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We can also add constants and other relations (see below), as well as
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sloppy about assuming such constants of conditions.
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Consider the a sequent caculus L (single conclusion sequents).

We define the frame Wy,, where

m (W,o0,¢) is the free monoid over the set F'm of all formulas
m W' = Sw x Fm, where Sy is the set of all unary linear
polynomials u|x] = yoxoz of W, and

m 2z N (u,a) iff Fp ulz] = a.

For
(u,a) ) & ={(ul-oz],a)} and z\ (u,a) = {(u[z o | a)},
we have
royN(u,a) ifftpulzoy] = a
iff -, ulzoy] = a
iff N (u[_oy], a)
iff yN(ulz o ], a).
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= (J>*L),M>=(L),<,-) is a residuated frame for w’ J/ wy the
set of all meet irreducibles above w’/ws, and likewise for w; \\ w’.
Then L = (W)™,

We can also form residuated frames by taking prime ideals,
((completely) prime) ideals, and relation non-empty intersection.

For L a residuated lattice, Wi’ = (F(L),Z(L), NyEgr1,0,\, /), the
intermediate structure, aka the cannonical frame A, of A. Then
(A )T = (W{ )T is the canonical extension of L.
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Residuated frames

If we have a common subset B of W and W' that supports a
(partial) algebra B = (B, A, V,-,\,/, 1), then these are natural
conditions inspired by the frame Wy, fora,b,ce B, z,y € W,

z € W’. Often B generates (W, 0,1) (and W’ by actions from W),
we call (W, B) a Gentzen frame.
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We call such pairs (W, B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the (CUT)-rule.
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We call such pairs (W, B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the (CUT)-rule.

Theorem. Given a Gentzen frame (W, B), the map
{19:B —> WT, b {b}< is a (partial) homomorphism.
(Namely, if a,b € B and a @b € B (e is a connective) then
{a e b}~ = {a}~ ew+ {b}7).
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We call such pairs (W, B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the (CUT)-rule.

Theorem. Given a Gentzen frame (W, B), the map

{19:B —> WT, b {b}< is a (partial) homomorphism.
(Namely, if a,b € B and a @b € B (e is a connective) then

{a e b}~ = {a}~ ew+ {b}7).

For cut-free Genzten frames, we get only a quasihomomorphism.
aegb e {a}Yow+ {b}Y C {aepb}~.
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FL

r=a Yoaoz = C

(cut)

(Id)

Yoxroz = C a = a
= boz =
yoaoz C (/\I_g) Yyoonoz C (/\L’r‘) €T = q x:>b (/\R)
yoa N\ boz = ¢ yoa N\ boz = ¢ r=aANb
= boz =
Yoaor =€ YOMEZC 1y _E=C  (yRry) E=b gy
yoa V boz = ¢ xr=aVb xr=aVb
x=a yoboz=c aox =0b
L R
yox o (a\b)oz = ¢ (L) r = a\b (\R)
xr=a yoboz=c roa=>b
L R
yo(b/a) o xoz = ¢ (/L) r=b/a (/R)

yoa o boz = ¢ r=a y=>,

(L) (‘R)

yoa - boz = ¢ roy=a-b
Yyoz=a
yoloz = a oy e=1 (IR)

where a,b,c € Fm, x,y,z € Fm~*.
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Residuated frames

Frames and modules

In a residuated frame we can replace the relation N by a subset D of o s
W' in an interdefinable way by: (in the spirit of AAL, the positive Famlbliecy
cone of a residuated lattice, hyperframes D = I-) Frames and modules
Densification
Dy={e}P andx Np z & z\ z C D. Frames and display
Distributive frames
The nuclearity contition for N becomes Involutive FL
y\\(l‘\\Z)Qlef(xoy)\\ng BiFL
Applications

In all residuated frames we have (y \ (x \ 2))9 = ((zoy) \ 2)7, but
often we actually have y \ (x \\ z2) = (z oy) \\ 2. For those residuated
frames the condition for D is automatically satified.
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In all residuated frames we have (y \ (x \ 2))9 = ((zoy) \ 2)7, but
often we actually have y \ (x \\ z2) = (z oy) \\ 2. For those residuated
frames the condition for D is automatically satified.

If xoy, x\\ z and z // x are singletons (instead of sets), as it happens
with most applications, then C D above can be replaced by € D.
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Frames and modules

In a residuated frame we can replace the relation N by a subset D of o s
W' in an interdefinable way by: (in the spirit of AAL, the positive Famlbliecy
cone of a residuated lattice, hyperframes D = I-) Frames and modules
Densification
Dy={e}P andx Np z & z\ z C D. Frames and display
Distributive frames
The nuclearity contition for N becomes Involutive FL
y\\(l‘\\Z)Qlef(xoy)\\ng BiFL
Applications

In all residuated frames we have (y \ (x \ 2))9 = ((zoy) \ 2)7, but
often we actually have y \ (x \\ z2) = (z oy) \\ 2. For those residuated
frames the condition for D is automatically satified.

If xoy, x\\ z and z // x are singletons (instead of sets), as it happens
with most applications, then C D above can be replaced by € D.

We call residuated frames for which these two simplifications apply
action residuated frames.
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Actions

Recall that given a monoid W = (W, -, 1) and a set W/, a map
x : W x W' — W' is called an action if it sarisfies:
lxz=xzand (z-y)*x2z=x*(y*2).
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lxz=xzand (z-y)*x2z=x*(y*2).

Then we say that (W', %) is an W-set.

If we also have another map x: W/ x W — W' such that
zxl =z (zxy)*xx =2 (yr) and z*x (zxy) = (z * 2) xy,
then we say that (W', *, x) is an bi-W-set.

This allows us to link W-sets and action residuated frames, as then
an action residuated frame is equivalent to a bi-W-set (W', /. \\)
together with an arbitratry subset D of W' of designated elements.
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Bi-modules

Let's assume that P = N is the underlying set of a residuated lattice.
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Bi-modules

Let's assume that P = N is the underlying set of a residuated lattice.

l=zx=1-z (xy)z = z(yz)

x
m zx(yVz)=xyVezand (yVz)r=yzx\Vzr
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Bi-modules

Let's assume that P = N is the underlying set of a residuated lattice.

m r-l=z=1 -z (2y)z = z(y2)
m zx(yVz)=xyVezand (yVz)r=yzx\Vzr

So, (P,V,,1) is a semiring. [In the complete case, a quantale.]
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Let's assume that P = N is the underlying set of a residuated lattice.

Formula hierarchy
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\(y Az) = (z\y) A (x\2) and (y A z)/z = (y/z) A (2/x)
2)\z = (y\z) A (2\z) and z/(y V 2) = (z/y) A (z/%)
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Bi-modules

Let's assume that P = N is the underlying set of a residuated lattice.
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Residuated frames
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Designated elements

Actions

Let's assume that P = N is the underlying set of a residuated lattice.

Formula hierarchy

| €T - 1 = xr = 1 Y (ajy)z = x(yz) Submodules and nuclei
' Frames and modules
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Frames and display
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Ne=x=x/1 -
(y2)\z = 2\(y\z) and z/(2y) = (z/y)/= Applications
z\(y/z) = (z\y)/z

z\(Y A z) = (2\y) A (2\2) and (y A z) [z = (y/x) A (2/2)
(yV2)\e = (y\z) A (2\z) and z/(y V 2) = (z/y) A (z/2)

So, (P, V,-,1) acts on both sides on (N, A) by pxn = n/p and
nxp=p\n. Thus, ((N,A\),*) becomes a (P,V,-,1)-bimodule. This
split matches the notion of polarity. It also extends to \/, A.

The bimodule can be viewed as a two-sorted algebra
(Pa\/7°717N7/\7\7/)'

The absolutely free algebra for P = N generated by Py = Ny = Var
(the set of propositional variables) gives the set of all formulas.
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z\(y/z) = (z\y)/z

z\(Y A z) = (2\y) A (2\2) and (y A z) [z = (y/x) A (2/2)
(yV2)\e = (y\z) A (2\z) and z/(y V 2) = (z/y) A (z/2)

So, (P, V,-,1) acts on both sides on (N, A) by pxn = n/p and
nxp=p\n. Thus, ((N,A\),*) becomes a (P,V,-,1)-bimodule. This
split matches the notion of polarity. It also extends to \/, A.

The bimodule can be viewed as a two-sorted algebra
(Pa\/7°717N7/\7\7/)'
The absolutely free algebra for P = N generated by Py = Ny = Var

(the set of propositional variables) gives the set of all formulas. The
steps of the generation process yield the substructural hierarchy.
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Formula hierarchy

Residuated frames

Frames and modules

Designated elements

Actions
A 4 m  The sets P,,, N,, of formulas are defined by:
3 . (0) Py =Ny = the set of variables Sbmodules znd nucle
. (P1) Nn € P Densification
Ps Ns (P2) a,beP,y1 = aVba-bleP,y Frames and display
A A (N]_) Pn g Nn+1 Distributive frames
(N2) a, b € Nn_|_1 = a/Abc Nn—l—l Involutive FL
(N3) a < Pn—l—l; b e Nn_|_1 = CL\b, b/a, 0 e Nn_|_1 EiFLl' '
pplications

n Por1r = Ny Notr = (Po)APoii\/Prsa
Pn C Pn—l-laNn C Nn—f—lvUPn — UNn = F'm

P1-reduced: \/ ] p;

\ m  MNi-reduced: A(pip2- - 0n\7/q1q2 " Gm)

P1P2 - Pnq1q2 - Gm ST
m  Sequent: ay,as,...,a, = ag (a; € Fm)

XK

Po
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defined by a /\-closed subset that is also closed under the actions.
Namely, it is defined by a nucleus: a closure operator v on N such
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A, = (A, A\, Ve, 4, \,/,7(1)) is also a residuated lattice.
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Given a (P,\/, -, 1)-bimodule ((N,\),\, /), each sub-bimodule is
defined by a /\-closed subset that is also closed under the actions.
Namely, it is defined by a nucleus: a closure operator v on N such
that p € P,n € N implies p\n,n/p € N.

If P = N is the underlying set of a residuated lattice
A= (A NV, \,/,1) the two notions of nucelus coincide and
A, = (A, A\, Ve, 4, \,/,7(1)) is also a residuated lattice.

