
EA-AMG - software for parallel solution of elasticity

problems using aggregation.

Roman Kohut, 8.1.2015
Institute og Geonics, Academy of Sciences of the Czech Republic

kohut@ugn.cas.cz

1 Introduction

Software EA-AMG contains two codes - SOLVER AG and AGGREG. The
specific feature of this sofrware is the using of regular structured grids which,
simply speaking, are the grids arising as a result of deformation of some
regular rectangular grid (the pattern grid). The discretization is given by
the decomposition of the domain into eight-node bricks and each brick is
consequently decomposed into 6 tetrahedral finite elements. Hence the cor-
responding matrix has all nonzero entries within a 27 node regular stencil.
Supposing the symmetry of the matrix, we can additionally store only the
upper triangular part of the matrix. It can be done row-by-row by using
regular 42 element stencil (the displacements in three directions x,y,z corre-
spond to each node) for the storage of the nonzero matrix entries.

The code SOLVER AG is designed for the solution of large linear systems
arising from the finite element analysis of 3D boundary value problems of
elasticity. The corresponding linear system of algebraic equations is solved
by the preconditioned conjugate gradient method with the additive two level
overlapping Schwarz preconditioner. The domain is decomposed along the z
direction into several non-overlapping subdomains, which are then extended,
so that adjacent subdomains have usually the minimal overlap (the number
of overlapping layers is optional).

The code AGGREG serves for preparation of an aggregated matrix. The
code AGGREG uses a new agregation technique which presents the gener-
alization of the aggregation for fully compatible FE spaces.

The codes are written using Fortran 95, for parallelization OpenMP paradigm
is used. The code was tested on Super Micro computer (symmetric multi-
processor) with 8 AMD Opteron 8380 processors under UNIX operating
system.

1

2 Code distribution

Software SOL AG is available from the web site

http://www.ugn.cas.cz/,

questions can be sent to roman.kohut@ugn.cas.

The software SOLV AG is free software distributed under the terms of the
GNU General Public License as published by the Free Software Foundation.

3 Numerical methods

Numerical solution of the elasticity problem is based on the discretization
of a studied domain Ω by a regular grid and on the application of the finite
element method arising from the variational form and leading to the solution
of a large linear system

Au = b, u, b ∈ Rn,

with symmetric (n×n) positive definite stiffness matrix A. For the solution
we use the preconditioned conjugate gradient method with two-level overlap-
ping additive Schwarz preconditioner and aggregated coarse matrix. In our
code the domain is divided into m subdomains Ωk in z direction. The linear
system is solved in parallel and the number of subproblems corresponds to
the number of used processors. The solution of subproblems is replaced by
the incomplete factorization of the block-diagonal matrices arising by the
displacement decomposition of the subproblem matrices. The solution of
the coarse problem is solved approximately by an inner PCG method with
appropriate accuracy εin. If the solution of the coarse problem is not exact,
the orthogonality of a searched direction is violated and it is necessary to
modify a new direction by the orthogonalization procedure. Both Dirichlet
and Neumann boundary conditions can be applied. In the second case, aris-
ing singular system can be efficiently solved making use of projections.

The matrix corresponding to a coarse problem is constructed using an ag-
gregation technique. In the case of fully compatible FE spaces we can
derive formulae for the relations between the coarse matrix elements and
the fine matrix elements. In general case the fine grid is so complicated
that the fully compatible coarse grid space doesn’t exist. We use struc-
tural grids in our software, it means that the position of each node is given

2

by the triplet of indices (i, j, k) and the corresponding nodal coordinates
(x(i, j, k), y(i, j, k), z(i, j, k)). The general structural grid with nx × ny × nz

nodes corresponds to the rectangular uniform ”index” grid where the node
in the position (i, j, k) has the coordinates (i, j, k). The mapping

Φ : (i, j, k) −→ (x(i, j, k), y(i, j, k), z(i, j, k))

presents the isomorphism between nodes of the ”index” grid and the corre-
sponding general structural grid. Now we can modify the relations between
matrix elements derived for fully compatible spaces using index coordinates
instead of the real coordinates for the determinations of coefficients in the
relations. In the case of noncompatible ”index” grids we use some approxi-
mation of these coefficients.

