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Report Institute of Geonics AS CR, Department IT4Innovations

Ostrava, Czech Republic

Abstract

In this paper we shall describe mixed formulations - differential and variational- of a model elliptic problem,
which can be interpreted as Darcy flow model. We describe * Galerkin method with finite dimensional spaces; *
Local matrices and assembling; * Raviart-Thomas RT0−P0 elements; * Edge basis and local matrices for RT0−P0

FEM; * Model problem with corresponding local matrices, right hand side and treatment of boundary conditions;
* Efficient assembling, * Use for generating saddle point systems, testing solvers and preconditioners.

Contents
1 Introduction 1

2 Problem formulation 1

3 Galerkin method - Mixed FEM 2

4 Local matrices and assembling 3

5 Lowest order Raviart-Thomas finite elements 3

6 Local properties and local edge basis for RT(0) elements 4

7 Local matrices 5

8 Model problem 7

9 Assembling 9

1 Introduction

This report describes basis of RT1 code, which can be characterized as a code for testing solvers and preconditioners
for FEM systems arising from lowest order Raviart-Thomas discretization of Darcy flow problems, see also [2, 1]. The
code is characterized by

• simplicity and possibility of easy modifications,

• directly solving model problems on square domains (generalization possible),

• stochastic generation of heterogeneity,

• fast system assembling using vectorization and sparse reconstruction,

• possible testing of Krylov type solvers with both (block) matrix and matrix free (variable) preconditioners.

This report describes the finite element system generation, experiments are involved in papers, e.g. [3].

2 Problem formulation

Let us consider Darcy flow elliptic problem in the form

−div(k (−g + grad p) = f in Ω

p = p̂ on ΓD

(−k grad p) · n = û on ΓN
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where g 6= 0 if we consider elevation changes. It can be also written in a two field form with two basic variables
p : Ω→ R1 and u : Ω→ Rn

k−1u+ grad p = g
div(u) = f

}
in Ω

p = p̂ on ΓD

(−k grad p) · n = û on ΓN

The variational formulation uses test functions v and q to get

ˆ
Ω

k−1u · v dx+

ˆ
Ω

∇p · v dx =

ˆ
Ω

g · v dx

ˆ
Ω

div(u)q =

ˆ
Ω

fq dx

Transformation of one mixed term then provides

ˆ

Ω

∇p · v =

ˆ

Ω

∑
k

∂p

∂xk
vkdx =

∑
k


ˆ

∂Ω

p vk · nk −
ˆ

Ω

p
∂vk
∂xk

dx

 =

=

ˆ

∂Ω

p(v · n)−
ˆ

Ω

p div(v)dx

Then the variational formulation gets the form

´
Ω
k−1u · v −

´
Ω

div(v) · p =
´

Ω
g · v dx −

´
ΓD

p̂(v · n) −
´

ΓN

p(v · n) ∀v

−
´

Ω
div(u)q = −

´
Ω
fq ∀q

or in abstract form: find (u, p) ∈ UN × P

m(u, v) + b(v, p) = G(v) ∀v ∈ U0

b(u, q) = F (v) ∀q ∈ P

where

U = {v ∈ L2(Ω)n : div(v) ∈ L2(Ω)} → H(div)

U0 = {v ∈ U : v · n = 0 on ΓN}
UN = {v ∈ U : v · n = û on ΓN}
P = {q ∈ L2(Ω)}

Note that pressure BC enters G(v) = . . .−
´
Γ0

p̂(v · n) whereas velocity BC are included in UN .

3 Galerkin method - Mixed FEM

We start with introducing FEM spaces Uh ⊂ U , UNh ⊂ UN , U0h ⊂ U0 and Ph ⊂ P . Then the Galerkin method is to
find (uh, ph) ∈ UhN × Ph

m(uh, vh) +b(vh, ph) = G(vh) ∀vh ∈ U0h

b(uh, qh) = F (qh) ∀ph ∈ Ph
After a choice of bases

Uh = lin{Φi, i ∈ I}, Ph = lin{Ψj : j ∈ J}
UNh = uN + u, u ∈ U0h

U0h = lin{Φi : i ∈ I0}
uN ∈ lin{Φi : i ∈ I \ I0}, uN =

∑
(û · n)(xi)Φi
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the discrete mixed problem can be written as - find (uh, ph) ∈ UhN × Ph, uh = uN +
∑
i∈I0

αiΦi, ph =
∑
j∈J

βjΨj

∑
i∈I0

αim(Φi,Φk) +
∑
j∈J

βjb(Φk,Ψj) = G(Φk)−m(uN ,Φk) ∀k ∈ I0∑
i∈I0

αib(Φi,Ψl) = F (Ψl)− b(uN ,Ψl) ∀l ∈ J

Rewritting to matrix form provides

Mα +BTβ = G α ∈ Rn1 , n1 = #I0
Bα = F β ∈ Rn2 , n2 = #J

where M ∈ Rn1×n1 , Mij = m(Φj ,Φi), B ∈ Rn2×n1 , Bij = b(Φj ,Ψi), B
T ∈ Rn1×n2 , BTij = b(Φi,Ψj) = Bji,

G = (Gi), Gi = G(Φi), F = (Fk), Fk = F (Ψk).