Residuated frames arise from studying submodules of P(W), where
W is a monoid, namely nuclei on powersets (of monoids).
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The image of this module morphism is exactly the dual algebra.

Note that for Z C W', we have Z< =, _,{2}~. The sets {z}~
are called basic and every closed set is an intersection of basic closed.
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It is important to chose the W-set W' wisely. Otherwise the module
P(W') will either be too far or too close to the dual algebra.
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Note that for Z C W', we have Z< =, _,{2}~. The sets {z}~
are called basic and every closed set is an intersection of basic closed.

It is important to chose the W-set W' wisely. Otherwise the module
P(W') will either be too far or too close to the dual algebra. We
want W to have a natural description, but we don't want it to have
unnecessary elements.
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Note that (P(W),|J, o) is a complete semiring and (P(W),()) iSa s
module over it, via \. Formula hierarchy
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' '
Given a W-set (W', ), we have that (P(W’),|J)? is also a module dmac

Densification
over (P(W),J, o) with lifted action X \ Z ={z\z:2 € X,2 € Z}:  Frames and display
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UXA\U'Z =X\ Z) and Y\ (X\ 2) = (X oY)\ Z.  sen
Note that the map < : (P(W")J)? — (P(W),()) is a module B
morphism, namely (|J° Z;)< =N Z2 and (X \\ 2)< = X\Z<.

The image of this module morphism is exactly the dual algebra.

Note that for Z C W', we have Z< =, _,{2}~. The sets {z}~
are called basic and every closed set is an intersection of basic closed.

It is important to chose the W-set W' wisely. Otherwise the module
P(W') will either be too far or too close to the dual algebra. We
want W to have a natural description, but we don't want it to have
unnecessary elements. So, we want it to be minimal, as given by the
basic closed sets (no two should be equal), but the action should
support this.
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Densification

Given an FL.-chain A with a gap g < h, extend it to one where this
is no longer a gap (namely there is a new point p with g < p < h).

Residuated frames

Frames and modules

Designated elements
Actions

Bi-modules

Formula hierarchy
Submodules and nuclei

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications
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Given an FL.-chain A with a gap g < h, extend it to one where this
is no longer a gap (namely there is a new point p with g < p < h).

We need to embed in an FL. chain the partial algebra A U {p},
where g < p < h.

It suffices to construct a residuated frame W 4 , from this data such
that (Wa ,, AU{p}) is a Gentzen frame and sz is linear.

If we take W’ to be unncessarily big, checking that WXp is linear
takes some effort.
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Formula hierarchy
Submodules and nuclei
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Densification

Residuated frames

Frames and modules

Designated elements

Actions

Given an FL.-chain A with a gap g < h, extend it to one where this g/
is no longer a gap (namely there is a new point p with g < p < h). Formula hierarchy

Submodules and nuclei

Frames and modules

We need to embed in an FL. chain the partial algebra A U {p},

Where g < p < h Frames and display
Distributive frames

It suffices to construct a residuated frame W 4 , from this data such 'B”_V:L'”“VG L

that (Wa ,, AU{p}) is a Gentzen frame and szp is linear. F—

If we take W’ to be unncessarily big, checking that WXp is linear

takes some effort. If we take it to be just right, checking linearity is
easy.
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Residuated frames

Frames and modules

Frames and display

Adding residuals

Conservativity

Cut elimination via
display

Via algebraic
completions

With disjunction

Distributive frames

Involutive FL

BiFL

Frames and display Appcsions
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Adding residuals

Residuated frames

Frames and modules

Frames and display

We define the system (plus associativity and exchage for simplicity).

Conservativity

Cut elimination via
display

r=a Y,a,2=2C
y) .CC, Zj :; C (CUt) m (Id) Via algebraic

completions

With disjunction

y, CL, b, Z = C Tr = a y —> b Distributive frames
b ( L) b ( R) Involutive FL
y,a-b,z=c T, Y= a -
BiFL
Applications
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Residuated frames

Frames and modules

Frames and display

We define the system (plus associativity and exchage for simplicity).

Conservativity

Cut elimination via
display

r=a Y,a,2=2C
y) 33, Zj :; C (CUt) m (Id) Via algebraic

completions

With disjunction

y, CL, b, Z = C Tr = a y —> b Distributive frames
b (L) b (R) Involutive FL
y,a - ,Z:>C x,yéa-
BiFL

Applications

This logic is complete with respect to commutative posemigroups;
L = (L, <,-) where multiplication preserves the order.
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Adding residuals

Residuated frames

Frames and modules

Frames and display

We define the system (plus associativity and exchage for simplicity).

Conservativity

Cut elimination via
display

(Id) Via algebraic

a = aq completions

With disjunction

Tr = a y —> b Distributive frames
(-R) .
Involutive FL

BiFL

r=a Y,a,z=2=C
Y, T, 2 = C

(cut)

y,a,b,z=c

(L)

y,a-b,z=c x,y=a-b

Applications

This logic is complete with respect to commutative posemigroups;
L = (L, <,-) where multiplication preserves the order.

Is it conservative to extend the logic to one L. with implication?

r=a yY,b,z=c
y,r,a — b, z=a

a,r =0
r=a—b

(—L) (—R)
Conservativity: if a sequent/inequality fails in the smaller logic (in a
every commtative posemigroup), then it fails in the bigger logic (in a
commutative residuated posemigroup).
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Residuated frames

Frames and modules

Frames and display

We define the system (plus associativity and exchage for simplicity).

Conservativity

Cut elimination via

r=a Y,a,z2=cC I ey
yzz=e (@ g=q (d) e
With disjunction
y’ CL, b’ Z=C ( I_) r=a y = b ( R) Distributive frames
y, a - b, zZ = C x) y = Qq - b Involutive FL
BiFL
Applications

This logic is complete with respect to commutative posemigroups;
L = (L, <,-) where multiplication preserves the order.

Is it conservative to extend the logic to one L. with implication?

a,r =0
r=a—b

r=a yY,b,z=c
y,r,a — b, z=a

(—L) (—R)
Conservativity: if a sequent/inequality fails in the smaller logic (in a
every commtative posemigroup), then it fails in the bigger logic (in a
commutative residuated posemigroup).

We can of course define a residuated frame
(Fm*, Fm* x F'm, N, o, \\) based on this system.
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Conservativity

Residuated frames

Frames and modules

Frames and display

Let S denotes all commutive posemigroups and ‘R all the Adding residuals

- -
posemigroup reducts of the residuatred ones. Cut elimination via

display
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completions

With disjunction

Distributive frames

Involutive FL

BiFL

Applications
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- -
posemigroup reducts of the residuatred ones. Then S(R) (all Cut elimination via
display

subreducts) forms an (order) quasivariety. Conservativity states that  vi aigebraic
completions

S =H(S(R)). In other words every posemigroup is a homomorphic |y giunction
image of one that can be embedded to a residuated posemigroup. Sl e s

Involutive FL

There are a couple of ways to prove conservativity: BiFL

Applications

Proof-theoretically. Prove cut elimination and then use the
subformula property.
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posemigroup reducts of the residuatred ones. Then S(R) (all Cut limination vi

subreducts) forms an (order) quasivariety. Conservativity states that Vi ecbraic

S = H(S(R)). In other words every posemigroup is a homomorphic (e

With disjunction

image of one that can be embedded to a residuated posemigroup. Sl e s

Involutive FL

There are a couple of ways to prove conservativity: BiFL

Applications

Proof-theoretically. Prove cut elimination and then use the
subformula property.

Algebraically. Show that every commutative posemigroup can be
embedded into a residuated one. In other words we show something

stronger: S = S(R).
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Conservativity

Residuated frames

Frames and modules

Frames and display

Let S denotes all commutive posemigroups and ‘R all the Al
- -
posemigroup reducts of the residuatred ones. Then S(R) (all Cut limination vi

subreducts) forms an (order) quasivariety. Conservativity states that Vi ecbraic

completions

S =H(S(R)). In other words every posemigroup is a homomorphic |y giunction

image of one that can be embedded to a residuated posemigroup. R
Involutive FL
There are a couple of ways to prove conservativity: BiFL
Applications

Proof-theoretically. Prove cut elimination and then use the
subformula property.

Algebraically. Show that every commutative posemigroup can be
embedded into a residuated one. In other words we show something

stronger: S = S(R).

Proof-theoretically (2): Via display logic.
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Cut elimination via display

Residuated frames

Frames and modules

Frames and display

Consider the following display logic system LS. Here x,y € Fm*, Al res el

Conservativity

a,b € F'm and z is of the form 1 >(xz2 > ... (x, >a)...).
isplay

Via algebraic
€T O y A completions

rT=a a=z
= 2 (cut)

a = a (Id) y =T >z (d|S) With disjunction

Distributive frames

Involutive FL

(R) BiFL

Applications

a,b=z
a-b=z

r=a Yy=>,
T, Yy=a-b

(L)

r=a b=z (—L) r=a>b (—R)
a—b=x>z r=a—b
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Cut elimination via display

Residuated frames

Frames and modules

Frames and display

Consider the following display logic system Lg. Here z,y € F'm*™, é‘:dsegfdtya's

a,b € F'm and z is of the form 1 >(xz2 > ... (x, >a)...).
isplay

Via algebraic
X O y = Z completions

With disjunction

r = a CljZ(Cut)

= =g (d) == (dis)

Distributive frames

Involutive FL

(R) BiFL

Applications

a,b=z
a-b=z

r=a Yy=>,
T, Yy=a-b

(L)

r=a b=z (—L) r=a>b (—R)
a—b=x>z r=a—b

We could build a residuated frame (W, W', =  {,},>).
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Consider the following display logic system LS. Here x,y € Fm*, Al res el

Conservativity

a,b € F'm and z is of the form 1 >(xz2 > ... (x, >a)...).
isplay

Via algebraic
X O y = Z completions

a = a (Id) y =T >z (d|S) With disjunction

r=a a= 2
= 2 (cut)

Distributive frames

Involutive FL

(R) BiFL

Applications

a,b=z
a-b=z

r=a Yy=>,
T, Yy=a-b

(L)

r=a b=z (—L) r=a>b (—R)
a—b=x>z r=a—b

We could build a residuated frame (W, W', =  {,},>).

