Density Elimination and Standard Completeness for extensions of UL and MTL

Paolo Baldi

(joint work with Agata Ciabattoni)

Vienna University of Technology baldi@logic.at

Standard Completeness

Completeness of a logic with respect to algebras whose lattice reduct is the real interval [0,1].

Standard Completeness

Completeness of a logic with respect to algebras whose lattice reduct is the real interval [0, 1].

Intended semantics for Fuzzy logic (Hajek 1998)

Examples: standard complete logics

- HL: Logic of Continuous t-norms
- MTL: Logic of Left-continuous t-norms
- UL: Logic of Left-continuous uninorms

Our results

We prove standard completeness for

- Classes of axiomatic extensions of UL
- Classes of axiomatic extensions of MTL

Given a logic L

 General algebraic completeness, i.e. completeness w.r.t. L-algebras

- 1. General algebraic completeness, i.e. completeness w.r.t. L-algebras.
- 2. Completeness w.r.t. L-chains (linearly ordered L-algebras).

- 1. General algebraic completeness, i.e. completeness w.r.t. L-algebras.
- 2. Completeness w.r.t. *L*-chains.
 - UL \iff UL-chains
 - MTL \iff MTL-chains

- 1. General algebraic completeness, i.e. completeness w.r.t. L-algebras.
- 2. Completeness w.r.t. *L*-chains.
 - $UL + \alpha \iff UL$ -chains satisfying $1 \le \alpha$
 - $MTL + \alpha \iff MTL$ -chains satisfying $1 \le \alpha$

Given a logic ${\cal L}$

- 1. General algebraic completeness, i.e. completeness w.r.t. L-algebras.
- 2. Completeness w.r.t. *L*-chains.

- 1. General algebraic completeness, i.e. completeness w.r.t. L-algebras.
- 2. Completeness w.r.t. *L*-chains.
- 3. Completeness w.r.t countable dense L-chains (rational completeness).

- 1. General algebraic completeness, i.e. completeness w.r.t. $\it L$ -algebras.
- 2. Completeness w.r.t. *L*-chains.
- 3. Completeness w.r.t countable dense *L*-chains (rational completeness).

Given a logic L

- 1. General algebraic completeness, i.e. completeness w.r.t. L-algebras.
- 2. Completeness w.r.t. *L*-chains.
- 3. Completeness w.r.t countable dense *L*-chains (rational completeness).
 - (Metcalfe, Montagna JSL 2007) Add the density rule to ${\cal L}$

$$\frac{(\alpha \to p) \lor (p \to \beta) \lor \gamma}{(\alpha \to \beta) \lor \gamma} \ (density)$$

L + (density) is rational complete.

Density Elimination and Rational completeness

L+(density) is rational complete. We prove that L is rational complete as follows

- ullet Find a suitable hypersequent calculus HL for L
- Show that the density rule is eliminable in HL

- 1. General algebraic completeness, i.e. completeness w.r.t. L-algebras.
- 2. Completeness w.r.t. *L*-chains.
- 3. Completeness of L = L + (density) w.r.t countable dense L-chains (rational completeness).
- 4. Standard Completeness (via Dedekind-MacNeille completion)

Results on uninorm logic UL

$$UL = FL_e + ((\alpha \to \beta) \land t) \lor ((\beta \to \alpha) \land t)$$

We will show standard completeness for axiomatic extensions of UL with any *knotted axiom*, i.e.:

- $UL + (\alpha \rightarrow \alpha \cdot \alpha)$
- $UL + (\alpha \cdot \alpha \rightarrow \alpha)$
- $UL + (\alpha^k \to \alpha^n)$ (for n, k > 1)

