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Preface

Seminar on Numerical Analysis 2009 (SNA’09) is the sixth meeting of a series of events started
in Ostrava 2003 and devoted to numerical methods necessary for mathematical modelling of
problems in sciences and engineering. In this respect, it was natural that in period 2005 - 2008
the SNA conferences became a part of the project MSTEP (http://www2.cs.cas.cz/mweb/)
Modelling and simulation of complex engineering problems: effective numerical algorithms and
parallel implementation using new information technologies within the program Information
society administrated by the Academy of Sciences of the Czech Republic. We hope that the
tradition of SNA conferences will be preserved even after finishing the MSTEP project in 2008.

Since 2005, a part of SNA has been devoted to the so called Winter school with tutorial lectures
devoted to selected topics within the conference scope. In this year, the Winter school includes
lectures devoted to the discontinuous Galerkin method and compressible flow (V. Doleǰśı and
M. Feistauer), direct methods for solving indefinite systems (M. Rozložńık), duality for varia-
tional inequalities (Z. Dostál) and to the shape optimization (J. Haslinger). The Winter school
also includes a series of lectures devoted to problems with uncertain input data, namely interval
computing (S. Ratschan), fuzzy approach (J. Kruis), worst scenario (J. Chleboun), Monte Carlo
approach (D. Novák, M. Vořechovský) and polynomial chaos (T. Kozubek).

The SNA conferences also cover the topics of computer implementation of numerical methods,
parallel and high performance computing. Despite some contributions devoted to these topics,
this year we would like to inform the participants about the supercomputing project IT for In-
novations, which is under preparation for the EU funded Operational Programme Research and
Development for Innovations by VSB - Technical University of Ostrava, University of Ostrava,
Silesian University of Opava and the Institute of Geonics AS CR Ostrava.

On behalf of the Programme and Organizing Committee of SNA’09,

Radim Blaheta and Jǐŕı Starý
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Matematické modelováńı kompozitńıch materiál̊u s nedokonalým
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metodou konečných prvk̊u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

J. Duintjer Tebbens, M. T̊uma:
Using triangular preconditioner updates in matrix-free implementations . . . . . . . 90

T. Vejchodský:
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V. Vondrák, T. Kozubek, A. Markopoulos, T. Brzobohatý:
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Tvarová optimalizace pro 3D kontaktńı problém
s Coulombovým třeńım - o citlivostńı analýze

P. Beremlijski ∗, J. Haslinger, M. Kočvara, R. Kučera, J.V. Outrata

∗ VŠB - Technická univerzita Ostrava

1 Úvod

V př́ıspěvku se zabýváme diskretizovanou úlohou tvarové optimalizace trojrozměrného pružného
tělesa v jednostranném kontaktu s tuhou překážkou. Třeńı mezi tělesem a překážkou modelujeme
Coulombovým zákonem. Matematický model problému s Coulombovým ťreńım vede na řešeńı
kvazivariačńı nerovnosti. Pro malý koeficient ťreńı má diskrétńı kontaktńı úloha s Coulom-
bovým ťreńım jediné řešeńı. Nav́ıc řešeńı této úlohy je závislé lokálně lipschitovsky na ř́ıd́ıćı
proměnné popisuj́ıćı tvar pružného tělesa. D́ıky jedinému řešeńı diskrétńı úlohy pro fixovanou
ř́ıd́ıćı proměnnou, můžeme použ́ıt tzv. př́ıstup implicitńıho programováńı. Ten je založen na
minimalizaci nehladké funkce složené z cenové funkce a jednoznačného zobrazeńı, které ř́ıd́ıćı
proměnné přǐrazuje řešeńı diskrétńı úlohy, tzn. stavové proměnné. Pro minimalizaci nehladké
funkce lze efektivně použ́ıt bundle trust metodu. K výpočtu subgradientńı informace, kterou
metoda vyžaduje je výhodné použit́ı Clarkeova kalkulu (viz [3]). Implicitńı programováńı spolu
s Clarkeovým kalkulem bylo použito pro řešeńı diskretizované úlohy tvarové optimalizace pro
2D kontaktńı problém s Coulombovým ťreńım (viz [1]). Pro 3D úlohu neńı možné jednoduše
modifikovat stejný postup (subdiferenciál eukleidovské normy v R

2 neńı polyhedrálńı). Cı́lem
př́ıspěvku je naznačeńı hledáńı subgradientu, tj. citlivostńı analýza, pro tvarovou optimalizaci
3D kontaktńı úlohy s Coulombovým ťreńım (podrobně v [2]).

2 Stavová úloha

Nechť Ω ⊂ R
3 je pružné těleso s lipschitzovskou hranićı ∂Ω. Hranice ∂Ω je složena ze ťŕı

nepřekrývaj́ıćıch se část́ı Γu, Γp a Γc. Viz obrázek 1.

Γp

Γp

Γc

Γu Ω

Obrázek 1: 3D pružné těleso.

Γu je hranice s Dirichletovskou podmı́nkou. Povrchové śıly F = (F1, F2, F3) p̊usob́ı na hranici
Γp, F ∈ L2(Γp). Těleso je zdola podepřeno podél hranice Γc (jej́ı tvar je určen ř́ıd́ıćı proměnnou
α ∈ R

d) tuhou překážkou. Na této hranici je předepsáno Coulombovo ťreńı s koeficientem ťreńı
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F . Řešeńım diskrétńıho kontaktńıho problému s Coulombovým ťreńım nazveme uspořádanou
dvojici (u ,λ) ∈ R

n × R
p
+ splňuj́ıćı

(Au , v − u)n + F (λ, |Tv | − |Tu|)p ≥ (L, v − u)n + (λ,Nv −Nu)p ∀v ∈ R
n

(µ− λ,Nu + α)p ≥ 0 ∀µ ∈ R
p
+,

kde A ∈ R
n×n a L ∈ R

n jsou matice tuhosti a vektor sil závislé na ř́ıd́ıćı proměnné α. Vektor
(u ,λ) nazveme stavovou proměnnou. Nyńı zavedeme rozděleńı vektoru posunut́ı u na (u t,uν),
kde u t př́ısluš́ı tečnému posunut́ı a uν odpov́ıdá normálovému posunut́ı. Dále zredukujeme
naši úlohu a budeme se zabývat pouze kontaktńımi uzly (jejich počet je p). Stavová úloha
realizuje zobrazeńı S : α ∈ R

d → (u t,uν ,λ) ∈ R
4p (̌ŕıd́ıćımu vektoru α ∈ Uad je přǐrazeno řešeńı

kontaktńı úlohy s Coulombovým ťreńım (u t,uν ,λ)). S je pro malé koeficienty ťreńı lokálně
lipschitzovské. Diskretizovanou stavovou úlohu lze ekvivalentně popsat zobecněnou rovnost́ı

0 ∈ Att(α)u t + Atν(α)uν − Lt(α) + Q̃(u t,λ)
0 = Aνt(α)u t + Aνν(α)uν − Lν(α) − λ

0 ∈ uν + α +NR
p
+
(λ),

kde

Q̃(u t,λν) = ∂utj(u t,λν), j(u t,λν) = F
p∑

i=1

λi||u it||

a NR
p
+

je standardńı normálový kužel. Tuto zobecněnou rovnost můžeme zapsat stručněji takto

0 ∈ F (α)y − l(α) +Q(y),

kde

F (α) =



Att(α) Atν(α) 0
Aνt(α) Aνν(α) −E

0 E 0


 ,

y = (u t,uν ,λ)T , l(α) = (Lt(α),Lν(α),−α)T , Q(y) =
(
Qt(u ,λ),0,NR

p
+
(λ)
)T

,

E je jednotková matice.

F (α)y − l(α) je jednoznačná část zobecněné rovnosti, Q(y) je jej́ı v́ıceznačná část.

3 Tvarová optimalizace pro kontaktńı úlohu s Coulombovým
třeńım

Naš́ım úkolem je nalézt ř́ıd́ıćı proměnnou α určuj́ıćı tvar Beziérovy plochy, kterou je popsána
kontaktńı hranice Γc, pro kterou nabývá cenový funkcionál J (α,S(α)) svého minima. Úlohu
diskrétńı tvarové optimalizace zavedeme jako řešeńı

min
α∈Uad

Θ(α) = J (α,S(α)).

Předpokládejme, že funkcionál J je spojitě diferencovatelný. K řešeńı této nehladké úlohy
použijeme bundle trust metodu (podrobně viz [5]).
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4 Citlivostńı analýza pro úlohu tvarové optimalizace

Bundle trust metoda poťrebuje rutinu, která v každém kroce vypočte hodnotu cenového funkcio-
nálu (k tomu poťrebujeme vyřešit stavovou úlohu) a jeden (libovolný) Clarke̊uv subgradient
z Clarkeova zobecněného gradientu ∂Θ(α). Pro jeho konstrukci použijeme tvrzeńı

∂Θ(α) = ∇1J (α,S(α)) + {C T∇2J (α,S(α))|C ∈ ∂S(α)}
(viz [3]). Dále využijeme nehladkého kalkulu B. Morduchoviče (viz [4]).

Protože plat́ı ∅ 6= D∗S(α)(y∗) pro všechna y∗ a conv (D∗S(α)) (y∗) = {C Ty∗|C ∈ ∂S(α)},
stač́ı nalézt jeden prvek z množiny D∗S(α)(∇2J (α,S(α))). Prvky limitńı koderivace

D∗S(α)(y∗) := {x ∗ ∈ R
d | (x ∗,−y∗) ∈ NGr S(α)},

kde Gr S je graf S a NGr S je limitńı normálový kužel, najdeme použit́ım následuj́ıćıho tvrzeńı.

Teorém 4.1 Nechť máme (α,y), kde α ∈ Uad,y = S(α). Potom pro všechna y∗ ∈ R
4p plat́ı

D∗S(α)(y∗) ⊂ (∇1(F (α)y − l(α)))TV,
kde V je množina řešeńı v limitńı adjungované zobecněné rovnosti

0 ∈ y∗ + (F (α))T v +D∗Q(y,−F (α)y + l(α))(v).

