(lq)
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A non convergent rule

* Axiom in P3 extending MTL

°© aV

* Corresponding rule

@)
GIIY= A
GI'= |¥= A

(em)
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Our results

e Standard completeness for extensions of U L:

°© UL + o* — a™ (includes mingle and contraction
axioms).

e Standard completeness for extensions of MT'L:

° Any axiomatic extension of MT'L with axioms within a
subclass of Ps is standard complete.
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Open problem

* Conjecture: Let o be any formulain Ns. UL + ais
standard complete.

* Let (r) be any sequent rule obtained by an axiom in A5.
Does HUL + (r) admits Density Elimination?

° Example, what about:

G‘Fl = F%,H:>\If
G‘Fl,rz,ﬂi\lf
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Work 1n progress

* A general characterization of density elimination, hence
standard completeness, for:

° Extensions of MT'L with axioms up to the class Ps in
the substructural hierarchy.

o Extensions of U L with axioms up to the class N5 in the
substructural hierarchy.

o Noncommutative variants of MT'L, and U L.

© Logics with involutive negation. Long standing open
problem: IU L
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Appendix A: A class of structural rules

Let HL be HU L extended with any structural sequent rule

Gl‘Hl,\Ifl = Al ...Hl,\Ifm - Al

Gl‘Hl,Fl,...ijAl (7“)

H L admits density elimination if (r) satisfies the following:

* Each ¥, is a multiset {I'; , ... ,Fini} with iy .. .4, varying
over{1,...k}

* Either the minimum among the n; is bigger than £ or the
maximum is smaller than &

* For any I'; there is at least one ¥; where I'; does not
appear.

* For any I'; there is at least one ¥; where I'; appears more

then once .
|

|
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Appendix B: Convergent rules

Definition. Let (r) be a hypersequent structural rule with G|S;, ¢« € {1,..m} premises,
C1|...|Cq conclusion.
(0-pivot) G|S; is a 0-pivotif thereisan s € {1,...,q} suchthat R(S;) = R(Cs) and
metavariables in L(.S;) are contained in L(C5).
(n-pivot) G|S; is an n-pivot for G|S; with respect to [Ag /1, [ke(1,...,n)» With T'y € L(S;)
and Ay € L(S;), if the following conditions hold:
© @|S; is a0-pivot
° R(S:) = R(S;),
- L(Sj) = L( Si[Ak/Fk]Le{l,m,n} ),
© lfn > 1, G|S;isa (n — 1)-pivotfor n premises G|S;,,p = 1,...,n, with
respect to [+ /1, Tk (1,....n1\{p}-
Definition. A completed hypersequent rule (r) is convergent if for each premise G|S;
one of the following conditions holds:
® R(S;) =10,
® @|S; is a 0-pivot
® there is a premise G|S; which is an n-pivot for G|S;, with n > 0.
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