Our basic calculus FL_e : sequent calculus

$$\frac{\overline{\alpha} \Rightarrow \overline{\alpha} \text{ (init)}}{\overline{\Gamma} \Rightarrow \overline{\Gamma}} \xrightarrow{(T)}$$

$$\frac{\Gamma}{\Gamma, \bot} \Rightarrow \overline{\Delta} \xrightarrow{(\bot)}$$

$$\frac{\Gamma \Rightarrow \Pi}{t, \Gamma \Rightarrow \Pi} \text{ (tl)}$$

$$\frac{\Gamma}{\Gamma, \bot} \Rightarrow \overline{\Lambda} \xrightarrow{(fr)}$$

$$\frac{\Gamma \Rightarrow \alpha}{\Gamma, \Delta \Rightarrow \Pi} \xrightarrow{(Cut)}$$

$$\frac{\Gamma \Rightarrow \alpha}{\Gamma, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \Pi}{\alpha_1 \land \alpha_2, \Gamma \Rightarrow \Pi} \xrightarrow{(\Lambda l)}$$

$$\frac{\Gamma \Rightarrow \alpha_i}{\Gamma, \Delta \Rightarrow \alpha_1 \lor \alpha_2} \xrightarrow{(Vr)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \Pi}{\alpha_1 \land \alpha_2, \Gamma \Rightarrow \Pi} \xrightarrow{(\Lambda l)}$$

$$\frac{\Gamma \Rightarrow \alpha_i}{\Gamma, \alpha_1 \lor \alpha_2} \xrightarrow{(Vr)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \Pi}{\alpha_1 \land \alpha_2, \Gamma \Rightarrow \Pi} \xrightarrow{(\Lambda l)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \alpha_i, \Delta \Rightarrow \beta} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \alpha_i, \Delta \Rightarrow \beta} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \alpha_i, \Delta \Rightarrow \beta} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \beta, \Delta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i}{\Gamma, \alpha \Rightarrow \alpha_i, \beta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \alpha_i, \beta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \alpha_i, \beta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \alpha_i, \beta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \alpha_i, \beta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

$$\frac{\alpha_i, \Gamma \Rightarrow \alpha_i, \Gamma \Rightarrow \Pi}{\Gamma, \alpha \Rightarrow \alpha_i, \beta \Rightarrow \Pi} \xrightarrow{(\Lambda r)}$$

(Avron '89): Hypersequent

$$\Gamma_1 \Rightarrow \Pi_1 \mid \dots \mid \Gamma_n \Rightarrow \Pi_n$$

where for all $i=1,\ldots n,\,\Gamma_i\Rightarrow \Pi_i$ is an ordinary sequent is intended to denote a meta-level disjunction.

Embedd sequent rules for FL_e into hypersequents

$$\frac{\overline{G}|\Rightarrow t}{\overline{G}|\Rightarrow t} (tr) \qquad \overline{\overline{G}|\alpha \Rightarrow \alpha} (init) \qquad \overline{\overline{G}|f \Rightarrow} (fl)$$

$$\frac{\overline{G}|\Gamma \Rightarrow \overline{\Gamma}}{\overline{G}|\Gamma \Rightarrow \overline{\Gamma}} (T) \qquad \overline{\overline{G}|\Gamma, \bot \Rightarrow \Delta} (\bot)$$

$$\frac{G|\Gamma \Rightarrow \alpha \quad G|\alpha, \Delta \Rightarrow \Pi}{G|\Gamma, \Delta \Rightarrow \Pi} (cut) \qquad \frac{G|\Gamma \Rightarrow \Pi}{G|t, \Gamma \Rightarrow \Pi} (tl) \qquad \frac{G|\Gamma \Rightarrow \alpha}{\overline{G}|\Gamma \Rightarrow f} (fr)$$

$$\frac{G|\Gamma \Rightarrow \alpha \quad G|\Gamma \Rightarrow \beta}{G|\Gamma \Rightarrow \alpha \land \beta} (\land r) \qquad \frac{G|\alpha_i, \Gamma \Rightarrow \Pi}{\overline{G}|\alpha_1 \land \alpha_2, \Gamma \Rightarrow \Pi} (\land l) \qquad \frac{G|\Gamma \Rightarrow \alpha_i}{\overline{G}|\Gamma \Rightarrow \alpha_1 \lor \alpha_2} (\lor r)$$