Abychom vypočetli koderivaci D∗Q(y ,−F (α)y + l(α))(v ) přeuspořádáme v́ıceznačnou část
zobecněné rovnosti Q(y) následuj́ıćım zp̊usobem

Q(y) =




Φ(y1)
Φ(y2)

...
Φ(yp)


 ,

kde y i = (u iτ , u
i
ν , λ

i) ∈ R
2 × R × R+ obsahuje hodnoty všech stavových proměnných v i-tém

kontaktńım uzlu a

Φ(y i) =



Fλi∂‖u iτ‖2

0
NR+

(λi)


 , i = 1, 2, . . . , p.

Pro výpočet D∗Q(y ,−F (α)y + l(α))(v ) je nutné provést diskusi polohy bodu (y ,−F (α)y +
l(α)) vzhledem ke Gr Q, tj. diskusi poloh bod̊u (y i,−F i(α)y + li(α)) vzhledem ke Gr Φ, i =
1, 2, . . . , p. Pro zjednodušeńı zaveďme mı́sto (y i,−F i(α)y+li(α)) dvojici vektor̊u (a , b) ∈ Gr Φ
(tzn. b3 = 0) a označme symbolem a12 dvojrozměrný vektor (a1, a2)

T a symbolem b12 vektor
(b1, b2)

T .

Množinu Gr Φ můžeme zapsat

Gr Φ = L ∪M1 ∪M2 ∪M+
3 ∪M−

3 ∪M4,

kde

L = {(a , b) ∈ Gr Φ | b4 < 0},
M1 = {(a , b) ∈ Gr Φ | a12 6= 0, a4 > 0},
M2 = {(a , b) ∈ Gr Φ | a12 6= 0, a4 = 0, b4 = 0},
M+

3 = {(a , b) ∈ Gr Φ | a12 = 0, a4 > 0, ‖b12‖ < Fa4},
M−

3 = {(a , b) ∈ Gr Φ | a12 = 0, a4 > 0, ‖b12‖ = Fa4},
M4 = {(a , b) ∈ Gr Φ | a12 = 0, a4 = 0, ‖b12‖ = Fa4, b4 = 0}.
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Všimněme si významu předchoźıch množin. Pokud a12 6= 0 hovoř́ıme o prokluzu, zat́ımco když
a12 = 0 o přilepeńı. L znamená stav bez kontaktu a tedy i bez ťreńı. M1 odpov́ıdá prokluzu
s kontaktem, M2 popisuje prokluz se slabým kontaktem, M+

3 přilepeńı s kontaktem, M−
3 slabé

přilepeńı s kontaktem a M4 slabé přilepeńı se slabým kontaktem.

Množiny L,M1 a M+
3 popisuj́ı stabilńı chováńı, tj. plat́ı následuj́ıćı implikace

(ā , b̄) ∈ L( or M1 or M+
3 )

(a , b) ∈ Gr Φ

(a , b) je bĺızko (ā , b̄)





⇒ (a , b) ∈ L( or M1 or M+
3 )

Pro jednotlivé množiny L,M1,M2,M
+
3 ,M

−
3 ,M4 lze pak odvodit vztahy pro výpočet koderivace

D∗Φ((a , b))(v ) a z nich pak zkonstruovat D∗Q(y ,−F (α)y + l(α))(v ).

5 Závěr

Ve 2D verzi výše popsané úlohy tvarové optimalizace bylo využito toho, že stavové zobrazeńı S
je po částech spojitě diferencovatelné. O stavovém zobrazeńı ve 3D př́ıpadě to již neńı známo.
Proto je použit́ı Morduchovičova kalkulu nezbytné pro řešeńı optimalizačńı úlohy, kterou se
zabýváme v této práci. Při implementaci navrženého postupu je možno udělat určité úpravy,
které mohou ještě zefektivnit řešeńı dané úlohy.

Tato práce byla podpořena GA ČR 201/07/0294, MŠMT MSM6198910027.
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Multiscale modelling of geomaterials and iterative solvers

R. Blaheta, P. Byczanski, P. Harasim

Institute of Geonics AS CR, Ostrava

1 Introduction

Standard geomaterials as well as other construction materials are mostly considered as homo-
geneous or piecewise homogeneous at the application scale. On the other hand, these materials
are heterogeneous when we consider a finer scale and this heterogeneous structure gives insight
to many properties of the materials and processes occurring in them. Further, we shall speak
about microstructure of materials despite of the size of the objects considered at the finer scale,
which can be different constituents, grains but also just homogeneous pieces of a rock mass.

Let us mention specific geotechnical problems. First, the properties of a rock mass can be
influenced by grouting the rock matrix with a polyurethane resin. The mechanical properties
as well as permeability then depend on degree of filling the fractures and properties of the used
resin. The numerical upscaling and evaluation of properties of homogenized material enable to
assess the effect of grouting and can be also used for optimization of the grouting process.

Other problems are in assessment of the influence of microstructure to processes at the microlevel.
For example, for porous media flow and even more for transport and reaction of chemicals, it
may be important to know so called hydrogeological dispersion due to different properties in
microstructure. Further, for investigation of the mechanical damage of material, it is again
important to investigate initialization of the damage due to heterogeneity in microstructure and
subsequently heterogeneity in the stress field.

The knowledge of microstructure, necessary for the modelling, can be deterministic or stochastic.
The deterministic knowledge can be derived from microscope observation, using X-ray CT scans,
ultrasound tomography etc. The stochastic information can be derived from a partial knowledge
of material and can be also readily used for assessment of sensitivity to the microstructure
variation.

There are also important computational aspects of solving boundary value problems with mi-
crostructure representation:

• the discretization capable to represent the microstructure should normally be very dense
and, consequently, requires solving very large problems,

• the oscillation of coefficients causes very ill conditioning of the solved problems.

2 Problems with deterministic microstructure

For optimization of the grouting process, it is possible to use numerical upscaling. It means that
a cubic samples with edge 75mm are scanned by X-ray computer tomography and discretized
with an uniform voxel grid with 251×251×76 grid giving 4 788 076 nodes and nearly 15 million
DOFs in the case of investigation of elastic properties. The CT scans are used for determining
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the properties in different voxels and representing the computational microstructure. An use of
finite element analysis then allow to compute homogenized properties.

For the solution of the FE systems, arising from upscaling elastic properties, we used two-level
Schwarz method with a coarse space created by the non-smoothed aggregation [1]. In this
case, the heterogeneity as well as the size of jumps in coefficients influence very negatively the
convergence of the method, see [2].

A remedy can be found in using other coarse spaces, which can be constructed in different
ways. First way uses multiscale finite element basis functions which are a-harmonic on the
coarse elements, see [4, 3]. Another way, is to use a coarse space defined by basis functions with
prescribed supports and energy minimization property, see [3]. These approaches are also close
to multilevel methods with elementwise Schur complements, see [5, 6].

3 Problems with stochastic microstructure

We shall consider an academic model problem of saturated Darcy flow through a representative
volume Ω = 〈 0, 1〉 × 〈 0, 1〉, see [7]. The flow is described by the equations

∇ · u = 0, u = −k∇(p) in Ω, (1)

un = 0 on Γu = {x : x1 = 0 and x1 = 1}, (2)

p = 1, p = 0 on Γp1 = {x : x2 = 0} and Γp2 = {x : x2 = 1}, respectivelly. (3)

The stochastic character is given by the permeability coefficient k. We shall assume that k is a
random field with the following properties:

• for all x ∈ Ω the quantity z(x) = logk(x) has normal distribution with the mean value 0,

• there is a correlation given by the covariance with the parameters σ (the variance) and λ
(the length scale),

Σxy = cov(z(x), z(y)) =

∞∫

−∞

∞∫

−∞

ξη φξ,η dξ dη = σ2exp(− | x− y | /λ), (4)

where φξ,η is the conjugate probability density of (z(x), z(y)), x, y ∈ Ω.

The defined problem is discretized by a mixed finite element method on a regular grid Ωh

created by a division of Ω into small congruent squares and subsequent division of the squares
into triangles. Then we use the lowest order Thomas-Raviart finite elements for discretization
of the problem.

In the stochastic FE approach (e.g. [8]), a specific problem is the generation of the correlated
random fields giving values of k (constant) on the square grid elements. Our approach starts
with generation of an uncorrelated random field (denoted as λ = 0) at an extended grid Ω+

h and
smoothing this field with the aid of a prepared stencil. This approach will be more thoroughly
described in a forthcoming paper. For another approach see e.g. [9].
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4 Iterative solution

The stochastic microstructure problem enables easily to investigate the robustness of iterative
methods with respect to oscillation of the PDE’s coefficient. Let us use the mixed formulation of
the porous media flow, which means that both pressure p and Darcy velocity u are considered as
independent unknowns. This formulation is an origin for the mixed finite element methods with
two big advantages over the standard approach: better approximation of fluxes and preservation
of the local mass conservation for the approximate solution.

The mixed variational formulation and its simplest discretization with lowest order Raviart-
Thomas leads to the system

A

[
u
p

]
=

[
0
−ϕ

]
, A =

[
M BT

B 0

]
. (5)

which is symmetric, indefinite and regular. We shall solve this system by MINRES method
preconditioned first by a block diagonal preconditioner Cη ,

Cη =

[
Mη 0
0 ηI

]
, where Mη = M + η−1BTB . (6)

This preconditioner is introduced and analysed in [12], where we can found a proof of h-
independent spectral equivalence between Cη and A. For solving problems with strong het-
erogeneity, it is important that the coefficient oscillation does not influence the BTB term.

The second step consists in use of a Schwarz type preconditioner for Mη, i.e.

M−1
η ∼ Gη =

s∑

i=1

RTi M
−1
η,i Ri, C−1

η ∼
[
Gη 0
0 η−1I

]
. (7)

The construction of the Schwarz preconditioner toMη is described e.g. in [11, 10]. For testing the
robustness of the MINRES with the above block diagonal (BD) and one-level additive Schwarz
(AS) preconditioners we solve the model problem of Section 3 with 101 × 101 grid (h=1/100)
and the most oscillatory uncorrelated random field (λ = 0). The number of subdomains used
for construction of the Schwarz prconditioner is s = 4 and the subdomains are vertical strips
with the overlap 2h. The numbers of iterations can be found in the following Table.