4 The storage of the files

As was written in the first part, a specific feature of our code is the using
of regular structured grids. If nx, ny, nz represent the numbers of nodes
in corresponding directions, the nodes can be easily indexed by the triples
(i,j,k),

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz

or enumerated by 1D numbers

indn = i + (j − 1) ∗ Nx + (k − 1) ∗ Nx ∗ Ny.

It means that enumeration is done first in the direction x, then in direction
y and finally in direction z.

a) matrix storage

For 3D elasticity problem we have aditionally 3 degrees of freedom (DOF)
in each node. These DOF correspond to the displacement in the directions
x, y, z. The overall number of DOF is nd = nx × ny × nz and the de-
grees of freedom at the node with index indn can be indexed by the numbers

indx = 3*indn - 2,
indy = 3*indn - 1,
indz = 3*indn.

3

The row numbers are given by the order of the records, the column numbers
have not to be stored due to the regular stencil. More exactly, the column
numbers for the regular stencil and for the row index i will be the following:

If i = indx for some DOF, then the column numbers used in the 42 element
stencil are subsequently:

j =, i, i + 1, ..., i + 5

and futher

j = k, k + 1, ..., k + 8 for k = i + k1, i + k2, i + k3, i + k4,

where
k1 = 3 ∗ nx − 3, k2 = 3 ∗ nx ∗ ny − 3 ∗ nx − 3,

k3 = 3 ∗ nx ∗ ny − 3, k4 = 3 ∗ nx ∗ ny + 3 ∗ nx − 3.

If i = indy for some DOF, then the last entry in the stencil is not used and
for the remaining we have

j =, i, i + 1, ..., i + 4

and futher

j = k, k + 1, ..., k + 8 for k = i− 1 + k1, i− 1 + k2, i− 1 + k3, i− 1 + k4.

If i = indz for some DOF, then the last two entries in the stencil are not
used and

j =, i, i + 1, ..., i + 3

and futher

j = k, k + 1, ..., k + 8 for k = i− 2 + k1, i− 2 + k2, i− 2 + k3, i− 2 + k4.

The stifness matrix is stored in real ∗ 4. Each record corresponds to some
node and contains three 42 element stencils for directions x, y, z. For opening
and reading file with stored matrix we use folowing instructions:

open(1,file=’fkbc.g32’, access=’direct’, recl=504),

4

The file is read as stored to the matrix in the memory as follows:

do i=1,nn
read(1,rec=i) aa
do j=1,126

a(j+(i-1)*126)=aa(j)
enddo

enddo

where aa is the vector of the length 126 and a is the vector (stifness matrix)
of the length nn ∗ 126 where nn is the number of the nodes.

b) Vector storage

Vectors contain nodal values (the triplet values for each node) corresponding
to the triplet of indices (i,j,k). For the node with index indn we have three
values of vector v:

v(3 ∗ indn − 2), v(3 ∗ indn − 1), v(3 ∗ indn).

Vectors are stored in real ∗ 4. For opening and reading files with stored
vectors we use following instructios:

open(1,file=filename, form=’unformatted’),

read(1) (v(i)=1,n),

where n = 3 ∗ nn is the number of unknowns (DOF), filename is the name
a file (e.g. the displacemet vector is stored in the file fu.g32).

c) Nodal coordinates storage

The coordinates are stored in the file fx.g32 according to the numbering of
nodes.

open(1,file=’fx.g32’, form=’unformatted’),

do i=1,nn
read(1) x(i),y(i),z(i)

enddo

5

Here (x(i), y(i), z(i)) are coordinates of the node with the index number i.

d) Parameters of task storage

These parameters are stored in the formatted text file fv.g32.
open(1,file=’fv.g32’),

READ(1,11) name,date - the name (CHAR*50),date (CHAR*8)
READ(1,12) nx,ny,nz - the numbers od the nodes in the directions

x, y, z

READ(1,13) xmin,xmax - the size in the direction x
READ(1,13) ymin,ymax - the size in the direction y
READ(1,13) zmin,zmax - the size in the direction z
READ(1,14) nmat - the number of materials
READ(1,15) nn - the number of nodes
READ(1,15) nd - the number of unknowns(DOF)
READ(1,15) nc - the numbrer of hexahedral bricks
READ(1,15) nel - the number of tetrahedral elements

(nel=nc*6)

11 FORMAT(T7, A50, 1X, T64, A8)
12 FORMAT(T40, I3, 1X, I3, 1X, I3)
13 FORMAT(T40, F10.4, 1X, F8.2)
14 FORMAT(T40, I3)
15 FORMAT(T40, I8)

e) Input data storage

Files containing input data are text files with a free format.