$$\frac{G|\alpha, \Gamma \Rightarrow \Pi \quad G|\beta, \Gamma \Rightarrow \Pi}{G|\alpha \lor \beta, \Gamma \Rightarrow \Pi} (\lor l) \qquad \frac{G|\Gamma \Rightarrow \alpha \quad G|\beta, \Delta \Rightarrow \Pi}{G|\Gamma, \alpha \to \beta, \Delta \Rightarrow \Pi} (\to l) \qquad \frac{G|\alpha, \Gamma \Rightarrow \beta}{\overline{G}|\Gamma \Rightarrow \alpha \to \beta} (\to r)$$

$$\frac{G|\Gamma \Rightarrow \alpha \quad G|\Delta \Rightarrow \beta}{G|\Gamma, \Delta \Rightarrow \alpha \lor \beta} (\cdot r) \qquad \frac{G|\alpha, \beta, \Gamma \Rightarrow \Pi}{\overline{G}|\alpha \lor \beta, \Gamma \Rightarrow \Pi} (\cdot l)$$

We add:

 Suitable rules to manipulate the additional layer of structure.

$$\frac{G}{G \mid \Gamma \Rightarrow \alpha} \text{ (ew)} \qquad \frac{G \mid \Gamma \Rightarrow \alpha \mid \Gamma \Rightarrow \alpha}{G \mid \Gamma \Rightarrow \alpha} \text{ (ec)}$$

We add:

 Suitable rules to manipulate the additional layer of structure.

$$\frac{G}{G \mid \Gamma \Rightarrow \alpha} \text{ (ew)} \qquad \frac{G \mid \Gamma \Rightarrow \alpha \mid \Gamma \Rightarrow \alpha}{G \mid \Gamma \Rightarrow \alpha} \text{ (ec)}$$

 A hypersequent structural rule corresponding to prelinearity :

$$((\alpha \to \beta) \land t) \lor ((\beta \to \alpha) \land t)$$

$$\frac{G \mid \Gamma_1, \Delta_1 \Rightarrow \Pi_1 \quad G \mid \Gamma_2, \Delta_2 \Rightarrow \Pi_2}{G \mid \Gamma_1, \Gamma_2 \Rightarrow \Pi_1 \mid \Delta_1, \Delta_2 \Rightarrow \Pi_2} \text{ (com)}$$

Hypersequent calculi for extensions of UL?

(Ciabattoni, Galatos, Terui 2008).

Sets \mathcal{P}_n , \mathcal{N}_n of formulas defined by:

$$\mathcal{P}_0,\,\mathcal{N}_0 := \mathsf{Atomic} \;\mathsf{formulas}$$

$$\mathcal{P}_{n+1} := \mathcal{N}_n \mid \mathcal{P}_{n+1} \cdot \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \vee \mathcal{P}_{n+1} \mid 1 \mid \bot$$

$$\mathcal{N}_{n+1} := \mathcal{P}_n \mid \mathcal{P}_{n+1} \to \mathcal{N}_{n+1} \mid \mathcal{N}_{n+1} \wedge \mathcal{N}_{n+1} \mid 0 \mid \top$$

Examples:

• To the class \mathcal{N}_2 belong :

$$\alpha \to \alpha \cdot \alpha \qquad \alpha \cdot \alpha \to \alpha \qquad \alpha^k \to \alpha^n$$

• To the class \mathcal{P}_3 belong :

$$\neg \alpha \vee \neg \neg \alpha \qquad \neg (\alpha \cdot \beta) \vee ((\alpha \wedge \beta) \rightarrow (\alpha \cdot \beta))$$

Hypersequent calculi for extensions of UL?

Algorithm to convert axioms into "good" rules, preserving cut-elimination.