4 Local matrices and assembling

Assume that Φi and Ψi are constructed as finite element basis functions above some triangulation Th, i.e. ∀T ∈ Th

Φi|T ∈ {Φ1, . . .Φρ, 0 = Φ0}
Ψj |T ∈ {Ψ1, . . .Φσ, 0 = Ψ0}

Then

m(Φi,Φk) =

ˆ

Ω

k−1Φi · Φk dx =
∑
T∈Th

ˆ

T

K−1Φi · Φk dx =
∑
T∈Th

ˆ

T

k−1Φloc(i)Φloc(k) dx

b(Φi,Ψj) =

ˆ

Ω

(divΦi)Ψj dx =
∑
T∈Th

ˆ

T

(div Φloc(i))Ψloc(j) dx

where lock(i) = lock(i, T ) is a transformation from global index to local index of basis function on T . It can be also
zero.

Vice versa, for T ∈ Th, it is possible to construct local matrices

MT , (MT )rs =

ˆ

T

k−1Φs · Φr dx

BT , (BT )rs = −
ˆ

T

div Φs ·Ψr dx

and then perform the assembling of local matrices to global M, B

(MT )rs →Mglob(T,r)glob(T,s) = +(MT )rs

(BT )rs → Bglob1(T,r)glob2(T,s) = +(BT )rs

Note there are two sets of basis functions {Φi}, {Ψj}, two sets of local basis functions {Φi}, {Ψj} and two mappings

loc1(i) = loc1(i, T ), loc2

glob1(r, T ) = i, glob2(s, T ) = j.

5 Lowest order Raviart-Thomas finite elements

Let Ω ⊂ R2 be a 2D polygonal domain, Th be its triangulation, Eh be set of edges of all elements T ∈ Th, see the
situation in the following Figure 1.
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Figure 1: {x(i)} set of centres of Ei ∈ Eh, {y(j)} barycentres of Tj ∈ Th

Then, we can define

RT0(T ) = {v : T → R2, v(x) = ξ

(
x1

x2

)
+

(
η1

η2

)
, ξ, η1, η2 ∈ R}

Uh = {v : Ω→ R2, v|T ∈ RT0(T ) ∀T ∈ Th, v · nE is continuous over E ∈ Eh}

Ph = {q : Ω→ R1, q|T is constant ∀T ∈ Th}.

Continuity of v · nE guarentees Uh ⊂ U , Ph ⊂ P is obvious. Note that ∀E ∈ Eh we define nE (unit normal vector),
independently of relation to triangles and consequently in possibly inner or outer direction, see Figure 2.
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Figure 2: Prescribed normal nE . Possible definition of nE , E ∈ Eh.

6 Local properties and local edge basis for RT(0) elements
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n(1) ≡ nE1

Figure 3: T ∈ Th
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Lemma 6.1. Let T ∈ Th, v ∈ RT0(T ). Then ∀E ∈ Eh ∪ ∂T : v · n|E = const.

Proof. Let E ∈ Eh ∪∂T, nE be normal to E (can be either outer or inner to T ), x∗ ∈ E be arbitrary point at E. Then

x ∈ E ⇒ (x− x∗) · nE = 0, nE = (n1, n2) ⇒

x1n1 + x2n2 = x∗1n1 + x∗2n2 = const. ⇒

v(x) · n = ξx1n1 + ξx2n2 + η1n1 + η2n2

= ξ(x∗1n1 + x∗2n2) + η1n1 + η2n2 = const.

Lemma 6.2. (Expression for local basis functions.) Let

Φi(x) = σi
|Ei|
2|T |

(x− Pi), σi = nEi
· n(i),

where nEi
are global prescribed normals and n(i) are outer normals for T ∈ Th, see Figure 3. Then

(i) Φj(x) · nEi = δij ,
(ii) Φi ∈ RT0(T ) ,
(iii) Φ1,Φ2,Φ3 create a basis of RT0(T ),

(iv) div Φi = σi
|Ei|
|T | .

Proof.