5 Routines used in codes

Routines used in the code SOLV AG are inserted in folowing files:

itera el z.for - the main routine for controlling the running of
the code.

pcg el z.for - subroutine for realization of preconditioned
conjugate gradients.

6

pcg inner IS.for - the subroutine for realization of preconditioned
conjugate gradients on a coarse problem
(inner iterations.)

mxv el z.for - the subroutine for the multiplication of matrix A

by vector v.
pcond el z.for - two subroutines for the preconditioning based

on the additive overlapping Schwarz methods.
rfv.for the subroutine for reading of parameters for the task.
agr vek el z.for - the subroutine for the aggregation of vectors.
int vek el z.for - the subroutine for the interpolation of vectors.
agr koef el z.for - the computing of the coeficients for the aggregation.
r agr el z.for - the reading of the parameters for the aggregation.
geore el z.for - subroutine for modification of matrices and rhs

according to boundary conditions.
diag hex el z.for - the preparation of a vector for the lumping of

the stiffness matrix.
lin par o3.mki - information for compiler
solver el z.mk - Makefile

Routines used in the code AGGREG are inserted in folowing files:

agregace el z - the main routine for controlling the runing of
the code.

rfv.for - the subroutine for reading of parameters for the
task.

agr vek el z.for - the subroutine for the aggregation of vectors.
agr mat el z.for - the subroutine for the aggregation of the matrix.
agr koef el z.for - the computing of the coeficients for aggregation.
r agr el z.for - the reading of the parameters for the aggregation.
rmat.for - the reading of the matrix.
wmat.for - the writing of the aggregated matrix.
lin.mki - information for compiler
agregace el z.mk - Makefile

6 Makefile for compilation

The compilation is done in two steps:

1.step: make -f solver el z.mk.mk clean
The files ∗.f, ∗.fo, ∗.o are deleted.

7

2. step make -f solver el z.mk.mk
The compilation is done.

The same steps are doing with agregace el z.mk.

7 Input and output files for the code AGGREG

The code AGGREG serves for preparing aggregated matrix and aggregared
vectors which are necessary for running of the solver SOLV AG. The code
AGGREG needs following files:

rfv.g32 - the text file with parameters
fkbc.g32 - the stiffness matrix
frw.g32 - the vector of the nodal forces, which are equivalent statically

to the boundary stresses and distributed loads (the weight of
material)

fbc.g32 - the vector corresponding to a geometric boundary conditions
in nodes.

r agr.in - the text file for the controlling of the aggregation
fx.g32 - the file of the coordinates of the nodes

The structure of these files was described in Section 4. Note that rows of
the matrix corresponding to nodes in emty area (nodes inside holes, tun-
nels) have all elements equal to zero. The code SOLV AG (subroutine
geore el z.for) replaces corresponding zero element in position of diagonal
element with value one.

The Dirichlet boundary conditions are saved in file fbc.g32. The file vector
contains following values in positions correponding to node with index i:

bc(3 ∗ i − k), k=2,1,0 - v(3 ∗ i − k) for node i with prescribed value
in the corresponding direction

bc(3 ∗ i − k), k=2,1,0 - 1e9 for free node i in the corresponding direction

The input file r agr.in contains parameters for the aggregation. For the first
start of AGGREG this file doesn’t exist and is generated during the running
of the code. The file is text file with data in free format. The data are stored
in following order:

8

tag - the type of aggregation (0 - the clustering of
neighbouring nodes, 2 - the tetrahedra coarsening,
3 - the hexahedra coarsening)

itp - the type of coarsening (0 - regular, 1 - nonregular)
if itp=0
nxh,nyh,nzh - the number of nodes for a coarse grid
if itp=1
ix(i),ixh(i) - sequentially indices of a fine grid node and corresponding

coarse grid node in the direction x
.. ..
iy(i),iyh(i) - sequentially indices of a fine grid node and corresponding

coarse grid node in the direction y
.. ..
iz(i),izh(i) - sequentially indices of a fine grid node and corresponding

coarse grid node in the direction z

The output files are the following:

fkbc ag.g32 - the agrregated stiffness matrix
frw ag.g32 - the aggregated vector of the nodal forces
fbc ag.g32 - the aggregated vector corresponding to a geometric

boundary conditions in nodes.
fx ag.g32 - a vector of nodes coordinates for a coarse grid.