Then the system L¢ has cut elimination ‘for free' (by Belnap's
conditions) and the subformula property (and decidability). So L? is
conservative over its —-free fragment.
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a—b=x>z r=a—b

We could build a residuated frame (W, W', =  {,},>).

Then the system L¢ has cut elimination ‘for free' (by Belnap's
conditions) and the subformula property (and decidability). So L? is
conservative over its —-free fragment. But is that the same as the
fragment of cut-free L.? If so, we have conservativity.
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Cut elimination via display

Residuated frames

Frames and modules

Frames and display

Consider the following display logic system L°. Here z,y € Fm*, Ackng el
- = ! Conservativity
a,b € Fm and z is of the form z; >(x2 > ... (z, >a)...). Cut elimination vi
isplay
Via algebraic
X O y = Z completions

With disjunction

r = a CljZ(Cut)

= =g (d) == (dis)

Distributive frames

Involutive FL

(R) BiFL

Applications

a,b=z
a-b=z

r=a Yy=>,
T, Yy=a-b

(L)

r=a b=z (—L) r=a>b (—R)
a—b=x>z r=a—b

We could build a residuated frame (W, W', =  {,},>).

Then the system L¢ has cut elimination ‘for free' (by Belnap's
conditions) and the subformula property (and decidability). So L? is
conservative over its —-free fragment. But is that the same as the
fragment of cut-free L.? If so, we have conservativity.

Yes! The two systems are mutually interpretable. (New sequents are
innocent.) First every rule in L, is derivable in 6L.. (Using the
display porperty.) Second, given a cut-free proof in L of a sequent
free of — and >, we can convert it to a proof in cut-free L..
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Via algebraic completions

Residuated frames

Let L be a commutative posemigroup.

Frames and modules

Frames and display

Adding residuals
Conservativity

Cut elimination via
display

Via algebraic
completions
With disjunction

Distributive frames

Involutive FL

BiFL

Applications
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Via algebraic completions

Residuated frames

Let L be a commutative posemigroup.

We consider the frame W = (L,L x L, N, -, \\), where
z \ (y,2) = (yx,z) and z N (y, 2) iff yz < z.

Frames and modules

Frames and display
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Conservativity

Cut elimination via
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completions
With disjunction

Distributive frames

Involutive FL

BiFL

Applications
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Residuated frames

Let L be a commutative posemigroup.

We consider the frame W = (L,L x L, N, -, \\), where
z \ (y,2) = (yx,z) and z N (y, 2) iff yz < z.

We identify (1, z) with z. Then y \\ z = (y, 2), or rather {(y, 2)}<, is
a ‘formal’ residual.

Frames and modules

Frames and display

Adding residuals
Conservativity

Cut elimination via
display

Via algebraic
completions
With disjunction

Distributive frames
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BiFL

Applications
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Via algebraic completions

Residuated frames

Frames and modules

Frames and display

Let L be a commutative posemigroup. Adding residuals

Conservativity

Cut elimination via

We consider the frame W = (L,L x L, N, -, \\), where display
z \ (y,2) = (yx,z) and z N (y, 2) iff yz < z.

With disjunction

We identify (1, z) with z. Then y \\ z = (y, z), or rather {(y, 2)}<, IS pistributive frames

a ‘formal’ residual. Involutive FL

BiFL
Then W1 is a commutative residuated posemigroup into which L F—
embeds.
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Via algebraic completions

Residuated frames

Let L be a commutative posemigroup.

We consider the frame W = (L,L x L, N, -, \\), where
z \ (y,2) = (yx,z) and z N (y, 2) iff yz < z.

We identify (1, z) with z. Then y \\ z = (y, 2), or rather {(y, 2)}<, is
a ‘formal’ residual.

Then WE Is a commutative residuated posemigroup into which L
embeds.

It is easy to see that if L satisfies contraction x < 22, then so does
W71,, and by a previous result so does Wf

roxNz p
Nz (c)

Frames and modules

Frames and display

Adding residuals
Conservativity

Cut elimination via
display

Via algebraic
completions
With disjunction

Distributive frames

Involutive FL

BiFL

Applications
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Via algebraic completions

Residuated frames

Nick Galatos, Prague workshop, March, 2014

Let L be a commutative posemigroup.

We consider the frame W = (L,L x L, N, -, \\), where
z \ (y,2) = (yx,z) and z N (y, 2) iff yz < z.

We identify (1, z) with z. Then y \\ z = (y, 2), or rather {(y, 2)}<, is

a ‘formal’ residual.

Then WE Is a commutative residuated posemigroup into which L
embeds.

It is easy to see that if L satisfies contraction x < 22, then so does
W71,, and by a previous result so does Wf

roxNz p
Nz (c)

If we have join in the language (next page) the same holds for
mingle/expansion 22 < z (zy < z V y)

Nz yNz
xoyNz

(m)”

Frames and modules

Frames and display

Adding residuals
Conservativity

Cut elimination via
display

Via algebraic
completions
With disjunction

Distributive frames

Involutive FL

BiFL

Applications
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With disjunction

Residuated frames

Frames and modules

Frames and display

We could now consider posemigroups with joins and ask if it is Adding residuals
- - Conservativity
conservative to add residuals. Qe e e vie
display
Via algebraic

completions
With disjunction

Distributive frames

Involutive FL

BiFL

Applications
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With disjunction

Residuated frames

Frames and modules

Frames and display

We could now consider posemigroups with joins and ask if it is ALl
. . o ‘ y onservativity
conservative to add residuals. The answer is ‘no’, as we get Qe e e vie
oo . 1 g < display
x(yVz) =zyVaxz. So we take join posemigroups (semirings without v aigebraic
1 completions
)

Distributive frames

Involutive FL

BiFL

Applications
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With disjunction

Residuated frames

Frames and modules

Frames and display

We could now consider posemigroups with joins and ask if it is Adding residuals

5 . 0 - Conservativity
conservative to add residuals. The answer is ‘no’, as we get Qe e e vie

oo o 5 o - display
x(yVz) =zyVaxz. So we take join posemigroups (semirings without v aigebraic
1 completions
)

We have completeness for the calculus extended with: Distributive frames

Involutive FL

T = a r = b BiFL
(\/I—) T =a \/ b (\/Rg) T = a \/ b (\/R/r) Applications

y,a,z=>c¢ y,b,z=c
y,aVb z=c

and in display style

a=z2z b=z Tr=a r=0>
aVb=z (VL) xéa\/b(\/Rg) xia\/b(\/Rr)
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With disjunction

Residuated frames

Frames and modules

Frames and display

We could now consider posemigroups with joins and ask if it is é\:dseg;sdtya's
conservative to add residuals. The answer is ‘no’, as we get Qe e e vie
2(yVz) = zy Vaz. So we take join posemigroups (semirings Without i swebrai
1)
We have completeness for the calculus extended with: Distributive frames
Involutive FL

y,a,z=>c¢ y,b,z=c (VL) r=q (VRO) r=b (VRr) L.

y,aVb z=c r=aVb r=aVb Applications

and in display style

a= z bjz(\/L) Tr=a (VRY) r=0>

aVb=z r=a\Vb xia\/b(\/Rr)

If a connective gives an operator (order preserving; if we have join
then it distributes) then it will be residuated at the completion and
we can conservatively add its residual.
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With disjunction

Residuated frames

Frames and modules

Frames and display

We could now consider posemigroups with joins and ask if it is Adding residuals

5 . 0 - Conservativity
conservative to add residuals. The answer is ‘no’, as we get Qe e e vie

oo o 5 o - display
x(yVz) =zyVaxz. So we take join posemigroups (semirings without v aigebraic
1 completions
)

We have completeness for the calculus extended with: Distributive frames

Involutive FL

BiFL

y,a,z=>c¢ y,b,z=c
y,aVb z=c

r=a r=0b
(VL) r=aVb (VRE) r=aVb (VRr)

Applications

and in display style

a= z bjz(\/L) Tr=a (VRY) r=0>

aVb=z r=a\Vb xia\/b(\/Rr)

If a connective gives an operator (order preserving; if we have join
then it distributes) then it will be residuated at the completion and
we can conservatively add its residual. Then one could chose to work
in the bigger (and in some sense simpler) logic with no worries.
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With disjunction

Residuated frames

Frames and modules

Frames and display

We could now consider posemigroups with joins and ask if it is Adding residuals

5 . 0 - Conservativity
conservative to add residuals. The answer is ‘no’, as we get Qe e e vie

oo o 5 o - display
x(yVz) =zyVaxz. So we take join posemigroups (semirings without v aigebraic
1 completions
)

We have completeness for the calculus extended with: Distributive frames

Involutive FL

T = b BiFL
\/Rg) Tr=q \/ b (\/R/r) Applications

,a,z=>c yY,b,z=c
y,aVb z=c r=aVb

and in display style

a=z2z b=z Tr=a r=0>
aVb=z (VL) xéa\/b(\/R@ xia\/b(\/Rr)

If a connective gives an operator (order preserving; if we have join
then it distributes) then it will be residuated at the completion and
we can conservatively add its residual. Then one could chose to work
in the bigger (and in some sense simpler) logic with no worries.

General principle: Let's be ‘honest’ about it and put the residuals at
the frame level from the very beginning.
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Residuated frames

Frames and modules

Frames and display

Distributive frames

DFL

Nuclei

Distributive frames
DGN

Involutive FL

BiFL

Applications

Distributive frames
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DFL

Residuated frames

Sequents of DFL have as LHS the elements of (Fm?”,0,e,®)), the
free (monoid) algebra over F'm.

Frames and modules

Frames and display

Distributive frames

DFL

Nuclei

Distributive frames
DGN

Involutive FL

BiFL

Applications
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DFL

Residuated frames

Sequents of DFL have as LHS the elements of (Fm?”,0,e,®)), the
free (monoid) algebra over F'm.

Also, u is a unary linear polynomial over this signature.

Frames and modules

Frames and display

Distributive frames

DFL

Nuclei

Distributive frames
DGN

Involutive FL

BiFL

Applications
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DFL

Sequents of DFL have as LHS the elements of (Fm”,0,e,®), the
free (monoid) algebra over F'm.

Also, u is a unary linear polynomial over this signature.