(i) If i 6= j, then Pi ∈ Ej and (x− Pi) · nEj
= 0 for x ∈ Ej . If i = j then for x ∈ Ei the value (x− Pi) · nEi

appears
in the projection of (x−Pi) to the height of T passing through Pi and therefore |(x−Pi) · nEi

| = hi. Moreover,
1
2hi|Ei| = |T | and hi = 2|T |/|Ei|, (x− Pi) · n(i) ≥ 0 - both vectors have outward direction w.r.t. T . Finally

(x− Pi) · nEi = σi
2|T |
|Ei|

.

(ii) and (iv) are obvious

(iii) u ∈ RT0(T ), w = u −
3∑
1

(u · nEi
)Φi. Obviously w · nEi

= 0 ∀Ei. Therefore ∀Pj : w(Pj) · nEi
= 0 and

because ∀Ei : Pj ∈ Ei, it holds w(Pj) = 0 ∀j = 1, 2, 3. As w is linear polynomial, w ≡ 0. Proof of uniqueness:

w =
3∑
1
αiΦi = 0 ⇒ w · nEj

= αjΦjnEj
= αj = 0 ∀j.

7 Local matrices

Let us consider the local basis on T created by Φ1,Φ2,Φ3 ∈ RT0(T ) and Ψ1 ≡ 1. Then BT ∈ R1×3,

(BT )1s =

ˆ

T

(div Φs)Ψ1 = σs
|Es|
|T |
· |T | = σs|Es|,

i.e. BT = [σ1|E1|, σ2|E2|, σ3|E3| ] ∈ R1×3. Further, MT ∈ R3×3,

(MT )rs =

ˆ

T

k−1ΦsΦr dx = σrσs
|Er| |Es|

4|T |2

ˆ

T

k−1(x− Ps) · (x− Pr) dx.

To compute the integral
´
T

k−1(x− Ps) · (x− Pr) dx, we can use barycentric coordinates at T ,

x = λ1(x)P1 + λ2(x)P2 + λ3(x)P3, λ1 + λ2 + λ3 = 1,

thus
x− Pr = λ1(x)(P1 − Pr) + λ2(x)(P2 − Pr) + λ3(x)(P3 − Pr)
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and

(MT )rs = σrσs
|Er| |Es|

4|T |2
3∑

α,β=1

ˆ

T

λαλβ · k−1(Pα − Ps) · (Pβ − Pr) dx.

Assuming k constant on T and using the integration formula
´
T

λαλβ = |T |
12 (1 + δαβ) , which is a pecial case of

ˆ

T

λa1 λ
b
2 λ

c
3 dx =

a! b! c!

(a+ b+ c+ 2)!
2|T |

ˆ

V

λa1 λ
b
2 λ

c
3 λ

d
4 dx =

a! b! c! d!

(a+ b+ c+ d+ 3)!
6|V |

see e.g. [4, 5] the elements of MT can be expressed as

(MT )rs =
1

48|T |
σr|Er|

3∑
α,β=1

(1 + δαβ)k−1(Pα − Ps) · (Pβ − Pr) σs|Es|.

If we define vectors vr, vs ∈ R6×1,

vr =

 P1 − Pr
P2 − Pr
P3 − Pr

 , vs =

 P1 − Ps
P2 − Ps
P3 − Ps

 , pi =

[
x1

x2

]
.

Then

(MT )rs =
1

48|T |
σr|Er|vTr


2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 2 0 0
0 1 0 1 0 2


︸ ︷︷ ︸

=df C

 k−1

k−1

k−1

 vsσs|Es|

Note that the diagonal elements are equal to elements of BT . If we denote C ∈ R6×6 the matrix, which appeared in
the expression above and

V = [v1, v2, v3] =

 0 P1 − P2 P1 − P3

P2 − P1 0 P2 − P3

P3 − P1 P3 − P2 0

 ∈ R6×3,

then

(MT ) =
1

48|T |

 σ1|E1| 0 0
0 σ2|E2| 0
0 0 σ3|E3|


︸ ︷︷ ︸

S∈R3×3

V TC

 k−1

k−1

k−1


︸ ︷︷ ︸

L∈R6×6

V

 σ1|E1| 0 0
0 σ2|E2| 0
0 0 σ3|E3|


︸ ︷︷ ︸

S

,

i.e.