σ = 0 σ = 1 σ = 2 σ = 3 σ = 4
η BD AS BD AS BD AS BD AS BD AS

1e-1 47 222 66 260 82 320 158 631 545 2216
1e-2 17 94 23 124 26 149 53 316 179 1044
1e-3 8 56 9 82 11 96 20 191 77 695
1e-4 5 29 6 66 6 89 8 142 29 393
1e-5 4 19 4 59 4 78 5 134 12 257
1e-6 3 14 3 52 3 69 4 110 6 211
1e-8 4 8 4 47 4 68 4 92 4 170

Note that this Table shows relatively very good robustness and efficiency of the method. The
coefficients are oscillatory with jumps 2 · 10−2 to 6 · 102 for σ = 2, 1 · 10−4 to 8 · 103 for σ = 3,
1 · 10−7 to 9 · 106 for σ = 4.

13



5 Conclusions

The paper described reasons for considering the microstructure of materials and solving bound-
ary value problems with oscillatory coefficients. For solving the mixed FE problems with oscil-
lating coefficients, a preconditioned MINRES method is suggested and efficiency and robustness
of this method is shown. In paper also a stochastic description of microstructure is introduced
with aims to investigate sensitivity of processes and robustness of iterative solvers.

Acknowledgement: This work is supported by the grants GACR105/09/1830 of the Grant
Agency CR and the research plan AV0Z30860518 of the Academy of Sciences of the Czech
Republic.
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Řešeńı Bernoulliho úlohy s volnou hranićı pomoćı BEM

J. Bouchala, T. Kozubek, M. Sadowská

VŠB - Technická univerzita Ostrava

1 Úvod

Budeme se zabývat vněǰśı Bernoulliho úlohou s volnou hranićı, se kterou se setkáme např́ıklad při
řešeńı problémů mechaniky tekutin, galvanizace kov̊u, elektrostatiky (viz [1],[4],[6]). Cı́lem bude
ukázat efektivńı zp̊usob řešeńı této úlohy založený na kombinaci technik tvarové optimalizace
a metody hraničńıch prvk̊u (BEM). Tento př́ıstup spoč́ıvá v přeformulováńı Bernoulliho úlohy
na úlohu tvarové optimalizace, jej́ıž stavový problém budeme diskretizovat pomoćı BEM. Řešeńı
stavové úlohy bude př́ımo reprezentovat Neumannova data na volné hranici oblasti.

2 Formulace problému

Buď O ťŕıda omezených dvojnásobně souvislých oblast́ı Ω ⊂ R
2 s lipschitzovskou hranićı ∂Ω =

Γ0 ∪ Γf , kde Γ0 je pevná hranice a Γf = Γf (Ω) je volná hranice (viz obrázek 1). Volná hranice
oblasti lež́ı ve vněǰsku pevné části hranice. Hledejme oblast Ω∗ ∈ O a funkci u : Ω∗ 7→ R takové,

Ω

Γf
Γ0

n

n

Obrázek 1: Geometrie stavové úlohy.

že

△u = 0 v Ω∗, u = g na ∂Ω∗,
du

dn
= Q na Γf (Ω

∗), (1)

kde g = 1 na Γ0, g = 0 na Γf (Ω
∗), Q = konst. < 0 a n je vněǰśı jednotkový normálový vektor

k ∂Ω∗. Lze ukázat [2], že pokud je Γ0 hranićı C2 oblasti hvězdicového typu, existuje jednoznačné
(klasické) řešeńı úlohy (1).

Je zřejmé, že pro předem danou oblast Ω ∈ O neńı výše uvedená okrajová úloha korektńı, protože
předepsané okrajové podmı́nky na volné hranici tvoř́ı přeurčený systém. Abychom odstranili
tuto obt́ıž, přeformulujeme úlohu (1) pomoćı metod optimálńıho ř́ızeńı, kdy tvar oblasti Ω bude
hrát roli ř́ıd́ıćı proměnné. Základńı myšlenka tohoto př́ıstupu je velmi jednoduchá: přebývaj́ıćı
okrajovou podmı́nku zahrneme do vhodného cenového funkcionálu a zbylou pak budeme splňovat
a priori jako součást dané stavové úlohy, která již bude zadaná korektně.

Namı́sto (1) budeme tedy uvažovat následuj́ıćı optimalizačńı problém: nalezněme Ω∗ ∈ O tak,
aby

J(Ω∗, u(Ω∗)) ≤ J(Ω, u(Ω)) ∀Ω ∈ O, (2)
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kde

J(Ω, u(Ω)) :=
1

2

∥∥∥∥
du(Ω)

dn
−Q

∥∥∥∥
2

H−1/2(Γf (Ω))

(3)

a u(Ω) řeš́ı stavový problém

△u = 0 v Ω, u = g na ∂Ω. (4)

Vztah mezi problémy (1) a (2) je snadno vidět: oblast Ω∗ ∈ O je řešeńım (1) právě tehdy,
jestliže Ω∗ řeš́ı (2) a současně J(Ω∗, u(Ω∗)) = 0.

3 Slabá hraničńı formulace stavové úlohy

Pro slabé řešeńı u ∈ H1(Ω) Laplaceovy rovnice v Ω ∈ O plat́ı Gauss̊uv reprezentačńı vztah, tj.

u(x) =

∫

∂Ω
γ1u(y)U(x, y) dsy −

∫

∂Ω
γ0u(y) γ1,y U(x, y) dsy, x ∈ Ω, (5)

kde

U(x, y) := − 1

2π
ln ‖x− y‖, x, y ∈ R

2,

je fundamentálńı řešeńı Laplaceova operátoru v rovině, γ0 : H1(Ω) 7→ H1/2(∂Ω) je operátor
stopy a γ1 : {v ∈ H1(Ω) : △v ∈ L2(Ω)} 7→ H−1/2(∂Ω) je operátor př́ıslušné normálové derivace,
který je pro v ∈ C∞(Ω) dán vztahem

γ1v =
dv

dn
na ∂Ω.

Aplikaćı operátoru stopy na (5) źıskáme (viz [11]) vztah

γ0u = (
1

2
I −K)γ0u+ V γ1u na ∂Ω

s dobře známými hraničńımi integrálńımi operátory [3, 11]:

V : H−1/2(∂Ω) 7→ H1/2(∂Ω), (V λ)(x) :=

∫

∂Ω
λ(y)U(x, y) dsy (operátor jednoduché vrstvy),

K : H1/2(∂Ω) 7→ H1/2(∂Ω), (Kv)(x) :=

∫

∂Ω
v(y) γ1,y U(x, y) dsy (operátor dvojvrstvy),

x ∈ ∂Ω.

Slabou hraničńı formulaćı Dirichletova problému (4) rozumı́me úlohu: nalezněme λ ∈ H−1/2(∂Ω)
splňuj́ıćı

V λ = (
1

2
I +K)g. (6)

Je známo, že pokud diam Ω < 1, je úloha (6) jednoznačně řešitelná [3].

K vyč́ısleńı cenového funkcionálu (3) tedy použijeme řešeńı λ = γ1u(Ω) úlohy (6).
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4 Numerické výsledky

V numerických experimentech jsme použili toto nastaveńı:

Γ0 := {x ∈ R
2 : ‖x‖ = 0, 1} a Q := − 1

0, 3 ln 3
. (7)

Přesné řešeńı úlohy (1), které dále využijeme k porovnáńı s jeho vypočtenou aproximaćı, má
potom tvar

Ω∗ = {x ∈ R
2 : 0, 1 < ‖x‖ < 0, 3} a u(x) = − 1

ln 3
· ln ‖x‖

0, 3
. (8)

Úlohu (6) jsme diskretizovali pomoćı Galerkinovy metody, přičemž jsme použili děleńı s 30 uzly
na Γ0 a 45 uzly na Γf (Ω). Pro aproximaci normálové derivace na volné hranici byly zvoleny
po částech konstantńı testovaćı funkce. BEM je zde vhodnou metodou pro řešeńı stavového
problému, jelikož dává normálovou derivaci na volné hranici s velmi dobrou přesnost́ı a nav́ıc
neńı nutné diskretizovat celou oblast, ale pouze jej́ı hranici.

Tř́ıdu O jsme nahradili množinou omezených dvojnásobně souvislých oblast́ı v R
2 s předepsanou

pevnou hranićı a s volnou hranićı realizovanou po částech Bézierovou křivkou nejvýše druhého
řádu. Při řešeńı jsme zvolili 15 ř́ıd́ıćıch bod̊u pro určeńı tvaru volné hranice.

Pro minimalizaci cenového funkcionálu (3) jsme použili metodu nejvěťśıho spádu v kombinaci
s jednorozměrným vyhledáváńım na bázi p̊uleńı intervalu [10]. Vztah pro gradient cenového
funkcionálu je odvozen v [10].

Na obrázku 2 je tlustou plnou čarou vykreslen nalezený tvar volné hranice odpov́ıdaj́ıćı zadaným
hodnotám (7). Tlustou přerušovanou čarou je znázorněn počátečńı tvar volné hranice. Uvád́ıme
i hodnoty funkcionálu J odpov́ıdaj́ıćı výchoźımu a nalezenému tvaru volné hranice.

 

 

J = 64, 1076

J = 0, 00450377

0, 5
−0, 5

−0, 4

−0, 3

−0, 2

−0, 1

0, 1

0, 2

0, 3

0

0−0, 5

Obrázek 2: Optimalizovaný tvar volné hranice.

Výsledný tvar volné hranice odpov́ıdá řešeńı (8), což ukazuje i obrázek 3, kde je znázorněna
vzdálenost uzl̊u na přesné a nalezené volné hranici od sťredu (0, 0).

Poděkováńı: Tato práce byla podpořena granty GAČR 201/07/0294, AVČR IAA100750802
a výzkumným záměrem MSM 6198910027.
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nalezená hranice
přesná hranice

0, 304

0, 303

0, 302

0, 301

0, 3

0, 299

0, 298

0, 297

0, 296

0, 295
0 0, 5 1 1, 5 2

Obrázek 3: Vzdálenost uzl̊u na přesné a nalezené volné hranici od bodu (0, 0).
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Two Views on Discrete Approximation of Balance Laws

M. Brandner, J. Egermaier, H. Kopincová

University of West Bohemia, Pilsen

1 Introduction

There are many finite volume schemes with different properties (for example central, upwind
or central-upwind schemes) for solving conservation laws represented by hyperbolic system of
equations

qt + [f(q)]x = 0, (1)

where q(x, t) is the vector of conserved quantities and f(q) is the flux function. The different
approaches based on the simplified wave decompositions are used to construct these schemes.