We add the rules:

WrQly@ )= ¢ ulz @yl =c
120N 0sc O y@d=c @9
u[ZL’]:>C . U[ZE@:E]:>C
20y = e O s e (©OF)

And replace (AL) by:

Residuated frames

Frames and modules

Frames and display

Distributive frames

Nuclei

Distributive frames
DGN

Involutive FL

BiFL

Applications
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Nuclei

Recall that A : N,, x N,, —& N,,.

Nick Galatos, Prague workshop, March, 2014

Residuated frames

Frames and modules

Frames and display

Distributive frames
DFL
Distributive frames
DGN

Involutive FL

BiFL

Applications
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Nuclei

Recall that A: N,, x N,, > N,,. fweadd A: P, x P, —» P, as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to A is denoted by (V. We obtain
distributive sequents and the calculus DFL.

Residuated frames

Frames and modules

Frames and display

Distributive frames
DFL
Distributive frames
DGN

Involutive FL

BiFL

Applications
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Nuclei

Recall that A: N,, x N,, > N,,. fweadd A: P, x P, —» P, as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to A is denoted by (V. We obtain
distributive sequents and the calculus DFL.

Given a residuated lattice expansion L' = (L, )), a distributive
nucleus vy is --nucleus and (M)-nucleus on L that satisfies

Yz By) = v(x) Av(y).

Residuated frames

Frames and modules

Frames and display

Distributive frames
DFL
Distributive frames
DGN

Involutive FL

BiFL

Applications
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Nuclei

Recall that A: N,, x N,, > N,,. fweadd A: P, x P, —» P, as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to A is denoted by (V. We obtain
distributive sequents and the calculus DFL.

Given a residuated lattice expansion L' = (L, )), a distributive
nucleus vy is --nucleus and (M)-nucleus on L that satisfies

Yz Dy) =v(z) Av(Yy).
Then @, = A on L., and

Lfy — (Lfy, N, \/,y, Y \7 /77<1))

Is a distributive residuated lattice.

Residuated frames

Frames and modules

Frames and display

Distributive frames
DFL
Distributive frames
DGN

Involutive FL

BiFL

Applications
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Nuclei

Recall that A: N,, x N,, > N,,. fweadd A: P, x P, —» P, as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to A is denoted by (V. We obtain
distributive sequents and the calculus DFL.

Given a residuated lattice expansion L' = (L, )), a distributive
nucleus vy is --nucleus and (M)-nucleus on L that satisfies

Yz Dy) =v(z) Av(Yy).
Then @, = A on L., and

L’y — (L’Yv /\7 \/’ya Ee%) \7 /7 7(1))
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Note that distributive residuated lattices are double semirings.
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Distributive frames
DFL
Distributive frames
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Involutive FL
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Nuclei

Recall that A: N,, x N,, > N,,. fweadd A: P, x P, —» P, as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to A is denoted by (V. We obtain
distributive sequents and the calculus DFL.

Given a residuated lattice expansion L' = (L, )), a distributive
nucleus vy is --nucleus and (M)-nucleus on L that satisfies

Yz Dy) =v(z) Av(Yy).
Then @, = A on L., and

L’y — (L’Yv /\7 \/’ya Y \7 /7 7(1))
is a distributive residuated lattice.
Note that distributive residuated lattices are double semirings.

We aim for an embedding of distributive residuated lattices to
Heyting residuated lattices.

Residuated frames

Frames and modules

Frames and display

Distributive frames
DFL
Distributive frames
DGN

Involutive FL

BiFL

Applications
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Distributive frames

Residuated frames

Frames and modules

Frames and display

A distributive residuated frame is a structure Distributive frames

W= (W W' N,o,1,®,\, /,—, <) where W and W' are sets [N’FLl

NCW x W,
T DGN

Involutive FL

BiFL

Applications
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Distributive frames

Residuated frames

Frames and modules

Frames and display

A distributive residuated frame is a structure Distributive frames
W= (W, W' N,o,1,®,\,/, <) where W and W’ are sets o
N CW x W' (W,o,1) is a monoid and for all z,y € W, w € W’
DGN
(zoy) Nw & y N (z\w) < =N (w/y) e

Applications

(xPy) Nw & yN (zr—>w) & =N (w<y)

Oy Ow)Nz x(NyNz
wonown: OV y@an: (O

Nz x@xNz
= @) T (@9
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Distributive frames

Residuated frames

Frames and modules

Frames and display

A distributive residuated frame is a structure Distributive frames
W= (W, W' N,o,1,®,\,/, <) where W and W’ are sets o
N CW x W' (W,o,1) is a monoid and for all z,y € W, w € W’
DGN
(zoy) Nw & y N (z\w) < =N (w/y) e

Applications

(xPy) Nw & yN (zr—>w) & =N (w<y)

Oy w)Nz xyNz
wonown: OV y@an: (O
Nz x@xNz
—= @) " @9

Theorem. If W is a distributive frame, then vy is a distributive
nucleus on P(W).

Corollary. If W is a distributive residuated frame then the dual
algebra W is a distributive residuated lattice.
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DGN

Residuated frames

xNa alNz

e (CUT) — (Id)
s @) T @9
Tt (B SR (R
arean: (0 T U

e (0 im0 fREOD oy 0R)
anw: (M) TR R

Frames and modules

Frames and display

Distributive frames
DFL

Nuclei

Distributive frames

Involutive FL

BiFL

Applications
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Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

Toward BiFL
Relativizing to InFL
InFL

Involutive frames

Quasiembedding
BiFL

Applications

Involutive FL
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Toward BiFL

We want to add another residuated pair:

zL{zrt+y&szy<resr=z<y

Residuated frames

Frames and modules
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Distributive frames

Involutive FL

Toward BiFL

Relativizing to InFL
InFL

Involutive frames

Quasiembedding
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Toward BiFL

We want to add another residuated pair:
zL{zrt+y&szy<resr=z<y

This can/is done easily if the residuated lattice A is involutive: for
some 0 € A, ~—z = x = —\z, where ~x = z—0 and —z =0/x.
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Toward BiFL

We want to add another residuated pair:
zL{zrt+y&szy<resr=z<y

This can/is done easily if the residuated lattice A is involutive: for
some 0 € A, ~—z = x = —\z, where ~x = z—0 and —z =0/x.

Then we can define z +y := ~(—y - —x) = —(~y - ~x).
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Toward BiFL

We want to add another residuated pair:
zL{zrt+y&szy<resr=z<y

This can/is done easily if the residuated lattice A is involutive: for
some 0 € A, ~—z = x = —\z, where ~x = z—0 and —z =0/x.

Then we can define z +y := ~(—y - —x) = —(~y - ~x).
Also, we get: z\y = (~xz) +y and y/x =y + (—x),

Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

Toward BiFL

Relativizing to InFL
InFL

Involutive frames

Quasiembedding
BiFL

Applications
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Toward BiFL

We want to add another residuated pair:
zL{zrt+y&szy<resr=z<y

This can/is done easily if the residuated lattice A is involutive: for
some 0 € A, ~—z = x = —\z, where ~x = z—0 and —z =0/x.

Then we can define z +y := ~(—y - —x) = —(~y - ~x).
Also, we get: z\y = (~xz) +y and y/x =y + (—x),

aswell as: =y = (~z)-yand y—=x =y (—x).

Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

Toward BiFL

Relativizing to InFL
InFL

Involutive frames

Quasiembedding
BiFL

Applications
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Relativizing to InFL

Residuated frames

Frames and modules

Frames and display

Recall that O is of type N,,, hence ~z,—z : P, — N,,. Distributive frames

Involutive FL
Toward BiFL

Relativizing to InFL

InFL

Involutive frames

Quasiembedding
BiFL

Applications
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Relativizing to InFL

Residuated frames

Frames and modules

Frames and display

Recall that O is of type N,,, hence ~z,—z : P, — N,,. Distributive frames

Involutive FL

If we add a new type to negations ~x, —x : N,, — P,, then we arrive ——=—
at a new notion of sequent (multiple conclusion). The operations at

InFL

the frame level corresponding to the negations are denoted by {}~ Involutive frames
and . Quasiembedding
{} BiFL
X O y = Z X O y =z (_) Applications
y:>a:Noz( ) r=zZ0Y"
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Relativizing to InFL

Residuated frames

Frames and modules

Frames and display

Recall that O is of type N,,, hence ~z,—z : P, — N,,. Distributive frames

Involutive FL

If we add a new type to negations ~x, —x : N,, — P,, then we arrive ——=—
at a new notion of sequent (multiple conclusion). The operations at

InFL

the frame level corresponding to the negations are denoted by {}~ Involutive frames
and . Quasiembedding
{} BiFL
X O y = Z X O y =z (_) Applications
y:>a:Noz( ) r=zZ0Y"

If a € Fm, we define a™° = @ and a™~("T1) = (a™")~. A negated
formula is of the form a™~" or a™".

Weset a™ =a=a""

We denote by F'm’ the free monoid over the set of negated formulas.
A sequent is of the form x = y for x,y € F'm*.
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Relativizing to InFL

Residuated frames

Frames and modules

Frames and display

Recall that O is of type N,,, hence ~z,—z : P, — N,,. Distributive frames

Involutive FL

If we add a new type to negations ~x, —x : N,, — P,, then we arrive ——=—
at a new notion of sequent (multiple conclusion). The operations at

InFL

the frame level corresponding to the negations are denoted by {}~ Involutive frames
and . Quasiembedding
{} BiFL
X O y = Z X O y =z (_) Applications
y:>a:Noz( ) r=zZ0Y"

If a € Fm, we define a™° = @ and a™~("T1) = (a™")~. A negated
formula is of the form a™~" or a™".

Weset a™ =a=a""

We denote by F'm’ the free monoid over the set of negated formulas.
A sequent is of the form x = y for x,y € F'm*.