- Axioms in $\mathcal{N}_2 \Rightarrow \underline{\mathsf{Sequent}}$ structural rules
- Axioms in (subclass of) $\mathcal{P}_3 \Rightarrow$ Hypersequent structural rules

Correspondence axioms - rules

Class	Axiom	Rule
\mathcal{N}_2	$(\alpha \to t) \land (f \to \alpha)$	$\frac{G \mid \Pi \Rightarrow \Psi}{G \mid \Pi, \alpha \Rightarrow \Psi} (wl) \qquad \frac{G \mid \Pi \Rightarrow}{G \mid \Pi \Rightarrow \alpha} (wr)$
	$\alpha ightarrow \alpha \cdot \alpha$	$\frac{G_1 \Pi,\Gamma,\Gamma\Rightarrow\Psi}{G_1 \Pi,\Gamma\Rightarrow\Psi} (c)$
	$\alpha \cdot \alpha \to \alpha$	$\frac{G_1 \Pi,\Gamma_1 \Rightarrow \Psi G_1 \Pi,\Gamma_2 \Rightarrow \Psi}{G_1 \Pi,\Gamma_1,\Gamma_2,\Rightarrow \Psi} (mgl)$
	$\alpha^k o \alpha^n$	$\frac{G \Pi, \Gamma_1^n \Rightarrow \Psi \dots G_1 \Pi, \Gamma_k^n \Rightarrow \Psi}{G_1 \Pi, \Gamma_1, \dots \Gamma_k \Rightarrow \Psi} (knot_k^n)$

Density rule in hypersequent calculus :

$$\frac{G \mid \Gamma \Rightarrow p \mid p \Rightarrow \Delta}{G \mid \Gamma \Rightarrow \Delta} \ (density)$$

where p does not occur in the conclusion (*eigenvariable*).

Density rule in hypersequent calculus :

$$\frac{G \mid \Gamma \Rightarrow p \mid p \Rightarrow \Delta}{G \mid \Gamma \Rightarrow \Delta} \ (density)$$

where p does not occur in the conclusion (*eigenvariable*).

Similar to cut elimination

$$\frac{G \mid \Gamma \Rightarrow A \quad G \mid A, \Sigma \Rightarrow \Delta}{G \mid \Gamma, \Sigma \Rightarrow \Delta} \quad (cut)$$

Proof by induction on the length of derivations

(Ciabattoni, Metcalfe TCS 2008) Given a density-free derivation, ending in

$$\frac{\vdots d}{G \mid \Gamma \Rightarrow p \mid p \Rightarrow \Delta}_{\text{(density)}}$$

(Ciabattoni, Metcalfe TCS 2008) Given a density-free derivation, ending in

$$\frac{\vdots d}{G \mid \Gamma \Rightarrow \mathbf{p} \mid \mathbf{p} \Rightarrow \Delta} \atop G \mid \Gamma \Rightarrow \Delta$$
 (density)

- Asymmetric substitution: p is replaced
 - With △ when occurring on the right
 - \circ With Γ when occurring on the left

$$\frac{\vdots d^*}{G \mid \Gamma \Rightarrow \Delta \mid \Gamma \Rightarrow \Delta}$$
(EC)

- Asymmetric substitution: p is replaced
 - \circ With \triangle when occurring on the right
 - \circ With Γ when occurring on the left

A problem

$$\begin{array}{c} p \Rightarrow p \\ \vdots \\ d \\ \vdots \\ G \mid \Gamma \Rightarrow p \mid p \Rightarrow \Delta \\ \hline G \mid \Gamma \Rightarrow \Delta \end{array} (EC)$$

• $p \Rightarrow p$ axiom

A problem

$$\begin{array}{c} \Gamma \Rightarrow \Delta \\ \vdots \\ d \\ \vdots \\ G \mid \Gamma \Rightarrow \Delta \mid \Gamma \Rightarrow \Delta \\ \hline G \mid \Gamma \Rightarrow \Delta \end{array} (\text{ec})$$

- $p \Rightarrow p$ axiom
- $\Gamma \Rightarrow \Delta$ not an axiom

A possible solution

$$p \Rightarrow p$$

$$\vdots$$

$$d$$

$$\vdots$$

$$G \mid \Gamma \Rightarrow p \mid p \Rightarrow \Delta$$

$$G \mid \Gamma \Rightarrow \Delta$$
(EC)

A possible solution

(Ciabattoni, Metcalfe 2008)

$$\Rightarrow t
\vdots
d^*
\vdots
d^*
\vdots
G \mid \Gamma \Rightarrow \Delta \mid \Gamma \Rightarrow \Delta$$

$$G \mid \Gamma \Rightarrow \Delta$$
(EC)

- We substitute:
 - $p \Rightarrow p$ (axiom) with $\Rightarrow t$ (axiom).
 - \circ p with Δ when occurring on the right.
 - \circ p with Γ when occurring on the left.