The main goal of this work is to show two types of constructions same for all these schemes
and thus describe the connections between the central and central-upwind schemes and the
approximate Riemann solvers. The first way is based on information about the structure of
solution of Riemann problem. This information is used in decomposition of flux function. The
second way is based on decomposition of space interval to subintervals by the speeds of the
waves. The described ideas are also useful for numerical solving of nonhomogeneous systems
with spatially varying flux functions.

2 Finite volume methods

The finite volume methods are suitable for solving conservation laws, because the numerical
solution is modified only by the intercell fluxes. These methods are based on the integral
formulation

x2∫
x1

q(x, tn+1) dx −
x2∫
x1

q(x, tn) dx +
tn+1∫
tn

f(q(x2, tn)) dt −
tn+1∫
tn

f(q(x1, tn)) dt = 0,

∀(x1, x2) × (tn, tn+1) ⊂ R× (0, T ).

(2)

They use approximations of the integral averages of the unknown functions instead of the ap-
proximations of the unknown functions.

Fully discrete conservative method can be written as relation between approximations of the
flux averages and approximations of the integral averages of the conserved quantities

Q̄n+1
j = Q̄n

j − ∆t

∆x
(F̄

n+1/2
j+1/2 − F̄

n+1/2
j−1/2 ). (3)

We can also derive the semidiscrete form of this method

d

dt
Q̄j = − 1

∆x
[Fj+1/2 − Fj−1/2], (4)

or semidiscrete method in the fluctuation form

dQ̄j

dt
= − 1

∆x
[A−(∆Qj+1/2) + A(∆Qj) + A+(∆Qj−1/2)]. (5)
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3 Decomposition of the flux function

All standard schemes like central schemes, upwind schemes or central-upwind schemes can be
represented and understood by the same way. The amount of information about the structure
of the solution of the Riemann problem included into schemes causes the differences between
schemes. This information is employed in decomposition of the difference of the flux function.

The semidiscrete central schemes use estimate of upper bound of maximal local speed of
the propagating discontinuities. They are based on the following decomposition

f(Q+
j+1/2)− f(Q−

j+1/2) = sj+1/2(Q
+
j+1/2 −Q∗

j+1/2)− sj+1/2(Q
∗
j+1/2 −Q−

j+1/2) =

2∑

p=1

Zp
j+1/2, (6)

where
sj+1/2 = max

p
{max{|λp(Q−

j+1/2)|, |λp(Q+
j+1/2)|}},

and
Z2

j+1/2 = sj+1/2(Q
+
j+1/2 − Q∗

j+1/2),

Z1
j+1/2 = −sj+1/2(Q

∗
j+1/2 −Q−

j+1/2).
(7)

We can express

Q∗
j+1/2 =

1

2sj+1/2
[f(Q−

j+1/2) − f(Q+
j+1/2)] +

1

2
(Q−

j+1/2 + Q+
j+1/2), (8)

and we define

A−(∆Qj+1/2) =

2∑

p=1,sp
j+1/2

<0

Zp
j+1/2, A+(∆Qj+1/2) =

2∑

p=1,sp
j+1/2

>0

Zp
j+1/2. (9)

For evaluating Fj+1/2 = f(Q∗
j+1/2) we use the Rankine–Hugoniot jump condition in the form

f(Q+
j+1/2) − f(Q∗

j+1/2) = sj+1/2(Q
+
j+1/2 − Q∗

j+1/2), (10)

and together with (8) we get

Fj+1/2 = f(Q∗
j+1/2) =

1

2
[f(Q−

j+1/2 + f(Q+
j+1/2] −

1

2
sj+1/2(Q

+
j+1/2 − Q−

j+1/2). (11)

This scheme we can derive from fully discrete form (3) where the x-axis is partitioned to subin-
tervals of the following types

〈xj−1/2,R, xj+1/2,L〉 and 〈xj+1/2,L, xj+1/2,R〉,

where xj+1/2,L = xj+1/2−sj+1/2∆t, xj+1/2,R = xj+1/2 +sj+1/2∆t. On these intervals we use the
integral balance law (2). The points where the solution is discontinuous lie inside these intervals
and this scheme is Riemann solver free.

The central-upwind schemes (for example in [1]) can be identified with HLL solver (see [2]).
The decomposition has the form

f(Q̄j+1) − f(Q̄j) = s2
j+1/2(Q̄j+1 − Q̄j+1/2) + s1

j+1/2(Q̄j+1/2 − Q̄j) =

2∑

p=1

Zp
j+1/2, (12)
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where s1
j+1/2 = a+

j+1/2, s1
j+1/2 = a−j+1/2 and

Z2
j+1/2 = s2

j+1/2(Q
+
j+1/2 − Q∗

j+1/2),

Z1
j+1/2 = −s1

j+1/2(Q
∗
j+1/2 −Q−

j+1/2).
(13)

As in the previous cases we can express Q∗
j+1/2

Q∗
j+1/2 =

f(Q+
j+1/2) − f(Q−

j+1/2)

s1
j+1/2 − s2

j+1/2

+
s1
j+1/2Q

−
j+1/2 − s2

j+1/2Q
+
j+1/2

s1
j+1/2 − s2

j+1/2

. (14)

We define

A−(∆Qj+1/2) =
2∑

p=1,sp
j+1/2

<0

Zp
j+1/2, A+(∆Qj+1/2) =

2∑

p=1,sp
j+1/2

>0

Zp
j+1/2. (15)

The Relation (14) with the Rankine–Hugoniot jump condition in the form

f(Q+
j+1/2) − f(Q∗

j+1/2) = s2
j+1/2(Q

+
j+1/2 − Q∗

j+1/2) (16)

give us the following

Fj+1/2 = f(Q∗
j+1/2) =

s1
j+1/2f(Q

+
j+1/2) − s2

j+1/2f(Q
−
j+1/2)

s1
j+1/2 − s2

j+1/2

+
s1
j+1/2s

2
j+1/2

s1
j+1/2 − s2

j+1/2

(Q−
j+1/2 − Q+

j+1/2).

(17)
As in the previous cases we can derive these schemes from fully discrete method (3) by limiting
process (∆t → 0). The x–axis is partitioned to subintervals of following types

〈xj−1/2,R, xj+1/2,L〉 and 〈xj+1/2,L, xj+1/2,R〉,

where xj+1/2,L = xj+1/2 − s1
j+1/2∆t, xj+1/2,R = xj+1/2 + s2

j+1/2∆t. In analogy with previous

cases we formulate the integral balance law (2) on each of defined intervals. The solution is
discontinuous in the points lying inside of these intervals and no Riemann problem we need to
solve.

The previous schemes contain only one middle state Q∗
j+1/2 between states Q−

j+1/2 and Q+
j+1/2.

It is possible derive schemes with two or more than two middle states. For example, the Roe
solver (see [3]) is based on the decomposition with (m-1) middle states

f(Q+
j+1/2) − f(Q−

j+1/2) =

m∑

p=1

sp
j+1/2W

p
j+1/2, (18)

where sp
j+1/2 = λp

j+1/2 are eigenvalues and rp
j+1/2 are eigenvectors of the approximate Jacobian

matrix, s1
j+1/2 < s2

j+1/2 < · · · < sm
j+1/2, Wp

j+1/2 = γp
j+1/2r

p
j+1/2, γp

j+1/2 = R−1
j+1/2∆Qj+1/2.

The middle states can be express in the following form

Qp,∗
j+1/2 = Q−

j+1/2 +

p∑

k=1

Wk
j+1/2. (19)

Next we define
Zp

j+1/2 = sp
j+1/2W

p
j+1/2. (20)
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and than the following holds

A−(Q−
j+1/2,Q

+
j+1/2) =

m∑

p=1,sp
j+1/2

<0

Zp
j+1/2, A+(Q−

j+1/2,Q
+
j+1/2) =

m∑

p=1,sp
j+1/2

>0

Zp
j+1/2. (21)

From the conservativity and some relations (see [4]) we get the following results

Fj+1/2 = f(Q−
j+1/2) + A−(Q−

j+1/2,Q
+
j+1/2),

Fj−1/2 = f(Q+
j−1/2) − A+(Q−

j−1/2,Q
+
j−1/2).

(22)

The numerical flux function can be express in the form

Fj+1/2 = f(Q∗
j+1/2) =

1

2
[f(Q−

j+1/2) + f(Q+
j+1/2)] −

1

2
|Aj+1/2|(Q+

j+1/2 − Q−
j+1/2) (23)

This scheme can be derived in the same way as the previous. We define the partition of the
x–axis

〈xj−1/2,m, xj+1/2,1〉, 〈xj−1/2,m, xj+1/2,1〉, 〈xj+1/2,1, xj+1/2,2〉, . . . , 〈xj+1/2,m−1, xj+1/2,m〉,
where xj+1/2,p = xj+1/2 + sp

j+1/2∆t. The speeds sp
j+1/2 was getting from linearized problem and

it cannot be said that the discontinuities lie inside of the intervals. It is not possible to interpret
this scheme as a scheme without Riemann solver.