(MT ) =
1

48|T |
SV TCLV S

where S = diag [b1|E1|, b2|E2|, b3|E3| ] , V =

 0 P1 − P2 P1 − P3

P2 − P1 0 P2 − P3

P3 − P1 P3 − P2 0

, L =

 k
k

k

−1

= 1
kT
I, if we

consider the isotropic environment, k = kT I on T . For comparison see [2] formula (4.6).
Note that we constructed velocity mass matrix M . In the case of time dependent problems, we also need the

pressure mass matrix (MT )rs =
´
T

ΨrΨs = δrs|T |.
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8 Model problem

We shall consider a model Darcy flow problems on a square domain with flow from left to right induced by the pressure
gradient.

-

6x2

p̂ = 1

no flow

Ω = 〈0, 1〉2

no flow
ûn = 0

p̂ = 0

x1

Figure 4: Model problem

The problem domain is divided into rectangular elements with the size characterized by the parameter ns = number
of segments on the side.

@
@
@
@
@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@

@
@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@
@

@
@
@
@
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T3

6

triangle

-

Ei
edge

6

cell composed from two triangles
nc - number of cells
nc = (ns)2

ns = 4, h = 1/ns
nt = 2(ns)2

- number of triangles

Figure 5: Discretization of the model problem.

Heterogeneity. We assume that each cell can possess a different permeability coefficient ki, i = 1, . . . , nc = (ns)2.
This can be produced by MATLAB using command sequence

1) rng ( ’ de fau l t ’ ) ;
2) RM = randn ( ns , ns ) ;
3) LK = ( exp ( 1 ) . ˆ ( sigma∗RM) ) ;

The first command initializes the random number generator to make the results in this example repeatable. The
same sequence is generated as after restart of MATLAB. The second command generate a ns-by-ns matrix of normally
distributed random numbers from N(0, 1), i.e. with mean µ = 0 and standard deviation 1. Then σ ∗RM is a matrix of
normally distributed random numbers with the mean µ = 0 and standard deviation σ2. Third command then creates
matrix of conductivities such that ln(LK) has normal distribution.
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Figure 6: Global normals.

Orientation of (global) normals to element edges

Model problem - local matrices

MT =
1

24h2
SV TCLV S, L =

1

kcell
I.

Lower triangle

c
c
c
c
c
c

P1 P2

P3

E1
E2

E3

BT = [
√

2h,−h,−h], S = h

 √2
−1

−1

, V = h


0 −1 0
0 0 −1
1 0 1
0 0 −1
0 −1 0
1 1 0

.

Upper triangle

c
c
c
c
c
c

P1P2

P3

E1

E2

E3

BT = [−
√

2h, h, h], S = h

 −√2
1

1

 = −Slow, Vupper = h


0 1 0
0 0 1
−1 0 −1
0 0 1
0 1 0
−1 −1 0

 = −Vlow.

As a conclusion - the matrices MT = 1
24h2SV

TCLV S are the same for both lower and upper triangles.

Right hand side and boundary conditions Consider the global system

Mα + BTβ = G
Bα = F

where

Gi = −
ˆ

Γ0

p̂(pi · n)

︸ ︷︷ ︸
r.h.s. contribution

−
∑

k∈I\I0

ûkm(Φk,Φi)︸ ︷︷ ︸
l.h.s., in our case ûk=0

F j = −
ˆ

Ω

fΨj

︸ ︷︷ ︸
=
´
Tj

f=0 in our case

−
∑

k∈I\I0

ûk

ˆ

Ω

div (Φk)Ψj dx

︸ ︷︷ ︸´
Tj

div(Φk); ûkare zero in our case

≡ 0
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s
s
s
s s → add +h · p̂, p̂ = 1

to the corresponding entry of Gi

Figure 7: Pressure boundary conditions for the model problem.

c c c c

c c c c c → null corresp. rows, columns

Figure 8: Treatment of velocity boundary conditions: a) exclude corresponding rows and columns and rhs entries, b)
or put 1 on diagonal otherwise zeros in corresponding row, columns and rhs entries

9 Assembling

Standard assembling

Algorithm 1 Standard assembling

define M ≡ 0, B ≡ 0
for 1:nt

take MT , BT
for r = 1, . . . , 3

for s = 1, 2, 3
Mi(T,r) j(T,s) = (MT )rs
Bκ(T ) i(T,r) = (BT )1r

end
end

end

The standard assembing has two drawbacks: for cycles, which are not efficient in MATLAB, and dense matrix
storage of the global matrix. Just replacing the global matrix declaration as sparse is not a good solution as it the
sparse structure is not given apriori but must be constructed during the assembling process. This inefficiency can be
removed by gradual recording the nonzero components and indices into one dimensional vectors X, I, J and constructin
the matrix through

sparse(X, I, J, n, m).

Further improvement and loop avoiding can be done by vectorization, see [6]. The resulting code is able fast assembly
very large matrices.
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