Works for HUL. What about extensions?

Contraction and mingle

Consider UL extended with

$$\alpha \to \alpha \cdot \alpha$$

$$\alpha \cdot \alpha \rightarrow \alpha$$

Contraction and mingle

Hypersequent calculus: HUL plus

$$\frac{G_1|\Pi,\Gamma,\Gamma\Rightarrow\Psi}{G_1|\Pi,\Gamma\Rightarrow\Psi} (c)$$

$$\frac{G_1|\Pi, \Gamma_1 \Rightarrow \Psi \quad G_1|\Pi, \Gamma_2 \Rightarrow \Psi}{G_1|\Pi, \Gamma_1, \Gamma_2 \Rightarrow \Psi} \quad (mgl)$$

Recall

(Ciabattoni, Metcalfe 2008)

$$\Rightarrow t
\vdots
d^*
\vdots
d^*
\vdots
G \mid \Gamma \Rightarrow \Delta \mid \Gamma \Rightarrow \Delta$$

$$G \mid \Gamma \Rightarrow \Delta$$
(EC)

- We substitute:
 - $p \Rightarrow p$ (axiom) with $\Rightarrow t$ (axiom).
 - \circ *p* with \triangle when occurring on the right.
 - \circ p with Γ when occurring on the left.

Problematic case

Consider

$$\frac{\Pi, \mathbf{p}, p \Rightarrow p}{\Pi, p \Rightarrow p} (c)$$

Can we get:

$$\frac{\Pi, \Gamma \Rightarrow t}{\Pi \Rightarrow t}$$
?

Proof by cases

Recall: the hypersequent symbol '|' is interpreted as disjunction.

 For any hypersequent calculus HL the following meta-rule holds:

$$\frac{G_1 \vdash_{HL} H \quad G_2 \vdash_{HL} H}{G_1 \mid G_2 \vdash_{HL} H}$$

Recall our derivation

$$\begin{array}{c} \vdots \, d \\ G \, | \, \Gamma \Rightarrow \mathbf{p} \, | \, \mathbf{p} \Rightarrow \Delta \\ \hline G \, | \, \Gamma \Rightarrow \Delta \end{array} \, (density)$$

In d we instantiate p with t, obtaining

$$\begin{array}{c}
\vdots d_t \\
G \mid \Gamma \Rightarrow t \mid t \Rightarrow \Delta
\end{array}$$

We instantiate p with t, obtaining

$$\begin{array}{c}
\vdots d_t \\
G \mid \Gamma \Rightarrow t \mid t \Rightarrow \Delta
\end{array}$$

We find density free proofs of:

$$G|\Gamma \Rightarrow t$$

 $\vdots d_1$
 $G|\Gamma \Rightarrow \Delta$
 $G|\Gamma \Rightarrow \Delta$
 $G|\Gamma \Rightarrow \Delta$

We find density free proofs of:

$$G|\Gamma \Rightarrow t$$

 $\vdots d_1$
 $G|\Gamma \Rightarrow \Delta$
 $G|\Gamma \Rightarrow \Delta$
 $G|\Gamma \Rightarrow \Delta$

Applying the proof by cases property, we get:

$$G|\Gamma \Rightarrow t|t \Rightarrow \Delta$$

$$\vdots$$

$$G|\Gamma \Rightarrow \Delta$$

We find density free proofs of:

$$G|\Gamma \Rightarrow t$$

 $\vdots d_1$
 $G|\Gamma \Rightarrow \Delta$
 $G|\Gamma \Rightarrow \Delta$
 $G|\Gamma \Rightarrow \Delta$