4 Conclusion

It was shown that all described schemes can be understood in the same way and it is possible to
construct them by two different manners. The first starts from general formulation of semidis-
crete method. It is formulated decomposition based on generalized Rankine-Hugoniot condition.
Than it is possible to formulate the scheme in fluctuation form. For the scheme in conservation
form it is used the classical Rankine-Hugoniot condition and the numerical flux for semidiscrete
scheme is constructed from these relations. The second uses adaptive dividing x-axis based on
speeds of the waves. The scheme can be interpreted as Riemann free only in the certain cases.
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Fixing Nodes Method for Stabilization of Generalized
Inverse Arising in Total FETI Algorithms

T. Brzobohatý, P. Kabeĺıková, T. Kozubek, A. Markopoulos

VSB - Technical University of Ostrava

1 Introduction

A typical example where we can exploit generalized inverse is a system of consistent linear
equations with symmetric positive semidefinite (SPS) matrix arising in the stress analysis of
a “floating” static structure whose essential boundary conditions are not sufficient to prevent
its rigid body motions [3, 4, 8]. This system can be solved by standard direct methods for
the solution of systems with positive definite matrices, such as the Cholesky decomposition,
adapted to the solution of systems with only positive semidefinite matrix. The only modification
comprises setting to zero the columns which correspond to zero pivots. However, in agreement
with the theoretical results of Pan [7], it turns out that it is very difficult to recognize the
positions of such pivots in the presence of rounding errors when the nonsingular part of A
is ill-conditioned. Due to the rounding errors, the main difficulty in implementation of the
FETI method is effective elimination of the displacements, in particular evaluation of the action
of generalized inverse of the SPS stiffness matrices of “floating” subdomains. To alleviate this
problem, Farhat and Géradin [3] proposed to combine the Cholesky decomposition with the SVD
decomposition of a relatively small matrix. The method was developed further by Papadrakakis
and Fragakis [8]. An improved modification of Farhat-Géradin algorithm is proposed by Dostál,
Kozubek, Markopoulos, Brzobohatý in [2]. This modification based on the active choice of
the SVD part uses fixing nodes strategy to make the system as stiff as possible and has been
implemented in our Total FETI solver. This solver uses the Lagrange multipliers not only for
gluing of the subdomains along auxiliary interfaces, but also for implementation of the essential
boundary conditions; first considered by Felipa, Park, Justino, and Gumaste [4]; then by Dostál,
Horák, and Kučera [1]. The main advantage of this approach is that it makes all the subdomains
floating, so that the null spaces of the stiffness matrices are a priori known.

2 Stable Computation of the Generalized Inverse Matrix

Let us consider the problem Ax = b, with symmetric positive semidefinite matrix (SPS) of the
order n and with b ∈ ImA. Thus a solution x = A+b exists, where A+ denotes a generalized
inverse matrix. We shall assume that the sparsity pattern of A enables its effective triangular
decomposition A = LLT . The method of evaluation of the factor L is known as the Cholesky
factorization.

In the following, we assume that A is an SPS stiffness matrix of a floating 2D or 3D elastic body.
If we choose M mesh nodes that are neither near each other nor placed near any line, M < N ,
M ≥ 2 in 2D, and M ≥ 3 in 3D, then the submatrix AJJ of the stiffness matrix A defined by
the set J with the indices of the displacements of the other nodes is “reasonably” nonsingular.
Of course, this is not surprising, as AJJ can be considered as the stiffness matrix of the body
that is fixed in the chosen nodes. Using the arguments of mechanics, it is natural to assume
that if fixing of the chosen nodes makes the body uniformly stiff, then AJJ is well-conditioned.
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Our starting point is the following decomposition of the matrix A ∈ Rn×n:

PAP T =

[
ÃJJ ÃJI
ÃIJ ÃII

]
=

[
LJJ O
LIJ I

] [
LTJJ LTIJ
O S

]
, (1)

where LJJ ∈ Rr×r is a lower factor of the Cholesky factorization of ÃJJ , LIJ ∈ Rs×r, LIJ =
ÃIJL

−T
JJ , S ∈ Rs×s is a singular matrix, r = n − s and s is the number of displacements

corresponding to the fixing nodes. Finally, P is a permutation matrix which corresponds to
both preserving sparsity and fixing nodes reordering.

Then

A+ = P T
[
L−T
JJ −L−T

JJ L
T
IJS

†

O S†

] [
L−1
JJ O

−LIJL−1
JJ I

]
P, (2)

where S† denotes the Moore–Penrose generalized inverse, S† = V Σ†UT , computed by the SVD
of matrix S of the defect d, where U, V ∈ Rs×s are orthogonal matrices, UUT = I, V V T = I,
Σ† = diag{σ−1

1 , . . . , σ−1
s−d, 0, . . . , 0} ∈ Rs×s and σ1 ≥ · · · ≥ σs−d > σs−d+1 = · · · = σs = 0 are

singular values of S.

To find P , we shall proceed in two steps. We first form a permutation matrix P1 to decompose
A into blocks

P T1 AP1 =

[
AJJ AJI

AIJ AII

]
, (3)

where the submatrix AJJ is nonsingular and AII corresponds to the degrees of freedom of the
M fixing nodes. Then we apply a suitable reordering algorithm on P T1 AP1 to get a permutation
matrix P2 which leaves the part AII without changes and enables the sparse Cholesky factor-
ization of AJJ . Further, we decompose PAP T with P = P2P1 as in (1). To preserve sparsity we
may use well-known sparse reordering algorithms such as SYMAMD, SYMRCM, SLOAN etc.

3 Detection of Fixing Nodes for Generalized Inverse

Next we show how to find the mesh fixing nodes to make the system as stiff as possible, i.e., to
minimize condition number of the regular part AJJ .

3.1 Fixing Nodes as Graph Centers

In our programs we work with the adjacency matrix DA of the original mesh corresponding to
the matrix A. Conditioning of the regular part AJJ and A+ seems to be related to positioning of
fixing nodes in the original mesh such that the Dirichlet conditions imposed in the fixing nodes
make the structure as stiff as possible.

We have tested different positions (variants (a)-(d)) of the fixing nodes in the mesh of the
3D elastic body depicted in Figure 1. The testing criterion was the regular condition number
denoted as κ. In our case, κ = cond(A+) = λmax/λmin, where λmax and λmin correspond to
the largest and the nonzero smallest eigenvalues, respectively. As we have three-dimensional
problem, the minimum number of fixing nodes are three to prevent rigid body motions in all
three directions. As we can see in Figure 1, the best result is obtained when we place the fixing
nodes inside the object as uniformly as possible (see the variant (d)). This result leads to idea
to consider the problem of finding the fixing nodes as the problem of finding graph centers.
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By extension of the common definition of graph center to a set of vertices we get the following
definition.

Definition 1 (A “graph center” as a set of k vertices)

min
C⊂V (G)
|C|=k

max
v∈V (G)

dist(C, v) = min
C⊂V (G)
|C|=k

max
v∈V (G)

(
min
x∈C

dist(x, v)

)
, (4)

where k is the number of graph centers, V (G) is a vertex set of a graph G, dist(x, v) is a distance
between vertices x and v (length of the shortest path between those vertices).

In general, there could be more k-sets of vertices that fit Definition 1 but not all of them fit the
requirement on minimum condition number. Thus, we have to remark that the regular condition
number of A+ depends mainly on the graph topology and only slightly on the geometry of the
mesh. A method of finding fixing nodes as graph centers is described in [5].

(a) κ = 1.42 × 1020 (b) κ = 2622

(c) κ = 587 (d) κ = 435, the best one

Figure 1: Pyramid: dependance of κ = cond(A+) on positioning of fixing nodes.

Natural requirement to these nodes is that they are not near any straight line and not close to
each other. The results of experiments also agree with the intuitive rule that placing the fixing
nodes inside the body can result in more stable generalized inverse than placing them at the
corners as in the FETI-DP methods.

25



3.2 Fast Algorithm for Fixing Nodes Finding

We do not strictly require the optimal solution. A sub-optimal solution obtained in a short time
suffices for purposes of fast computation of generalized inverse.

In our software, we use the following algorithm consisting of two steps:

1. Dividing the graph into k parts using some suitable graph/mesh partitioning software (for
example METIS, see [6]).

2. Finding one graph center in each part using the results of spectral theory. From the
vertices that fit the basic definition we choose the nearest vertex to the geometrical center.

Our experiments show that the spectral theory is very powerful case for finding graph center.
Especially, we use the (Perron) eigenvector corresponding to the largest eigenvalue of the adja-
cency matrix DA. The maximum entry of this eigenvector (in absolute value) corresponds to
the graph center. Finding the eigenvector of a sparse symmetric adjacency matrix DA using
some iterative method such as power method or Lanczos method is very fast comparing to the
standard graphs methods.
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Adaptive wavelet methods for two-dimensional
elliptic operator equations

D. Černá, V. Finěk

Technical University in Liberec

1 Introduction

In recent years adaptive wavelet methods have been successfully used for solving partial differ-
ential as well as integral equations, both linear and nonlinear. It has been shown that these
methods converge and that they are asymptotically optimal in the sense that storage and num-
ber of floating point operations, needed to resolve the problem with desired accuracy, remain
proportional to the problem size when the resolution of the discretization is refined. Thus, the
computational complexity for all steps of the algorithm is controlled.

The effectiveness of adaptive wavelet methods is strongly influenced by the choice of a wavelet
basis, in particular by the condition of the basis. In our contribution, we compare the number
of iterations needed to resolve the problem with desired accuracy for wavelet bases adapted to
homogeneous Dirichlet boundary conditions of the first order from [1, 4]. Numerical examples
are presented for two-dimensional elliptic problems with a singular right-hand side.

2 Adaptive wavelet scheme

In this section, we briefly review adaptive wavelet methods for the elliptic operator equations
similar to the method proposed by Cohen, Dahmen and DeVore in [2, 3].

Let H be a real Hilbert space with the inner product 〈·, ·〉H and the induced norm ‖·‖H . Let
A : H → H ′ be the selfadjoint and H-elliptic operator, i.e.

a (v,w) := 〈Av,w〉 . ‖v‖H ‖w‖H and a (v, v) ∼ ‖v‖2
H . (1)

By the Lax-Milgram theorem, A is an isomorphism from H to H ′, i.e. there exist positive
constants cA and CA such that

cA ‖v‖H ≤ ‖Av‖H′ ≤ CA ‖v‖H , v ∈ H. (2)

Therefore, the equation
Au = f (3)

has for any f ∈ H ′ a unique solution. If (2) holds, then (3) is called well-posed (on H).
Typical examples are second order elliptic boundary value problems with homogeneous Dirichlet
boundary conditions on some open domain Ω ⊂ R

d. In this case H = H1
0 (Ω) and H ′ = H−1 (Ω).

Other examples are for instance singular integral equations on the boundary ∂Ω with H =
H−1/2 (∂Ω), H ′ = H1/2 (∂Ω).