For x = aq,...,a,, we define
™~ =a),...,a7 and 27 =a,,...,a;
T =x=x"", (roy)Y =y~ oz, (xoy)T =y ox”
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InFL

Residuated frames

T=a4 922 (CUT) = (Id)
SRSt 22w
TaTIn 2o
PTE ) TR S2Ea0 o (R
T (L () 2SR (R
aj\/zb:b:;Z W) xi:;?/b WIRG xi:a}?/b (VRr)
CEE (M) ZZL (R

a ==z r=a
o= T e R
rToy=z xroy=z
— (") = (7)
y=x" 0z x=zoYy

Frames and modules

Frames and display

Distributive frames

Involutive FL
Toward BiFL
Relativizing to InFL

Involutive frames

Quasiembedding
BiFL

Applications

Residuated frames — 35 / 62

Nick Galatos, Prague workshop, March, 2014



Involutive frames

Residuated frames

Frames and modules

Frames and display

An involutive (residuated) frame is a structure of the form Distributive frames
W — (W, N, O, 5, N, _), Where Involutive FL
Toward BiFL

] ] Relativizing to InFL

m (W,0,¢) is a monoid InFL
~N— o

— L =T =2 Quasiembedding
— (y oXx ) :(y ©x ) [:Qf@y] BiFL
m zoyNziffyNa~"®ziffe Nzpy, forall z,y,ze W Applications

Nick Galatos, Prague workshop, March, 2014 Residuated frames — 36 / 62



Involutive frames

Residuated frames

Frames and modules

Frames and display

An involutive (residuated) frame is a structure of the form Distributive frames
W — (W, N, O, 5, N, _), Where Involutive FL
Toward BiFL

] ] Relativizing to InFL

m (W,0,¢) is a monoid InFL
~N— o

— L =T =2 Quasiembedding
— (y oXx ) :(y ©x ) [:Qf@y] BiFL
m zoyNziffyNa~"®ziffe Nzpy, forall z,y,ze W Applications

If L is an involutive FL-algebra, then Wy, = (L, <,-,1,~, —) is an
involutive frame.
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Involutive frames

Residuated frames

Frames and modules

Frames and display

An involutive (residuated) frame is a structure of the form Distributive frames
W — (W, N, O, 5, N, _), Where Involutive FL
Toward BiFL

] ] Relativizing to InFL

m (W,0,¢) is a monoid InFL
~N— o

— L =T =2 Quasiembedding
— (y oXx ) :(y ©x ) [:Qf@y] BiFL
m zoyNziffyNa~"®ziffe Nzpy, forall z,y,ze W Applications

If L is an involutive FL-algebra, then Wy, = (L, <,-,1,~, —) is an
involutive frame.

On the dual algebra we define —Y :=Y>~ =Y ~< and
~Y =YPY =Y~ forY CW.
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Involutive frames

Residuated frames

Frames and modules

Frames and display

An involutive (residuated) frame is a structure of the form Distributive frames
W — (W, N, O, 5, N, _), Where Involutive FL
Toward BiFL

] ] Relativizing to InFL

m (W,0,¢) is a monoid InFL
~N— o

— L =T =2 Quasiembedding
— (y oXx ) :(y ©x ) [:Qf@y] BiFL
m zoyNziffyNa~"®ziffe Nzpy, forall z,y,ze W Applications

If L is an involutive FL-algebra, then Wy, = (L, <,-,1,~, —) is an
involutive frame.

On the dual algebra we define —Y :=Y>~ =Y ~< and
~Y =YPY =Y~ for Y C W. Then we have

XoYCZ & YCn(—ZoX) & XC—(YonZ)
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Quasiembedding

Residuated frames

Frames and modules

Frames and display

Using the following rules of InF'LL we can prove the main theorem. S e
Involutive FL
a~ Nz L zNa™ R Toward BiFL
N (N ) N (N ) Relativizing to InFL
~a < L ~a InFL
_ _ Involutive frames
@ Ne gy 2 g ey
—aNz xN—a BiFL
Applications

Theorem. For all a € B, in an involutive Genzen frame

~{ap™ ={~a;~ and —{a}~ = {—a}~.
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Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL
No involution

The frame (sets)
The frame (ops)

Adding structural rules

Applications

BiFL
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No involution

Residuated frames

Frames and modules

Frames and display

We wonder if expansions of FL-algebras with a dual operator +, O
x4+ (yAz)=(x+y) A (x+z), can be conservatively extended with  involutive Fi
dual implication. BiFL

No involution

The frame (sets)
The frame (ops)
Adding structural rules

Applications
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No involution

Residuated frames

Frames and modules

Frames and display

We wonder if expansions of FL-algebras with a dual operator +, Distributive frames

x4+ (yAz)=(x+y) A (x+z), can be conservatively extended with  involutive Fi

dual implication. BiFL

In other words is there any interference between a residuated and a The frame EZ?:))

dua”y reSiduated palr/trlp|e7 Adding structural rules
Applications
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No involution

Residuated frames

Frames and modules

Frames and display

We wonder if expansions of FL-algebras with a dual operator +, Distributive frames

x4+ (yAz)=(x+y) A (x+z), can be conservatively extended with  involutive Fi

dual implication. BiFL

In other words is there any interference between a residuated and a The frame EZ?:))

dua”y reSiduated palr/trlp|e7 Adding structural rules
Applications

Note that there was no interference when the two pairs were both
residuated.
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No involution

Residuated frames

Frames and modules

Frames and display

We wonder if expansions of FL-algebras with a dual operator +, Distributive frames
x4+ (yAz)=(x+y) A (x+z), can be conservatively extended with  involutive Fi

dual implication. BiFL

In other words is there any interference between a residuated and a The frame EZ?:))
dua”y reSiduated palr/trlp|e7 Adding structural rules

Applications

Note that there was no interference when the two pairs were both
residuated.

Can an FL™ algebra be embedded into a bi-FL algebra?

Nick Galatos, Prague workshop, March, 2014 Residuated frames — 39 / 62



No involution

Residuated frames

Frames and modules

Frames and display

We wonder if expansions of FL-algebras with a dual operator +, Distributive frames
x4+ (yAz)=(x+y) A (x+z), can be conservatively extended with  involutive Fi

dual implication. BiFL

In other words is there any interference between a residuated and a The frame EZ?:))
dua”y reSiduated palr/trlp|e7 Adding structural rules

Applications

Note that there was no interference when the two pairs were both
residuated.

Can an FL™ algebra be embedded into a bi-FL algebra?

Is there a cut-free calculus for FLT.
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No involution

Residuated frames

Frames and modules

Frames and display

We wonder if expansions of FL-algebras with a dual operator +, Distributive frames
x4+ (yAz)=(x+y) A (x+z), can be conservatively extended with  involutive Fi

dual implication. BiFL

In other words is there any interference between a residuated and a The frame EZ?:))
dua”y reSiduated palr/trlp|e7 Adding structural rules

Applications

Note that there was no interference when the two pairs were both
residuated.

Can an FL™ algebra be embedded into a bi-FL algebra?
s there a cut-free calculus for FL™.

More difficult than one residuated pair, as now there are
non-innocent/bad sequents.
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The frame (sets)

Residuated frames

Frames and modules

Frames and display

Given a (commutative) FLT-algebra A we will define a residuated Distributive frames
frame (W, W/, N’ o, //7 @7 \\) Involutive FL
BiFL

No involution
The frame (sets)
The frame (ops)

Adding structural rules

Applications
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The frame (sets)

Residuated frames

Frames and modules

Frames and display

Given a (commutative) FLT-algebra A we will define a residuated Distributive frames

frame (W, W/, N’ o, //7 @7 \\) Involutive FL
BiFL

We define the set W by the following grammar: No involution

The frame (sets)
The frame (ops)

W = W, A | W < A ‘ g Adding structural rules

Applications
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The frame (sets)

Residuated frames

Frames and modules

Frames and display

Given a (commutative) FLT-algebra A we will define a residuated Distributive frames

frame (W, W/, N’ o, //7 @7 \\) Involutive FL
BiFL

We define the set W by the following grammar: No involution

The frame (sets)
The frame (ops)

W = W, A | W < A ‘ g Adding structural rules

Applications

Elements of W of the form w < a and ¢ are called proper. For
convenience we extend the multiplication of A to a € AU {e} by
a-c=c-a=a(and e - a =a). Also, p,e is simply p.
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The frame (sets)

Residuated frames

Frames and modules

Frames and display

Given a (commutative) FLT-algebra A we will define a residuated Distributive frames

frame (W’ W/’ N’ o, //’ @7 \\) Involutive FL
BiFL

We define the set W by the following grammar: No involution

The frame (sets)
The frame (ops)

W = W, A | W < A ‘ g Adding structural rules

Applications

Elements of W of the form w < a and ¢ are called proper. For
convenience we extend the multiplication of A to a € AU {e} by
a-c=c-a=a(and e - a =a). Also, p,e is simply p.

Then every element of W is of the form p, a, where p is proper and
a€ AU{e}.
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The frame (sets)

Residuated frames

Frames and modules

Frames and display

Given a (commutative) FLT-algebra A we will define a residuated Distributive frames

frame (W’ W/’ N’ o, //’ @7 \\) Involutive FL
BiFL

We define the set W by the following grammar: No involution

The frame (sets)
The frame (ops)

W — W, A | W < A ‘ 5 Adding structural rules

Applications

Elements of W of the form w < a and ¢ are called proper. For
convenience we extend the multiplication of A to a € AU {e} by
a-c=c-a=a(and e - a =a). Also, p,e is simply p.

Then every element of W is of the form p, a, where p is proper and
a€ AU{e}.

We define the set W' to be given by the grammar W’ := P > A,
where P is the set of proper elements of W. We write a for ¢ > a.
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The frame (ops)

Residuated frames

Frames and modules

Frames and display

We define the (hyper)operation o on proper elements by S s
poe=cop=pand (w<a)o (w <a')=10. Then we ‘extend’ it to _nvolutive FL
arbitrary elements by (p, a) ® (p/, CL/) = (]? Op/), (CL : CL’). BiFL

No involution
The frame (sets)

The frame (ops)

Adding structural rules

Applications
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The frame (ops)

Residuated frames

Frames and modules

Frames and display

We define the (hyper)operation o on proper elements by S s
poe=cop=pand (w<a)o (w <a')=10. Then we ‘extend’ it to _nvolutive FL
arbitrary elements by (p, a) ® (p/, CL/) = (]? Op/), (CL : CL’). BiFL

No involution
The frame (sets)

We deﬁne @ on W/ by (p > a,) P (p/ > a,/) = a -+ a/ |fp — p/ = ¢€; and frame (ps) |
0 otherwise. :

Applications
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The frame (ops)

Residuated frames

Frames and modules

Frames and display

We define the (hyper)operation o on proper elements by S s
poe=cop=pand (w<a)o (w <a')=10. Then we ‘extend’ it to _nvolutive FL
arbitrary elements by (p, a) ® (p/, CL/) = (]? Op/), (CL : CL’). BiFL

No involution
The frame (sets)

We define & on W’ by (p>a) & (p'>d') =a+d if p=p' =¢; and

. Adding structural rules
0 otherwise.