Applying the proof by cases property, we get:

$$G|\Gamma \Rightarrow t|t \Rightarrow \Delta$$

$$\vdots$$

$$G|\Gamma \Rightarrow \Delta$$

Knotted rules

ullet Consider UL extended with

$$\alpha^k \to \alpha^n$$

for
$$k, n > 1$$

Knotted rules

Consider UL extended with

$$\alpha^k \to \alpha^n$$

for k, n > 1

Hypersequent calculus: HUL plus

$$\frac{G|\Pi, \Gamma_1^n \Rightarrow \Psi \dots G_1|\Pi, \Gamma_k^n \Rightarrow \Psi}{G_1|\Pi, \Gamma_1, \dots \Gamma_k \Rightarrow \Psi} (knot_k^n)$$

Knotted rules: Problematic case

$$\frac{\Pi, \boldsymbol{p}, \boldsymbol{p}, \boldsymbol{p} \Rightarrow \boldsymbol{p} \quad \Pi, \boldsymbol{p}, \boldsymbol{p}, \boldsymbol{p} \Rightarrow \boldsymbol{p}}{\Pi, \boldsymbol{p}, \boldsymbol{p} \Rightarrow \boldsymbol{p}} \quad (knot_2^3)$$

We would like to get:

$$\frac{\Pi, \Gamma, \Gamma \Rightarrow t \quad \Pi, \Gamma, \Gamma \Rightarrow t}{\Pi, \Gamma \Rightarrow t} ?$$

Knotted rules: Problematic case

$$\frac{\Pi, \boldsymbol{p}, \boldsymbol{p}, \boldsymbol{p} \Rightarrow \boldsymbol{p} \quad \Pi, \boldsymbol{p}, \boldsymbol{p}, \boldsymbol{p} \Rightarrow \boldsymbol{p}}{\Pi, \boldsymbol{p}, \boldsymbol{p} \Rightarrow \boldsymbol{p}} \ (knot_2^3)$$

Using some derivabilities in $HUL + (knot_2^3)$, we can show:

$$\begin{array}{c} \Pi, \Gamma, \Gamma \Rightarrow t & \Pi, \Gamma, \Gamma \Rightarrow t \\ \vdots & \vdots \\ \Pi, \Gamma \Rightarrow t \end{array}$$

Standard completeness for extensions of UL

Let
$$L = UL + (\alpha^k \to \alpha^n)$$

- 1. General algebraic completeness, i.e. completeness w.r.t. $\it L$ -algebras.
- 2. Completeness w.r.t. *L*-chains.
- 3. L = L + (density) is Rational complete.
- 4. L is Standard complete (via Dedekind-MacNeille completion).

Closure under DM-completions

(Ciabattoni, Terui, Galatos 2011) Axioms on FL ↔ equations over residuated lattices

- A subclass of equations in class \mathcal{N}_2 are preserved by Dedekind-MacNeille completion. All the axioms we considered are in this class.
- A subclass of equations in class \mathcal{P}_3 are preserved by Dedekind-MacNeille completion, when applied to subdirectly irreducible algebras

Standard completeness for extensions of MTL

- $MTL = UL + (f \rightarrow \alpha) \land (\alpha \rightarrow t)$
- Hypersequent calculus HMTL = HUL + (wl) + (wr)

$$\frac{G \mid \Pi \Rightarrow \Psi}{G \mid \Pi, \alpha \Rightarrow \Psi} (wl) \qquad \frac{G \mid \Pi \Rightarrow}{G \mid \Pi \Rightarrow \alpha} (wr)$$

Standard completeness for extensions of MTL

- Density Elimination holds for HMTL extended with any structural sequent rule
 - Any axiomatic extension of MTL with axioms within \mathcal{N}_2 is standard complete (2008 Ciabattoni, Metcalfe).

Standard completeness for extensions of MTL

- Density Elimination holds for HMTL extended with any structural sequent rule
 - Any axiomatic extension of MTL with axioms within \mathcal{N}_2 is standard complete (2008 Ciabattoni, Metcalfe).
- Density elimination holds for extensions of HMTL with structural hypersequent rules which do not "mix too much" the components (convergent rules).
 - Any axiomatic extension of MTL with axioms within a subclass of \mathcal{P}_3 is standard complete (2012 Baldi, Ciabattoni, Spendier)

Recall:Correspondence axioms-rules

(Ciabattoni, Galatos, Terui 2008).