Thus H is typically a Sobolev space. In the following, we assume that

H ⊂ L2 ⊂ H ′ or H ′ ⊂ L2 ⊂ H. (4)
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We assume that D−tΨ, Ψ = {ψλ, λ ∈ J }, is a wavelet basis in the energy space H. Thus, we
have

cψ ‖v‖l2 ≤
∥∥vTD−tΨ

∥∥
H

≤ Cψ ‖v‖l2 , v ∈ l2 (J ) , (5)

where cψ > 0. Then the original equation (3) can be reformulated as an equivalent biinfinite
matrix equation

Au = f , (6)

where A = D−t 〈AΨ,Ψ〉D−t is a diagonally preconditioned stiffness matrix, u = uTD−tΨ and
f = D−t 〈f,Ψ〉.
Under the above assumptions, u solves (3) if and only if u solves the matrix equation (6).
Moreover, the matrix A satisfies

‖A‖ ≤
C2
ψCA

c2ψcA
< +∞. (7)

As an immediate consequence all finite sections

AΛ := D−t 〈AΨΛ,ΨΛ〉D−t, ΨΛ := {ψλ, λ ∈ Λ} , Λ ⊂ J , (8)

have uniformly bounded condition numbers

κ (AΛ) ≤
C2
ψCA

c2ψcA
, Λ ⊂ J . (9)

While the classical adaptive methods uses refining and derefining step by step a given mesh
according to a-posteriori local error indicators, the wavelet approach is somewhat different and
follows a paradigm which comprises the following steps:

1. One starts with a variational formulation but instead of turning to a finite dimensional
approximation, using the suitable wavelet basis the continuous problem is transformed
into an infinite-dimensional l2-problem (6), which is well-conditioned.

2. One then tries to devise a convergent iteration for the l2-problem.

3. Finally, one derives a practicle version of this idealized iteration. All infinite-dimensional
quantities have to be replaced by finitely supported ones and the routine for the application
of the biinfinite-dimensional matrix A approximately have to be designed.

The simplest convergent iteration for the l2-problem is a Richardson iteration which has the
following form:

u0 := 0, un+1 := un + ω (f − Aun) , n = 0, 1, . . . . (10)

For the convergence, the relaxation parameter ω has to satisfy

ρ := ‖I − ωA‖L(l2) < 1. (11)

Then the iteration (10) convergence with an error reduction per step

‖un+1 − u‖l2 ≤ ρ ‖un − u‖l2 . (12)

In the case that A is symmetric and positive definite, then (11) is satisfied if

0 < ω <
2

λmax
, (13)
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where λmax is the largest eigenvalue of A. It is known that the optimal relaxation parameter is
given by

ω̂ =
2

λmin + λmax
, (14)

where λmin is the smallest eigenvalue of A. For ω̂ the estimate of the error reduction can be
computed as

ρ (ω̂) =
λmax − λmin
λmax + λmin

=
κ (A) − 1

κ (A) + 1
= 1 − 1

κ (A) + 1
≤ 1 − 1

C2
ψCA

c2ψcA
+ 1

. (15)

We use the following implementable version of the ideal iteration (10). It was proved that such
an algorithm converge and is asymptotically optimal.

SOLVE [A, f, ǫ] → uǫ

Let θ < 1/3 and K ∈ N be fixed such that 3ρK < θ.

1. Set j := 0, u0 := 0, ǫ0 :=
∥∥A−1

∥∥
L(l2)

‖f‖l2 .

2. While ǫj > ǫ do

j := j + 1,

ǫj := 3ρKǫj−1/θ,

fj := RHS[f ,
θǫj

6ωK ],

z0 := ui−1,

For l = 1, . . . ,K do

zl := zl−1 + ω
(
fj − APPLY[A, zl−1,

θǫj
6ωK ]

)
,

end for,

uj := COARSE[zK , (1 − θ) ǫj ],

end while,

uǫ := uj.

For the subroutines RHS, APPLY, and COARSE we refer to [2].

3 Numerical examples

Quantitative behaviour of the above algorithm depends on the used wavelet basis, namely on
its condition. The optimally conditioned linear and quadratic wavelet bases were constructed
in [4]. In [1] we propose a construction which leads to optimally conditioned wavelet bases also
in the cubic case. In this section, our intention is to compare the quantitative behaviour of the
adaptive wavelet method for cubic wavelet bases from [1] and [4].

Example 1 We consider two-dimensional Poisson equation

−∆u = f, in Ω = (0, 1)2 , ∂Ω = 0, (16)
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with the solution u given by

u (x, y) = 16

(
e40x − 1

) (
e40y − 1

)

e40 − 1

(
1 − e40x − 1

e40 − 1

)(
1 − e40y − 1

e40 − 1

)
, (x, y) ∈ Ω. (17)
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Figure 1: The solution and the right-hand side of the equation (16)

We use the above adaptive wavelet scheme with the cubic wavelet basis adapted to homogeneous
Dirichlet boundary conditions of the first order from [1, 4].
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Figure 2: The convergence history for wavelet bases from [1, 4], the number of basis functions
is denoted by N .
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Matematické modelováńı kompozitńıch materiál̊u
s nedokonalým rozhrańım složek

P. Gruber, J. Zeman

České vysoké učeńı technické v Praze

1 Úvod

Moderńı inženýrské konstrukce si žádaj́ı moderńı materiály a ty zase vývoj v jejich matem-
atickém modelováńı. Dnes je hlavńı pozornost zaměřena na materiály kompozitńı, které jsou
schopny využ́ıt vynikaj́ıćıch mechanických vlastnost́ı v nich použitých složek a naopak jejich
negativńı mechanické vlastnosti potlačit. Tato práce ukazuje jednu z možných cest v matem-
atickém modelováńı kompozitńıch materiál̊u – v́ıceúrovňový matematický model založený na
homogenizačńı teorii, jež na mikroúrovni využ́ıvá numerickou metodu doménové dekompozice
Finite Element Tearing and Interconnecting (FETI) method.

2 Mikroskopický pr̊uměr vláken – homogenizace

Vlákna moderńıch kompozitńıch materiál̊u (např. uhĺıková) maj́ı př́ıčný rozměr v řádech mikro-
metr̊u, tedy zanedbatelný v porovnáńı s rozměry konstrukce z tohoto materiálu vytvořené. Při
výběru matematického modelu výše uvedené konstrukce je v dnešńı době přirozená volba modelu
numerického, konkrétně modelu založeném na metodě konečných prvk̊u (MKP). Z výpočetńıch
d̊uvod̊u je zřejmě nemožné diskretizovat model konstrukce natolik jemnou śıt́ı, která by nám
umožnila př́ımo modelovat heterogenńı mikrostrukturu materiálu. Tento problém je řešen
homogenizačńı teoríı periodických mikrostruktur [5], která rozděĺı pohled na konstrukci na
mikroměř́ıtko (v němž popisujeme mikrostrukturu materiálu pomoćı periodické jednotkové buň-
ky) a makroměř́ıtko (na němž je popsána geometrie celé konstrukce). Výsledkem aplikace
homogenizačńı teorie jsou efektivńı materiálové charakteristiky homogenńıho materiálu (ne-
jen lineárně pružného), kterým lze nahradit daný materiál heterogenńı a źıskat velmi přesnou
makroskopickou odezvu konstrukce na předepsané zat́ıžeńı.

3 Nedokonalé spojeńı složek – metoda FETI

Spojeńı vlákna s matrićı na jejich rozhrańı však neńı dokonalé, má zřejmě omezenu pevnost
a jsou zde př́ıtomny také počátečńı imperfekce. Nedokonalé spojeńı složek na rozhrańı zp̊usob́ı
nelineárńı odezvu materiálu a neńı tak možné odhadnout efektivńı vlastnosti celé konstrukce
v jednom kroku. Homogenizačńı teorie však nab́ıźı možnost paralelńıho výpočtu. Pokud chceme
jev rozpojováńı složek do výpočtu zahrnout, je nutné ho uvažovat již na mikroúrovni. K mode-
lováńı rozhrańı je vhodné použ́ıt metodu FETI [7], pomoćı ńıž lze modelovat dokonale spojené či
rozpojené složky, předepsat konstitutivńı zákon na rozhrańı a to včetně aplikace kontaktńı úlohy.
Z inženýrského pohledu lze ř́ıci, že se jedná o metodu, která algoritmizuje přechod z deformačńı
metody, ve které jsou v tomto př́ıpadě neznámé posuny uzl̊u v diskretizované mikroúrovni – celé
jednotkové buňce, k silové metodě s neznámými silami pouze v uzlech na rozhrańı složek. Vı́ce
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informaćı o modelováńı rozhrańı složek pomoćı metody FETI z několika nezávislých pohled̊u
a od r̊uzných autor̊u lze naj́ıt např́ıklad v [1, 2, 3, 4].

Obrázek 1: Smykové porušeńı mikrostruktury (jednotkové buňky) reálného kompozitu s
křehkým rozhrańım před a po překonáńı počátečńı pevnosti. Izolinie znázorňuj́ı hlavńı tahová
napět́ı. Deformace 20x zvěťsena.

4 Závěr

Homogenizačńı teorie je vhodnou cestou k matematickému modelováńı reálných konstrukćı
z kompozitńıch materiál̊u a ve spojeńı s metodou FETI, použitou k numerickému modelováńı
na mikroúrovni – jednotkové buňky, se jev́ı jako velice efektivńı. Doposud je náš výzkum
sousťreděn předevš́ım na možnosti, které nab́ıźı metoda FETI v oblasti modelováńı konsti-
tutivńıho vztahu na rozhrańı složek. Z tohoto hlediska se jako vhodná strategie jev́ı kombinace
metody FETI buďto s teoríı izotropńıho porušováńı, nebo sekvenčńı lineárńı analýzou (SLA)
[6]. Obrázek 1 znázorňuje porušeńı mikrostruktury (jednotkové buňky) reálného kompozitu
s křehkým rozhrańım, které bylo modelováno pomoćı zde naznačených princip̊u.