Also, we define (p,a)\ (p' >a) = (pop’) >(a — a’),

Applications
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The frame (ops)

Residuated frames

Frames and modules

Frames and display

We define the (hyper)operation o on proper elements by S s
poe=cop=pand (w<a)o (w <a')=10. Then we ‘extend’ it to _nvolutive FL
arbitrary elements by (p, a) ® (p/, CL/) = (]? Op/), (CL : CL’). BiFL

No involution
The frame (sets)

We define & on W’ by (p>a) & (p'>d') =a+d if p=p' =¢; and

@ Otherwise. Adding structural rules
Also, we define (p,a) \ (p' >a) = (pop’) >(a — d'),
and (p,a) J/ (p' >a’) = (p,a) <d’, if p’ =¢; and () otherwise.

Applications
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The frame (ops)

Residuated frames

Frames and modules

Frames and display

We define the (hyper)operation o on proper elements by S s
poe=cop=pand (w<a)o (w <a')=10. Then we ‘extend’ it to _nvolutive FL
arbitrary elements by (p, a) ® (p/, CL/) = (]? Op/), (CL : CL’). BiFL

No involution
The frame (sets)

We deﬁne @ on W/ by (p > a,) P (p/ > a,/) = a -+ a/ |fp — p/ = ¢€; and frame (ps) |
0 otherwise. :

Also, we define (p,a) \ (p' >a) = (pop’) >(a — d'),
and (p,a) J/ (p' >a’) = (p,a) <d’, if p’ =¢; and () otherwise.

Applications

Finally, for z € W and a € A we define 7 [a] as follows by induction
on the structure of z.

(€)"[a] :=a,

(z,b)"[a] := 2T [b— a,

(x <b)Ta] := 2T [b+ al.

Nick Galatos, Prague workshop, March, 2014 Residuated frames — 41 / 62



The frame (ops)

Residuated frames

Frames and modules

Frames and display

We define the (hyper)operation o on proper elements by S s
poe=cop=pand (w<a)o (w <a')=10. Then we ‘extend’ it to _nvolutive FL
arbitrary elements by (p, a) ® (p/, CL/) = (]? Op/), (CL : CL’). BiFL

No involution
The frame (sets)

We deﬁne @ on W/ by (p > a,) @ (p/ > a,/) = Q —1— a/ |f p = p/ =5 and frame (ops) |
. Ing structural rules
0 otherwise.

Also, we define (p,a) \ (p' >a) = (pop’) >(a — d'),
and (p,a) J/ (p' >a’) = (p,a) <d’, if p’ =¢; and () otherwise.

Applications

Finally, for z € W and a € A we define 7 [a] as follows by induction
on the structure of z.

(€)"[a] :=a,

(z,b)"[a] := 2T [b— a,

(x <b)Ta] := 2T [b+ al.

We also define the set of designated elements of W’ to be
D={x>a:1<z"[a]} and (p,a) N (p' > a) iff
1< (pop)tla—d]
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The frame (ops)

We define the (hyper)operation o on proper elements by
poe=cop=pand (w<a)o (w <a')=(. Then we ‘extend’ it to
arbitrary elements by (p,a)o (p’,a’) = (pop’), (a-a’).

We define @ on W' by (p>a)® (p'>a')=a+d ifp=p" =¢; and
0 otherwise.

Also, we define (p,a) \ (p' >a) = (pop’) >(a — d'),

and (p,a) J/ (p' >a’) = (p,a) <d’, if p’ =¢; and () otherwise.

Finally, for z € W and a € A we define 7 [a] as follows by induction
on the structure of z.

(€)"[a] :=a,

(z,b)"[a] := 2T [b— a,

(x <b)Ta] := 2T [b+ al.

We also define the set of designated elements of W’ to be
D={x>a:1<z"[a]} and (p,a) N (p' > a) iff
1< (pop)tla—d]

Theorem Every FLT-algebra can be embedded into a BiFL-algebra.

Nick Galatos, Prague workshop, March, 2014

Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL
No involution
The frame (sets)

The frame (ops)

Adding structural rules

Applications
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Adding structural rules

Residuated frames

Frames and modules

Frames and display

Distributive frames

Question: If A satisfies mingle x < z -z, x + x < x then does WX
also satisfy it?

Involutive FL

BiFL
No involution
The frame (sets)

The frame (ops)

Adding structural rules

Applications
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Adding structural rules

Residuated frames

Frames and modules

Frames and display

Distributive frames

Question: If A satisfies mingle x < z -z, x + x < x then does WX
also satisfy it?

Involutive FL

BiFL

No involution

p,aNz p',a’Nz  sNp>a aNp >d B
(p,a)o (p';a' )Nz aN(p>a) & (p'>d)
pplications
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Adding structural rules

Residuated frames

Frames and modules

Frames and display

Distributive frames

Question: If A satisfies mingle x < z -z, x + x < x then does WX
also satisfy it?

Involutive FL

BiFL
No involution
The frame (sets)

p,aNz p',a'Nz tNp>a xNp' >d The e
(p,a)o (p';a' )Nz aN(p>a) & (p'>d)
pplications

Solution: Modify the frame W . The above conditions holds iff

p,aNz a'Nz tNa xNa'
(p,a)oa’Nz xtNa ® a’
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Adding structural rules

Residuated frames

Frames and modules

Frames and display

Distributive frames

Question: If A satisfies mingle x < z -z, x + x < x then does WX
also satisfy it?

Involutive FL

BiFL
No involution
The frame (sets)

p,aNz p',a'Nz tNp>a xNp' >d The e
(p,a)o (p';a' )Nz aN(p>a) & (p'>d)
pplications

Solution: Modify the frame W . The above conditions holds iff

p,aNz a'Nz tNa xNa'
(p,a)oa’Nz xtNa ® a’

Grishin(b): z(y 4+ z) < xy + z gives a stabilizing definition:
(w<a)o(w <a)={(w<a)ow)<d,((w<a)ow)<a}.
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Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
. e Reduction to simple

Appl lcatlons Simplicity preserved
FMP
FEP
Amalgamation
Maehara frame
Equations
Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules
FEP for DFL
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Frame applications

Residuated frames

Frames and modules

Frames and display

m  DM-completion

Distributive frames

m Perfect residuated lattices Involutive FL
m  Completeness of the calculus BiFL
5 5 . Applications
m Cut elimination
.. Examples of frames:
m  Finite model property FEP
.. L. Simple equations
m Finite embeddability property Simple rules
. . Reduction to simple
m (Generalized super-)amalgamation property (Transferable Simplicity preserved
. N . N FMP
injections, Congruence extension property) e
1 " Amalgamation
|
(Craig) Interpolation property Amaleamation
m  Disjunction property Equations
Gen. amalgamation
m  Strong separation Interpolation
. . ) Disjunction property
m Stability under linear structural rules/equations over {V, -, 1}. Strong separation: syst.
L. . Strong separation
| DenS|f|Cat|On Equations for DFL
.. ) . . Structural rules
m  Conservativity (via algebraic embeddings) FEP for DFL
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Examples of frames: FEP

Residuated frames

Frames and modules

Frames and display

Let A be a residuated lattice and B a partial subalgebra of A. Distributive frames

Involutive FL

We define the frame W g, where BiFL

Applications

Frame applications

Examples of frames:

FEP
Simple equations

Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP

Amalgamation
Maehara frame
Equations

Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
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More generally, if © appears n-times on the LHS, we substitute
x1V...Vax, for x, distribute and retain one representative term on
the LHS (where all the x;'s occur).
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sequent), we define (z, z)T as the smallest subset of W x W' that Involutive FL

contains (x, z) and is closed upwards with respect to the rules of FL

FL. Note that (z,2)7T is finite. e e
Examples of frames:

The new frame W' associated with N/ = N U ((y,v)")¢ is residuated ;Enfp.e E—

and Gentzen. i:.[u)lcii;u.:efo simple

Clearly, (N')€ is finite, so it has a finite domain Dom/((N')¢) and Simplicity preserved

codomain Cod((N")¢).

For every z & Cod((N")¢), {z}9=W. So, {{z}9: 2 € W} is finite  Amalgamation

Maehara frame

and a basis for yn/. So, W'T is finite. Equations

. . . . . 5 . Gen. | i
Moreover, if u(z) = c is not provable in FL, then it is not valid in ,nizrpi',’:if:mam
'W/—|— . Disjunction property

Strong separation: syst.

Strong separation

Corollary. The system FL has the finite model property. The same  Eauations for DFL

Structural rules

holds for reducing extensions of GL. FEP for DFL

Corollary. The variety of residuated lattices is generated by its finite
members. The same holds for the subvarieties corresponding to the
above extensions.
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FEP

Residuated frames

A class of algebras K has the finite embeddability property (FEP) if
for every A € IC, every finite partial subalgebra B of A can be
(partially) embedded in a finite D € K.

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP

Amalgamation

Maehara frame
Equations

Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules

FEP for DFL
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FEP

Residuated frames

Nick Galatos, Prague workshop, March, 2014

A class of algebras K has the finite embeddability property (FEP) if

for every A € IC, every finite partial subalgebra B of A can be
(partially) embedded in a finite D € K.

Theorem. Every variety of integral RL's axiomatized by equartions

over {V,-, 1} has the FEP.

= Bembedsin W, gvia {_}7:B =W

= WX g Is finite

u WX’B ey

Corollary. These varieties are generated as quasivarieties by their

finite members.

Corollary. The corresponding logics have the strong finite model
property:

if ® /1), for finite @, then there is a finite counter-model,
namely there is D € V and a homomorphism f : Fm — D,

such that f(¢) =1, for all ¢ € ®, but f(v) # 1.