Sets \mathcal{P}_n , \mathcal{N}_n of formulas defined by:

$$\mathcal{P}_0,\,\mathcal{N}_0 := \mathsf{Atomic} \;\mathsf{formulas}$$

$$\mathcal{P}_{n+1} := \mathcal{N}_n \mid \mathcal{P}_{n+1} \cdot \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \vee \mathcal{P}_{n+1} \mid 1 \mid \bot$$

$$\mathcal{N}_{n+1} := \mathcal{P}_n \mid \mathcal{P}_{n+1} \to \mathcal{N}_{n+1} \mid \mathcal{N}_{n+1} \wedge \mathcal{N}_{n+1} \mid 0 \mid \top$$

Examples:

• To the class \mathcal{N}_2 belong :

$$\alpha \to \alpha \cdot \alpha \qquad \alpha \cdot \alpha \to \alpha$$

• To the class \mathcal{P}_3 belong :

$$\neg \alpha \vee \neg \neg \alpha \qquad ((\alpha \to \beta) \wedge t) \vee ((\beta \to \alpha) \wedge t)$$

Recall:Correspondence axioms - rules

Class	Axiom	Rule
\mathcal{N}_2	$(\alpha \to t) \land (f \to \alpha)$	$\frac{G \mid \Pi \Rightarrow \Psi}{G \mid \Pi, \alpha \Rightarrow \Psi} (wl) \qquad \frac{G \mid \Pi \Rightarrow}{G \mid \Pi \Rightarrow \alpha} (wr)$
	$\alpha ightarrow \alpha \cdot \alpha$	$\frac{G_1 \Pi,\Gamma,\Gamma\Rightarrow\Psi}{G_1 \Pi,\Gamma\Rightarrow\Psi} (c)$
	$\alpha \cdot \alpha \to \alpha$	$\frac{G_1 \Pi, \Gamma_1 \Rightarrow \Psi G_1 \Pi, \Gamma_2 \Rightarrow \Psi}{G_1 \Pi, \Gamma_1, \Gamma_2, \Rightarrow \Psi} (mgl)$
	$\alpha^k \to \alpha^n$	$\frac{G \Pi, \Gamma_1^n \Rightarrow \Psi \dots G_1 \Pi, \Gamma_k^n \Rightarrow \Psi}{G_1 \Pi, \Gamma_1, \dots \Gamma_k \Rightarrow \Psi} (knot_k^n)$
\mathcal{P}_2	$\alpha \vee \neg \alpha$	$rac{G \Pi,\Gamma\Rightarrow\Psi}{G \Gamma\Rightarrow \Pi\Rightarrow\Psi}$ (em)
\mathcal{P}_3	$\neg \alpha \lor \neg \neg \alpha$	$\frac{G \mid \Gamma_1, \Gamma_2 \Rightarrow}{G \mid \Gamma_1 \Rightarrow \mid \Gamma_2 \Rightarrow} (Iq)$

Examples of convergent rules

• Axioms in \mathcal{P}_3 extending MTL

Corresponding convergent rules

$$G \mid \Gamma_{2}, \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1} \quad G \mid \Gamma_{1}, \Gamma_{3}, \Delta_{1} \Rightarrow \Pi_{1}$$

$$G \mid \Gamma_{1}, \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1} \quad G \mid \Gamma_{2}, \Gamma_{3}, \Delta_{1} \Rightarrow \Pi_{1}$$

$$G \mid \Gamma_{2}, \Gamma_{3} \Rightarrow \mid \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1}$$

$$G \mid \Gamma_{2}, \Gamma_{3} \Rightarrow \mid \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1}$$

$$G \mid \Gamma_{1}, \Gamma_{2} \Rightarrow \qquad (Iq)$$

$$G \mid \Gamma_{1} \Rightarrow \mid \Gamma_{2} \Rightarrow \qquad (Iq)$$

A non convergent rule

• Axiom in \mathcal{P}_3 extending MTL

$$\circ$$
 $\alpha \vee \neg \alpha$

Corresponding rule

0

$$\frac{G|\Gamma, \Sigma \Rightarrow \Delta}{G|\Gamma \Rightarrow |\Sigma \Rightarrow \Delta} \ (em)$$