8 Input and output files for the code SOLV AG

The code SOLV AG serves for the solution of system of linear equations
generated by the using of FEM to linear elasticity problems. The code
SOLV AG needs following input files:

rfv.g32 - the text file with parameters
fkbc.g32 - the stiffness matrix
fkbc ag.g32 - the aggregated stiffness matrix
frw.g32 - the vector of the nodal forces, which are equivalent

statically to the boundary stresses and distributed loads
(the weight of material)

frw ag.g32 - the aggregated vector of the nodal forces
fbc.g32 - the vector corresponding to a geometric boundary

conditions in nodes.

9

fbc.g32 - the aggregated vector corresponding to fbc.g32
r agr.in - the text file for the controlling of the aggregation
solver.in - the text file for the controlling of running of the solver
n process.in - the number of processors used in the parallel computing

The files ∗.g32 and r agr.in were described in the previous section.

The text file solver.in serves for the controlling of the running of the solver.
The parameters are stored in the following order:

eps - the accuracy for the solution of linear system
ipc - the type of preconditiong for solution on subdomains:

ipc=1 (diagonal preconditiong),ipc=3 (the Cholesky
incomplete factorization

itmax - max. number of pcg iterations for the solution on the
fine grid

iap - the type of the initial approximation: iap=0 (the zero
vector), iap=1(the incomplete factorization for the fine
problem), iap=2 (the given vector fu.g32)

ipr - for the Neumann problem the projection of the rhs vector
is necessary: ipr=1 (the Neumann conditions are on all 6
walls), ipr=3 (the Neumann conditions are in the directions
x and y - 4 walls), ipr=4 (the Neumann conditions are
in the directions x and z), ipr=5 (the Neumann conditions
are in the directions y and z)). The forces must be in
equilibrium.

iort - this parameter is usually used if the problem on coarse
grid is solved using pcg iterations. If the small accuracy is
used the searched directions in the pcg iterations on fine
problems are not orthogonal and therefore must be
orthogonalized. The parameter iort

presents the number of previous directions
the new direction must be orhogonal to.

ag - ag>0, the aggregation will be used, the coarse problem
will be solved using inner pcg iterations.

epsin - the accuracy for the solution of linear system for coarse
problem

itmaxin - max. number of pcg iterations for the solution of the
coarse problem

10

iapin - the type of the initial approximation: iapin=0 (the zero
vector), iapin=1(the incomplete factorization for the fine
problem)

ipcin - the type of preconditiong for solution of a coarse problem:
ipc=1 (diagonal preconditiong),ipc=3 (the Cholesky
incomplete factorization

The text file n process.in contains the number of used processors (it is equal
to the numbers of subdomains) and the number of overlapping layers be-
tween neighbouring subdomains. The parameters are stored in the following
order:

npro - the number of processors for a fine grid problem
npr - the number of overlapping layers for a fine problem
npro ag - the number of processors for a coarse grid problem
npr ag - the number of overlapping layers for a coarse problem

The output files are fu.g32 (the vector of displacements) and solver.rep

(text file reporting on the course of iterations).

9 Conclusion

More information can be found in [1]. The paper is in preparation, the
questions can be sent to roman.kohut@ugn.cas.cz. Some information about
the domain decomposition used in the code can be founf in the description
of free solver ISOL 1.45a documentation (see [2]).

References

[1] R. Kohut:Parallel Solution of Elasticity Problems using Aggregations,
in preparation

[2] R. Blaheta, O. Jakl, J. Starý: Library of parallel PCG solvers.
http://www.ugn.cas.cz/other/sw-gem/elpar-1.0.pdf

11