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP
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Strong separation: syst.
Strong separation
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Amalgamation

Residuated frames

Frames and modules

Frames and display

A class K of similar algebras has the amalgamation property (AP), if  bistributive frames
for all A,B,C € K and embeddings f : A—+B and g: A — C, Involutive FL
there is a D € K and embeddings f': B — D and ¢’ : C — D such B

that f/ o f — g/ o g Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP

Maehara frame
Equations

Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules
FEP for DFL
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Amalgamation

Residuated frames

Frames and modules

Frames and display

A class K of similar algebras has the amalgamation property (AP), if  bistributive frames
for all A,B,C € K and embeddings f : A—+B and g: A — C, Involutive FL
there is a D € K and embeddings f': B — D and ¢’ : C — D such B

that f/ o f — g/ o g Applications

Frame applications

Examples of frames:
FEP

We W||| ShOW that CRLn haS the AP, Where D g P((B U C)*) Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP
FEP
Maehara frame
Equations
Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules
FEP for DFL
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Amalgamation

Residuated frames

Frames and modules

Frames and display

A class K of similar algebras has the amalgamation property (AP), if  bistributive frames
for all A,B,C € K and embeddings f : A—+B and g: A — C, Involutive FL
there is a D € K and embeddings f': B — D and ¢’ : C — D such B

that f/ o f — g/ o g Applications

Frame applications

Examples of frames:
FEP

We will show that CRL, has the AP, where D C P((B U C)*). Sl agaE

Simple rules
Note that P((B U C)*) is a commutative residuated lattice. eduction to simple
Simplicity preserved
FMP
FEP
Maehara frame
Equations
Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules
FEP for DFL
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Amalgamation

Residuated frames

Frames and modules

Frames and display

A class K of similar algebras has the amalgamation property (AP), if  bistributive frames
for all A,B,C € K and embeddings f : A—+B and g: A — C, Involutive FL
there is a D € K and embeddings f': B — D and ¢’ : C — D such B

that f/ o f — g/ o g Applications

Frame applications

Examples of frames:
FEP

We will show that CRL, has the AP, where D C P((B U C)*). Sl agaE

Simple rules

Note that P((B U C)*) is a commutative residuated lattice. Louetion to smpe

implicity preserved

FMP

Actually, D = ~[P((B U C)*)], for some closure operator +.
Maehara frame
Equations
Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules
FEP for DFL
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Amalgamation

Residuated frames

Frames and modules

Frames and display

A class K of similar algebras has the amalgamation property (AP), if  bistributive frames

for all A,B,C € K and embeddings f : A—+B and g: A — C, Involutive FL
there is a D € K and embeddings f': B — D and ¢’ : C — D such B
that f/ © f — g/ © g ?:::a:;)opr:iscations
Examples of frames:
. P
We will show that CRL, has the AP, where D C P((B U C)*). —
Simple rules
Note that P((B U C)*) is a commutative residuated lattice. e
FMP
— & FEP
Actually, D = ~[P((B U C)*)], for some closure operator +.
Maehara frame
We will ations
€en. ama gamatlon
m define v (by giving an associated Galois connection) and D, PR ey
| prove that D E CRLn, Strong separation: syst.
- prove that B, C c_>A D Strong separation

Equations for DFL
Structural rules
FEP for DFL
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Maehara frame

Residuated frames

Frames and modules

Frames and display

We deﬁne W = (B U C)*, Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP

Amalgamation
Equations

Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules
FEP for DFL
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Maehara frame

Residuated frames

Frames and modules

Frames and display
We deﬁne W = (B U C)*, W/ = (B U C)* X (B U C) and Distributive frames

Involutive FL
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Maehara frame

Residuated frames

Frames and modules

Frames and display

We deﬁne W = (B U C)*, W/ = (B U C)* X (B U C) and Distributive frames

x N (u,d) iff for all partitions u -z = wp - we, with wg € B* and niplifise (L
we € C* BiFL

Applications
m ifde B, then we <¢ a and wg -a <pg d, for some a € A and Frame applications
m ifdeC, then wg < aand we-a <¢ d, for some a € A. o e e

Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP

Amalgamation
Equations

Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules
FEP for DFL
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Maehara frame

Residuated frames

Frames and modules

Frames and display

We deﬁne W = (B U C)*, W/ = (B U C)* X (B U C) and Distributive frames
x N (u,d) iff for all partitions u -z = wp - we, with wg € B* and e[l N
we € C* BiFL

Applications
m ifde B, then we <¢ a and wg -a <pg d, for some a € A and Frame applications
m ifdeC, then wg < aand we-a <¢ d, for some a € A. o e e

Simple equations
Simple rules

Notational conventions: mle e
| FOI’ d - B U C, we |dent|fy (87 d) W|th d Simplicity preserved

FMP
m For x € B*, we write simply x for its interpretation in B. FEP

Amalgamation
Equations

Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules

FEP for DFL
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Maehara frame

Residuated frames

Frames and modules

Frames and display

We deﬁne W = (B U C)*, W/ = (B U C)* X (B U C) and Distributive frames
x N (u,d) iff for all partitions u -z = wp - we, with wg € B* and e[l N
we € C* BiFL

Applications
m ifde B, then we <¢ a and wg -a <pg d, for some a € A and Frame applications
m ifdeC, then wg < aand we-a <¢ d, for some a € A. o e e

Simple equations
Simple rules

Notational conventions:

Reduction to simple

m Forde BUC, we identify (g,d) with d. Tl pest
m For x € B*, we write simply x for its interpretation in B. FEP
Amalgamation

: :
Lemma. W3 o = (W, W’ N, o,e,~) is a residuated frame (called equations

Gen. | i
the Maehara frame) en. amalgamation

Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules

FEP for DFL
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Maehara frame

Residuated frames

Frames and modules

Frames and display

We deﬁne W = (B U C)*, W/ = (B U C)* X (B U C) and Distributive frames
x N (u,d) iff for all partitions u -z = wp - we, with wg € B* and e[l N
we € C* BiFL

Applications
m ifde B, then we <¢ a and wg -a <pg d, for some a € A and Frame applications
m ifdeC, then wg < aand we-a <¢ d, for some a € A. o e e

Simple equations
Simple rules

Notational conventions:

Reduction to simple

m Forde BUC, we identify (g,d) with d. Tl pest
m For x € B*, we write simply x for its interpretation in B. FEP
Amalgamation

: :
Lemma. W3 o = (W, W’ N, o,e,~) is a residuated frame (called equations

the Maehara frame) ﬁi&;’.’:?ii"‘““"
Proof. We have x oy N (u,b), for b € B, iff for all partitions Dt Feps

Strong separation: syst.

L=ITB"TC,Y—=YB YC and Uu=up- -uc, W|th IB,Yp,UB -~ B* and Strong separation
Equations for DFL

rxo, Yo, uc € C*, there exists a € A such that ug - o - yo No a and  siuceurst rues
beByBaNB b FEP for DFL
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Maehara frame

Residuated frames

Frames and modules

Frames and display

We deﬁne W = (B U C)*, W/ = (B U C)* X (B U C) and Distributive frames
x N (u,d) iff for all partitions u -z = wp - we, with wg € B* and e[l N
we € C* BiFL

Applications
m ifde B, then we <¢ a and wg -a <pg d, for some a € A and Frame applications
m ifdeC, then wg < aand we-a <¢ d, for some a € A. o e e

Simple equations
Simple rules

Notational conventions:

Reduction to simple

m Forde BUC, we identify (g,d) with d. Tl pest
m For x € B*, we write simply x for its interpretation in B. FEP
Amalgamation

: :
Lemma. W3 o = (W, W’ N, o,e,~) is a residuated frame (called equations

the Maehara frame) ﬁi&;’.’:?ii"‘““"
Proof. We have x oy N (u,b), for b € B, iff for all partitions Dt Feps

Strong separation: syst.

L=ITB"TC,Y—=YB YC and Uu=up- -uc, W|th IB,Yp,UB -~ B* and Strong separation
Equations for DFL

rxo, Yo, uc € C*, there exists a € A such that ug - o - yo No a and  siuceurst rues
up - g - yp - a Np b. This statement is equivalent to x N (uoy,b).  FE°frdf
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Maehara frame

Residuated frames

Frames and modules

Frames and display

We deﬁne W = (B U C)*, W/ = (B U C)* X (B U C) and Distributive frames
x N (u,d) iff for all partitions u -z = wp - we, with wg € B* and e[l N
we € C* BiFL

Applications
m ifde B, then we <¢ a and wg -a <pg d, for some a € A and Frame applications
m ifdeC, then wg < aand we-a <¢ d, for some a € A. o e e

Simple equations
Simple rules

Notational conventions: o o
m Forde BUC, we identify (¢, d) with d. o Pty preserved
m For x € B*, we write simply x for its interpretation in B. FEP

Amalgamation

: :
Lemma. W3 o = (W, W’ N, o,e,~) is a residuated frame (called equations

the Maehara frame) ﬁi&;’.’:?ii"‘““"
Proof. We have x oy N (u,b), for b € B, iff for all partitions Dt Feps

Strong separation: syst.

L=ITB"TC,Y—=YB YC and Uu=up- -uc, W|th IB,Yp,UB - B* and Strong separation
0 5 Equations for DFL
rxo, Yo, uc € C*, there exists a € A such that ug - o - yo No a and  siuceurst rues

up - g - yp - a Np b. This statement is equivalent to x N (uoy,b).  FE°frdf

Corollary. D = P((B U C)*), is a commutative residuated lattice.
Lemma. Wé,c is a Genzen frame.
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Maehara frame

Residuated frames

Frames and modules

Frames and display

We deﬁne W = (B U C)*, W/ = (B U C)* X (B U C) and Distributive frames
x N (u,d) iff for all partitions u -z = wp - we, with wg € B* and e[l N
we € C* BiFL
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m ifde B, then we <¢ a and wg -a <pg d, for some a € A and Frame applications
m ifdeC, then wg < aand we-a <¢ d, for some a € A. o e e

Simple equations
Simple rules

Notational conventions: o o
m Forde BUC, we identify (¢, d) with d. o Pty preserved
m For x € B*, we write simply x for its interpretation in B. FEP
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: :
Lemma. W3 o = (W, W’ N, o,e,~) is a residuated frame (called equations

the Maehara frame) ﬁi&;’.’:?ii"‘““"
Proof. We have x oy N (u,b), for b € B, iff for all partitions Dt Feps

Strong separation: syst.