Poděkováńı: Práce vznikla za podpory projekt̊u GAČR 106/08/1379 a GAČR 106/07/1244.
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On the Worst Scenario Method: A Modified
Convergence Theorem and Its Application

to an Uncertain Differential Equation

P. Harasim

Institute of Geonics AS CR, Ostrava

1 Introduction

We propose a theoretical framework for solving a class of worst scenario problems. The existence
of the worst scenario is proved through the convergence of a sequence of approximate worst
scenarios. The main convergence theorem modifies and corrects the relevant results already
published in the literature. The theoretical framework is applied to a particular problem with
an uncertain boundary value problem for a nonlinear ordinary differential equation with an
uncertain coefficient.

Quasilinear elliptic boundary value problems with uncertain coefficients were studied in [3, 4, 7,
8], see also [5, Chapter III]. In these works the coefficient of the state equation is a u-dependent
function. The state problem that has motivated this work is different: the coefficient is a
function of the squared derivative of the state solution u. Equations of this kind describe some
electromagnetic phenomena, fluid flow phenomena, and the elastoplastic deformation of a body,
see [9, page 212].

2 Worst scenario problem

Let V be a real, separable, and reflexive Banach space and let V ∗ denote its dual space. We
deal with the following nonlinear operator state equation

A(a)u = b, u ∈ V, (1)

where A(a) : V → V ∗, b ∈ V ∗. We assume that the operator A(a) depends on a parameter a
that belongs to a set of admissible input parameters Uad ⊂ U , where U is a Banach space. We
assume that

(i) the set Uad is compact in U ;

(ii) a unique state solution u(a) of equation (1) exists for any parameter a ∈ Uad;

(iii) a criterion-functional Φ : Uad × V → R is given such that :
if an ∈ Uad, an → a in U and vn → v in V as n→ ∞, then

Φ(an, vn) → Φ(a, v).

The goal is to solve the following worst scenario maximization problem: Find a0 ∈ Uad such that

a0 = arg max
a∈Uad

Φ(a, u(a)). (2)
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We will prove the existence of a solution to problem (2) by means of a sequence of solutions to
approximate worst scenario problems.

We resort to a discretization of both the set Uad and the space V . Let UMad ⊂ Uad ⊂ U be a
finite-dimensional approximation of the set Uad and let Vh be a finite-dimensional subspace of
V . Let us consider the Galerkin approximation uh(a) ∈ Vh of the state solution u(a). We set
the following approximate worst scenario problem: Find aM0

h ∈ UMad such that

aM0
h = arg max

aM∈UM
ad

Φ(aM , uh(a
M )). (3)

Next, we assume that

(iv) the set UMad is compact in U ;

(v) for any a ∈ Uad, there exists a unique Galerkin approximation uh(a) of the state solution
u(a);

(vi) if an ∈ Uad and an → a in U as n→ ∞, then uh(an) → uh(a) in Vh;

(vii) if an ∈ Uad, an → a in U as n→ ∞, and if hn → 0 as n→ ∞, then uhn(an) → u(a) in V ,
where {uhn(an)} is an n-controlled sequence of the Galerkin approximations;

(viii) for any a ∈ Uad, there exists a sequence {aM}, aM ∈ UMad , M → ∞, such that aM → a in
U as M → ∞.

To show that the approximate worst scenario problem (3) has at least one solution, we can
proceed analogously to the proof of [5, Theorem 3.3].

3 Main Result

Theorem 1 Let {Vh}, h → 0, be a sequence of finite-dimensional subspaces of the space V .
For any fixed h > 0, let {aM0

h }, where aM0
h ∈ UMad and M → ∞, be a sequence of solutions to

the approximate worst scenario problem (3). Let the assumptions (i)-(viii) be fulfilled. Then a
sequence {aMn0

hn
}, aMn0

hn
∈ UMn

ad , exists such that hn → 0 and Mn → ∞ as n→ ∞, and

aMn0
hn

→ a0 in U, (4)

uhn(a
Mn0
hn

) → u(a0) in V, (5)

Φ
(
aMn0
hn

, uhn(a
Mn0
hn

)
)
→ Φ

(
a0, u(a0)

)
(6)

as n → ∞, where a0 ∈ Uad solves problem (2) and u(a0) is the corresponding state solution
mentioned in (ii).

Proof: We fix a subspace Vh for a while and consider a sequence {aM0
h }, aM0

h ∈ UMad , M → ∞, i.e.,
a sequence of the solutions of the approximate worst scenario problem (3). Since {aM0

h } ⊂ Uad

and Uad ⊂ U is compact, a convergent subsequence {aMk0
h } ⊂ {aM0

h } exists such that

aMk0
h → a0

h in U as k → ∞, (7)
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where a0
h ∈ Uad. By virtue of assumption (vi) of the previous section, we obtain

uh(a
Mk0
h ) → uh(a

0
h) in Vh as k → ∞. (8)

Let a ∈ Uad be arbitrary and chosen independently of h. It follows from assumption (viii) that
there exists a sequence {aM}, aM ∈ UMad , such that

aM → a in U as M → ∞. (9)

By virtue of assumption (vi), we infer

uh(a
M ) → uh(a) in Vh as M → ∞. (10)

For any k, it holds
Φ
(
aMk0
h , uh

(
aMk0
h

))
≥ Φ

(
aMk , uh

(
aMk

))
. (11)

By virtue of (7)-(10), and assumption (iii), we obtain

Φ(a0
h, uh(a

0
h)) ≥ Φ(a, uh(a)). (12)

Inequality (12) is valid for any h > 0.

Let us release h and consider the sequences {a0
h}, {uh(a0

h)}, and {uh(a)}, where h → 0. Since
{a0

h} ⊂ Uad and Uad ⊂ U is compact, there exists a convergent subsequence {a0
hl
} ⊂ {a0

h}, hl → 0
as l → ∞, such that

a0
hl

→ a0 in U as l → ∞, (13)

where a0 ∈ Uad. By virtue of assumption (vii), we get for the corresponding sequence of the
Galerkin approximations

uhl(a
0
hl

) → u(a0) inV as l → ∞. (14)

If we set an := a ∈ Uad for n = 1, 2, . . ., then it follows from assumption (vii) that

uhl(a) → u(a) inV as l → ∞. (15)

By virtue of (12)–(15), and assumption (iii), we obtain

Φ(a0, u(a0)) ≥ Φ(a, u(a)). (16)

The inequalities (11), (12), and (16), hold for any a ∈ Uad, so that a0 is a solution of problem
(2).

The existence of the sequence {aMn0
hn

} appearing in (4) is a direct consequence of the existence

of the solution a0. By virtue of assumption (vii) we infer (5), and by assumption (iii), we obtain
(6). �

4 Application

In this section, we show an application of the proposed theoretical framework to the following
boundary value problem: Find a function u ∈ C1(Ω)

⋂
C2(Ω) such that

−(a(u′2)u′)′ = f in Ω, (17)

u = 0 on Γ, (18)
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where Ω = (0, 1), Γ = {0, 1}, a is a Lipschitz continuous function on R
+
0 (nonnegative real

numbers), and f ∈ C(Ω). The prime stands for du/dx.

For more detailed treatment, see [2].

Instead of (17)–(18), we will deal with the following weakly formulated problem: Find u ∈ H1
0 (Ω)

such that ∫ 1

0
a(u′2)u′v′dx =

∫ 1

0
fv dx ∀v ∈ H1

0 (Ω), (19)

where H1
0 (Ω) is usual Sobolev space, f ∈ L2(Ω). We assume that the function a belongs to the

admissible set
Uad :=

{
a ∈ U0

ad : 0 < amin ≤ a(x) ≤ amax ∀x ∈ R
+
0

}
,

which models the uncertainty in a and where

U0
ad :=

{
a ∈ C(0),1(R+

0 ) : 0 ≤ da

dx
≤ CL a.e., a(x) = a(xC) for x ≥ xC

}
,

CL, amin, amax, xC are positive constants, and C(0),1(R+
0 ) stands for the Lipschitz continuous

functions defined on R
+
0 .

We observe that Uad ⊂ U , where U is the Banach space of functions continuous on R
+
0 and

constant for x ≥ xC, with the norm ‖w‖U := max
x∈[0,xC]

|w(x)| for w ∈ U .

The operator equation (1) stems from (19) if we set V := H1
0 (Ω) and define A(a) : V → V ∗ and

b ∈ V ∗ by

〈A(a)u, v〉 :=

∫ 1

0
a(u′2)u′v′ dx,

〈b, v〉 :=

∫ 1

0
fv dx,

where u, v ∈ V .

Let us define the set UMad ⊂ Uad and a finite- dimensional space Vh. Let Ti, i = 1, . . . ,M , are
equally spaced points in [0, xC ], T1 = 0 and TM = xC .

UMad :=
{
a ∈ Uad : a|[Ti,Ti+1] ∈ P1([Ti, Ti+1]), i = 1, . . . ,M − 1

}
,

where P1([Ti, Ti+1]) denotes the linear polynomials on the interval [Ti, Ti+1].

To approximate the space V , we introduce points x0, x1, . . . , xN+1 into the interval [0, 1], x0 = 0,
xN+1 = 1. We define the discretization parameter h as

h := max
i=1,...,N+1

(xi − xi−1).

The space Vh is defined as

Vh := {vh ∈ V : vh|[xi,xi+1] ∈ P1([xi, xi+1]), i = 0, . . . ,N}.

To be able to apply the Theorem 1, we have to verify its assumptions. By the Arzelà–Ascoli
theorem [10, page 35] the assumptions (i) and (iv) of Section 2 are fulfilled.

The operator A is continuous [2, Lemma 4.1], strongly monotonie [2, Lemma 4.2] and coercive
[2, the proof of Theorem 4.1] on V . It follows from [11, Theorem 2.K] that the problem (19) has
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a solution, the uniqueness of the state solution follows from [11, p. 93, Corollary 1]; see also [2,
Theorem 4.1]. Thus, the assumption (ii) is fulfilled.