Our results

- Standard completeness for extensions of UL:
 - \circ $UL + \alpha^k \to \alpha^n$ (includes mingle and contraction axioms).
- Standard completeness for extensions of MTL:
 - $^{\circ}$ Any axiomatic extension of MTL with axioms within a subclass of \mathcal{P}_3 is standard complete.

Open problem

- Conjecture: Let α be any formula in \mathcal{N}_2 . $UL + \alpha$ is standard complete.
- Let (r) be any sequent rule obtained by an axiom in \mathcal{N}_2 . Does HUL + (r) admits Density Elimination?
 - Example, what about:

$$\frac{G \mid \Gamma_1 \Rightarrow \Gamma_2^2, \Pi \Rightarrow \Psi}{G \mid \Gamma_1, \Gamma_2, \Pi \Rightarrow \Psi}$$

Work in progress

- A general characterization of density elimination, hence standard completeness, for:
 - \circ Extensions of MTL with axioms up to the class \mathcal{P}_3 in the substructural hierarchy.
 - \circ Extensions of UL with axioms up to the class \mathcal{N}_2 in the substructural hierarchy.
 - \circ Noncommutative variants of MTL and UL.
 - $^{\circ}$ Logics with involutive negation. Long standing open problem: IUL

Appendix A: A class of structural rules

Let HL be HUL extended with any structural sequent rule

$$\frac{G_1|\Pi_1, \Psi_1 \Rightarrow \Delta_1 \dots \Pi_1, \Psi_m \Rightarrow \Delta_1}{G_1|\Pi_1, \Gamma_1, \dots \Gamma_k \Rightarrow \Delta_1} (r)$$

HL admits density elimination if (r) satisfies the following:

- Each Ψ_i is a multiset $\{\Gamma_{i_1},\ldots,\Gamma_{i_{n_i}}\}$ with $i_1\ldots i_{n_i}$ varying over $\{1,\ldots k\}$
- Either the minimum among the n_i is bigger than k or the maximum is smaller than k
- For any Γ_i there is at least one Ψ_j where Γ_i does not appear.
- For any Γ_i there is at least one Ψ_j where Γ_i appears more then once .

Appendix B: Convergent rules

Definition. Let (r) be a hypersequent structural rule with $G|S_i$, $i \in \{1,..m\}$ premises, $C_1|...|C_q$ conclusion.

- (0-pivot) $G|S_i$ is a 0-pivot if there is an $s \in \{1, ..., q\}$ such that $R(S_i) = R(C_s)$ and metavariables in $L(S_i)$ are contained in $L(C_s)$.
- (n-pivot) $G|S_j$ is an n-pivot for $G|S_i$ with respect to $[\Delta_k/\Gamma_k]_{k\in\{1,\ldots,n\}}$, with $\Gamma_k\in L(S_i)$ and $\Delta_k\in L(S_j)$, if the following conditions hold:
 - \circ $G|S_j$ is a 0-pivot
 - $^{\circ}$ $R(S_i) = R(S_j),$
 - $^{\circ}$ $L(S_j) = L(S_i[^{\Delta_k}/_{\Gamma_k}]_{k \in \{1,...,n\}}^l),$
 - $^{\circ}$ If n>1, $G|S_j$ is a (n-1)-pivot for n premises $G|S_{j_p}$, $p=1,\ldots,n$, with respect to $[^{\Delta_k}/_{\Gamma_k}]_{k\in\{1,\ldots,n\}\setminus\{p\}}$.

Definition. A completed hypersequent rule (r) is *convergent* if for each premise $G|S_i$ one of the following conditions holds:

- $R(S_i) = \emptyset$,
- $G|S_i$ is a 0-pivot
- there is a premise $G|S_j$ which is an n-pivot for $G|S_i$, with n>0.