L=ITB"TC,Y—=YB YC and Uu=up- -uc, W|th IB,Yp,UB - B* and Strong separation
0 5 Equations for DFL
rxo, Yo, uc € C*, there exists a € A such that ug - o - yo No a and  siuceurst rues

up - g - yp - a Np b. This statement is equivalent to x N (uoy,b).  FE°frdf
Corollary. D = P((B U C)*), is a commutative residuated lattice.
Lemma. W4 o is a Genzen frame.
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Equations

Residuated frames

Recall that if (W, S) is a Gentzen frame and € an equation over

{Vv,-, 1}, then (W, S) satisfies R(g) iff W satisfies ¢.

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP

Amalgamation
Maehara frame
Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules
FEP for DFL
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Residuated frames

Recall that if (W, S) is a Gentzen frame and € an equation over

{Vv,-, 1}, then (W, S) satisfies R(g) iff W satisfies ¢.
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Equations

Recall that if (W, S) is a Gentzen frame and € an equation over

{Vv,-, 1}, then (W, S) satisfies R(g) iff W satisfies ¢.

Moreover, R(z < z) is the condition [x°" = x o ---0ox (n times).]

x°™ N 2z

x N z (n)

Lemma. The frame W§  satisfies condition (n).

Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
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Equations

Recall that if (W, S) is a Gentzen frame and € an equation over

{Vv,-, 1}, then (W, S) satisfies R(g) iff W satisfies ¢.

Moreover, R(z < z) is the condition [x°" = x o ---0ox (n times).]

x°™ N 2z

x N z (n)

Lemma. The frame W§  satisfies condition (n).

Proof. For z = (u,b), to show that z N (u,b), let xt = xp o x¢ and

u=upg ouc, wWhere xg,up € B*, xc,uc € C*.

Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP

Amalgamation
Maehara frame
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Gen. amalgamation
Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules

FEP for DFL
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Equations

Residuated frames

Frames and modules

Frames and display

Recall that if (W, S) is a Gentzen frame and € an equation over Distributive frames
{Vv,-, 1}, then (W, S) satisfies R(g) iff W satisfies ¢. Involutive FL
BiFL

Applications

Moreover, R(z < z) is the condition [x°" = x o ---0ox (n times).]

Frame applications
Examples of frames:

on FEP
x—]\f’z (n) Simple equations
€T N y Simple rules

Reduction to simple
Simplicity preserved
FMP
FEP

Amalgamation

Proof. For z = (u,b), to show that z N (u,b), let xt = xp o xc and  Machara frame

-
u = up o uc, where xg,up € B*, xc,uc € C*. Since 2°™ N (u,b), Gen. amalgamation

there exists ¢ € A such that uc oz <c ¢ and upxi <p b. Since I

Lemma. The frame W§  satisfies condition (n).

Disjunction property

B and C Sat|Sfy i S .flfn, we get uc ©Irc SC Z and ’U,BxBZ SB b Strong separation: syst.
Strong separation
Consequently, x N (u,b). Equations for DFL
Structural rules
FEP for DFL
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Equations

Residuated frames

Frames and modules

Frames and display

Recall that if (W, S) is a Gentzen frame and € an equation over Distributive frames
{Vv,-, 1}, then (W, S) satisfies R(g) iff W satisfies ¢. Involutive FL
BiFL

Applications

Moreover, R(z < z) is the condition [x°" = x o ---0ox (n times).]

Frame applications
Examples of frames:

on FEP
x—]\f’z (n) Simple equations
€T N y Simple rules

Reduction to simple
Simplicity preserved
FMP
FEP

Amalgamation

Proof. For z = (u,b), to show that z N (u,b), let xt = xp o xc and  Machara frame

-
u = up o uc, where xg,up € B*, xc,uc € C*. Since 2°™ N (u,b), Gen. amalgamation

there exists ¢ € A such that uc oz <c ¢ and upxi <p b. Since I

Lemma. The frame W§  satisfies condition (n).

Disjunction property

B and C Sat|Sfy 95 S .flfn, we get uc ©Irc SC Z and ’U,BxBZ SB b Strong separation: syst.
Strong separation

Consequently, x N (u,b). E R
Structural rules

Corollary. D € CRL,. FEP for DFL
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Equations

Residuated frames

Frames and modules

Frames and display

Recall that if (W, S) is a Gentzen frame and € an equation over Distributive frames
{Vv,-, 1}, then (W, S) satisfies R(g) iff W satisfies ¢. Involutive FL
BiFL

Applications

Moreover, R(z < z) is the condition [x°" = x o ---0ox (n times).]

Frame applications
Examples of frames:

on FEP
x—]\f’z (n) Simple equations
€T N y Simple rules

Reduction to simple
Simplicity preserved
FMP
FEP

Amalgamation

Proof. For z = (u,b), to show that z N (u,b), let xt = xp o x¢ and Macher e

u = up o uc, where xg,ug € B*, xc,uc € C*. Since x°™ N (u,b), Gen. amalgamation
there exists ¢ € A such that uc oz <c ¢ and upxi <p b. Since I

Lemma. The frame W§  satisfies condition (n).

Disjunction property

B and C Sat|Sfy 95 S .flfn, we get uc ©Irc SC Z and ’U,BxBZ SB b Strong separation: syst.
Strong separation

Consequently, x N (u,b). E R
Structural rules

Corollary. D € CRL,. FEP for DFL

Corollary. CRL,, has the AP.
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Gen. amalgamation

Residuated frames

Frames and modules

Frames and display

If we do not assume that f, g are injective, instead of Distributive frames

Involutive FL
N = <(NBON0)U(NCONB)>, BiFL

Applications

Frame applications

we take

Examples of frames:
FEP

N =((NpofogoNe)U(Ncogo foNp)). e
Reduction to simple

Simplicity preserved

Then we can prove AP, transferable injections, and transferable iy
surjections and the congruence extension property all with a single FEP

Amalgamation

argu ment. Maehara frame

Equations

Interpolation
Disjunction property
Strong separation: syst.
Strong separation
Equations for DFL
Structural rules

FEP for DFL
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Interpolation

Theorem. FL. has the Craig interpolation property, i.e. if
FrL. @ — 1, then there is a x such that

[ ] I—FLe(b—>Xand l_FLeX_>¢
m var(yx) Covar(¢) Nvar(y).

Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
Reduction to simple
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then l_FLe ¢ or l_FLe .

Proof sketch. Define a frame with W = Fm™,
W'"=Fm* x Fm x Fm and z N (u,a,b) iff

m fuox #e¢, thenFpr, v,z = aVb
m fuox =g, then |_FLe a or l_FLe b.

HW23. Work out the details.

The corresponding algebraic property is:
For A € IC, there is a D € I and an epimorphism f : D — A such
that if 1 <p a V B, then 1 <A f(a) or 1 <a f(b).

Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations
Simple rules
Reduction to simple
Simplicity preserved
FMP

FEP

Amalgamation
Maehara frame
Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation
Equations for DFL
Structural rules
FEP for DFL

Residuated frames — 57 / 62



Disjunction property

Nick Galatos, Prague workshop, March, 2014

Theorem. FL, has the Disjunction property, i.e. if Frr_ ¢V 9,
then l_FLe ¢ or l_FLe .

Proof sketch. Define a frame with W = Fm™,
W'"=Fm* x Fm x Fm and z N (u,a,b) iff

m fuox #e¢, thenFpr, v,z = aVb
m fuox =g, then |_FLe a or l_FLe b.

HW23. Work out the details.

The corresponding algebraic property is:
For A € IC, there is a D € I and an epimorphism f : D — A such
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Let KC be a sublanguage of £ that contains the connective \ and let
B U {c} be a set of formulas over K. Also, let Ax be the partial
subalgebra of Fmy of all subformulas of B U {c}. Consider the
structure (W, Ax), where W is the free monoid over Ay,

W' = Sw x Ak and where N (u,a) iff B ki o (u(z) = a).

Corollary. Let IC be a sublanguage of £ that contains the connective
\ and let B U {c} be a set of formulas over . Then (W, Ax) is a
Gentzen frame.

Corollary If BU {c} is a set of formulas over a sublanguage K of L
that contains \, then B gy, ¢ iff B Fx_gr, ¢. In particular, the
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Given an equation ¢ of the form to < t; V---V t,, where t; are
{A, -, 1}-terms we construct the rule R(¢)

ult1] = a ult,] = a
ulte] = a

(R(e))

where the t;'s are evaluated in (W, 0,¢). Such a rule is called
analytic if all variables in ty are distinct.

Theorem. If (W,B) is a Gentzen frame and ¢ an equation over
{A,V, -, 1}, then (W, B) satisfies R(¢) iff W satisfies ¢.

(The linearity of the denominator of R(e) plays an important role in
the proof.)
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Given an equation ¢ of the form to < t; V---V t,, where t; are
{A, -, 1}-terms we construct the rule R(¢)

ult1] = a ult,] = a
ulte] = a

(R(e))

where the t;'s are evaluated in (W, 0,¢). Such a rule is called
analytic if all variables in ty are distinct.

Theorem. If (W,B) is a Gentzen frame and ¢ an equation over
{A,V, -, 1}, then (W, B) satisfies R(¢) iff W satisfies ¢.

(The linearity of the denominator of R(e) plays an important role in
the proof.)

Theorem. Every system obtained from FL by adding analytic rules
has the cut elimination property.
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Residuated frames
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Frames and display

Let V be a subvariety of DIRL axiomatized over {V, A,-,1}. To Distributive frames
establish the FEP for V, for every A in }V and B a finite partial Involutive FL
subalgebra of A, we construct an algebra D = WX g such that Bl
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i Frame applications
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FEP for DFL

Residuated frames

Let V be a subvariety of DIRL axiomatized over {V, A,-,1}. To
establish the FEP for V, for every A in V and B a finite partial
subalgebra of A, we construct an algebra D = WX,B such that

| WX,B c)

m B embeds in WX,B

al WX’B is finite

WX,B is defined by taking (W, o, ®, 1) to be the {-, A, 1}-subreduct
of A generated by B, W/ = Sy x B and x N (u,b) iff u(x) <a b.

Theorem. Every subvariety of DIRL axiomatized over {V/, A, -, 1} has
the FEP.
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