The assumptions (v), (vi), (vii) and (viii) are also fulfilled, see [2, Theorem 4.2, Theorem 4.3,
Theorem 4.4, Lemma 4.5].
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Fictitious domain method for linear elasticity

J. Haslinger, T. Kozubek, R. Kučera
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1 Introduction

The contribution deals with numerical realization of elliptic boundary value problems arising in
linear elasticity by a fictitious domain method. Any fictitious domain formulation [2] extends the
original problem defined in a domain ω to a new (fictitious) domain Ω with a simple geometry
(e.g. a box) which contains ω. The main advantage consists in the fact that an uniform mesh
can be constructed on Ω. Consequently, the stiffness matrix has a structure that enables us to
use highly efficient multiplying procedures. We will apply multiplying procedures based on a
correspondence between circulant matrices and the discrete Fourier transform (DFT).

The original fictitious domain method based on Lagrange multipliers [1] enforces boundary
conditions by Lagrange multipliers defined on the boundary of the original domain γ. Therefore
the fictitious domain solution has a singularity on γ that can result in an intrinsic error of the
computed solution. Our modified version [3] uses an auxiliary curve Γ located outside of ω, on
which we introduce a new control variable in order to satisfy the boundary conditions on γ. In
this case the singularity is moved away from ω so that the computed solution is smoother in ω.
We have illustrated experimentally in [3] that the discretization error is significantly smaller in
the second case and corresponding rate of convergence is higher.

2 Formulation of the problem

Let us consider an elastic body represented by a bounded domain ω ⊂ R
2 with the sufficiently

smooth boundary γ consisting of two disjoint parts γu and γp, γ = γu ∪ γp (see Figure 4.1).
The zero displacements are prescribed on γu while surface tractions of density p ∈ (L2(γp))

2

act on γp. Finally we suppose that the body ω is subject to volume forces of density f|ω ,
f ∈ (L2

loc(R
2))2. We seek a displacement field u in ω satisfying the equilibrium equation and

the Dirichlet and Neumann boundary conditions:

−divσ(u) = f in ω,

u = 0 on γu,

σ(u)ν = p on γp,





(1)

where σ(u) is the stress tensor in ω and ν stands for the unit outward normal vector to γ. The
stress tensor is related to the linearized strain tensor ε(u) := 1/2(∇u+∇⊤u) by the Hooke law
for linear isotropic materials:

σ(u) := c1tr(ε(u))I + 2c2ε(u) in ω,

where ”tr” denotes the trace of matrices, I ∈ R
2×2 is the identity matrix and c1, c2 > 0 are the

Lamè constants.
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Denote
V(ω) = {v ∈ (H1(ω))2| v = 0 on γu}.

The weak formulation of (1) reads as follows:

Find u ∈ V(ω) such that aω(u,v) = fω(v) + (p,v)γp ∀v ∈ V(ω), (2)

where

aω(u,v) =

∫

ω
σ(u) : ε(v) dx, fω(v) =

∫

ω
f · v dx

and (·, ·)γp is the scalar product in (L2(γp))
2.

Let us consider a box Ω such that ω ⊂ Ω and construct a closed curve Γ surrounding ω (see
Figure 4.1). Instead of (2), we propose to solve the following fictitious domain formulation of
(1) in Ω:

Find (û,λ) ∈ (H1
per(Ω))2 × Λ(Γ) such that

aΩ(û,v) + bΓ(λ,v) = fΩ(v) ∀v ∈ (H1
per(Ω))2,

bγu(µu, û) = 0 ∀µu ∈ Λ(γu),

bγp(µp,σ(û)ν) = bγp(µp,p) ∀µp ∈ Λ(γp),





(3)

where H1
per(Ω) is the space of periodic functions from H1(Ω); Λ(Γ) := (H−1/2(Γ))2, Λ(γu) :=

(H−1/2(γu))
2, Λ(γp) := (H1/2(γp))

2 and bΓ, bγu , bγp are the respective duality pairings between
these spaces and their duals. It is readily seen that û|ω solves (2).

3 Algebraic solvers

A discretization of (3) based on a mixed finite element method leads typically to the following
algebraic saddle-point problem: find a pair (u, λ) ∈ R

2n × R
2m such that




A B⊤
Γ

Bγu 0

Cγp 0




(
u

λ

)
=




f

0

p


 , (4)

where A ∈ R
2n×2n is the stiffness matrix, BΓ ∈ R

2m×2n and Bγu ∈ R
2mu×2n are the Dirichlet

trace matrices on Γ and γu, respectively, Cγp ∈ R
2mp×2n is the Neumann trace matrix (repre-

senting the trace of σ(u)ν) on γp, f ∈ R
2n, p ∈ R

2mp and m = mu +mp.

The system (4) can be solved by the algorithm presented in [3] that combines the Schur com-
plement reduction with the null-space method. It requires a multiplying procedure to perform
the matrix-vector products A†y, where A† is a generalized inverse to A and y ∈ R

2n. Let us
note that A is singular due to the presence of H1

per(Ω) in (3). On the other hand, the periodic
boundary condition on ∂Ω leads to a block circulant structure of A that enables us to handle the
spectral decomposition of A by the DFT. Therefore one can evaluate A†y by the FFT-algorithm
without necessity to assemble and store A.

We introduce the main ideas of our multiplying procedure. First note that the differential
operator in (1) reads as follows:

divσ(u) =




(c1 + 2c2)
∂2u1

∂x2
1

+ c2
∂2u1

∂x2
2

(c1 + c2)
∂2u2

∂x1∂x2

(c1 + c2)
∂2u1

∂x1∂x2
c2
∂2u2

∂x2
1

+ (c1 + 2c2)
∂2u2

∂x2
2


 ,
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where u = (u1, u2). Let us consider equidistant partitions of the sides of Ω := (0, l1) × (0, l2)
into n1, n2 segments with stepsizes h1 = l1/n1, h2 = l2/n2, respectively. Thus, Ω is partitioned
into n := n1n2 rectangles. On such a partition we define the finite element subspace of H1

per(Ω)
formed by piecewise bilinear functions. Then the stiffness matrix A takes the form:

A =

(
(c1 + 2c2)A1 ⊗M2 + c2M1 ⊗A2 (c1 + c2)B1 ⊗B2

(c1 + c2)B1 ⊗B2 c2A1 ⊗M2 + (c1 + 2c2)M1 ⊗A2

)
, (5)

where Ak,Mk, Bk ∈ R
nk×nk are the circulants with the first columns ak,mk, bk ∈ R

nk , ak =
1
hk

(2,−1, 0, . . . , 0,−1)⊤, mk = hk
6 (4, 1, 0, . . . , 0, 1)⊤, bk = 1

2(0,−1, 0, . . . , 0, 1)⊤, k = 1, 2, respec-
tively, and ⊗ stands for the Kronecker product. It is well-known that the eigenvalues of any
circulant can be obtained by the DFT of its first column while the eigenvectors are the columns
of the inverse to the DFT matrix [2]. Introducing notation Xk for the DFT matrix of order nk,
we can write Ak = X−1

k DAkXk, Mk = X−1
k DMk

Xk, Bk = X−1
k DBkXk, where DAk , DMk

, DBk ,
k = 1, 2, are the respective diagonal matrices of eigenvalues. Substituting into (5), we obtain:

A =

(
X−1

1 ⊗X−1
2 0

0 X−1
1 ⊗X−1

2

)(
D11 D12

D21 D22

)(
X1 ⊗X2 0

0 X1 ⊗X2

)
, (6)

where D11 = (c1 + 2c2)DA1
⊗DM2

+ c2DM1
⊗DA2

, D22 = c2DA1
⊗DM2

+ (c1 + 2c2)DM1
⊗DA2

,
D12 = (c1 + c2)DB1

⊗ DB2
, D21 = D12. Denote D the second matrix on the right hand-side

of (6). The generalized inverse A† may be obtained replacing D by D† in (6). Let us note that
the actions of D† can be easily performed using the following factorization of D:

D =

(
I 0

D21D
†
11 I

)(
D11 0

0 D22 −D21D
†
11D12

)(
I D†

11D12

0 I

)
, (7)

where D†
11 = diag(d̃1, . . . , d̃n) with d̃i = 1/di, if di 6= 0, and d̃i = 0, if di = 0. Taking into

account the fact that all blocks in (7) are diagonal, we obtain the following result.

Lemma 3.1 Let n1 and n2 be powers of two. Then the matrix-vector product A†v, v ∈ R
2n,

can be evaluated by the total complexity O(4n log2 n+ 4n).

4 Numerical experiments

Let ω be given by the interior of the circle (see Figure 4.1):

ω = {(x, y) ∈ R
2| (x− 0.5)2 + (y − 0.5)2 < 0.32}

and Ω = (0, 1) × (0, 1). The right hand-side in (1) are chosen as f = −divσ(û), p = σ(û)ν,
where û(x, y) = (0.1 ln(x + y + 1), 0.1xy), (x, y) ∈ R

2. The approximation of H1
per(Ω) in (3)

has been described in the previous section while Λ(γu), Λ(γp) and Λ(Γ) are replaced by their
subspaces of piecewise constant functions on partitions of polygonal approximations of γu, γp
and Γ, respectively. The stepsizes H on γu, γp and Γ are chosen to guarantee the requirement
dimΛ(γu) + dimΛ(γp) = dimΛ(Γ). The auxiliary boundary Γ is constructed by shifting γ
four h units in the direction of the outward normal vector with h := h1 = h2. The original
and deformed geometries are depicted in Figure 4.2 and the difference between the exact and
computed displacements is shown in Figure 4.3 for h = 1/256.
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Figure 4.3: Differ. |ûh−û| in ω.

In Table 4.1, we report the number of primal (2n) and control (2m) variables, the number of
BiCGSTAB iterations, the computational time and the relative errors in the following norms:

Err(L2(ω))2 =
‖ûh − û‖(L2(ω))2

‖û‖(L2(ω))2
, Err(H1(ω))2 =

‖ûh − û‖(H1(ω))2

‖û‖(H1(ω))2
, Err(L2(γ))2 =

‖ûh − û‖(L2(γ))2

‖û‖(L2(γ))2
.

From the computed errors, we determine the convergence rates of the fictitious domain solution
in the (L2(ω))2, (H1(ω))2 and (L2(γ))

2-norm, respectively. We consider partitions with the
non-constant ratio of stepsizes H/h = | log2(h)| found experimentally which leads to a smooth
behavior of the approximations of control variables as H → 0 + .

Table 4.1: Results of the FD approach (3).

Step h 2n/2m Iters. C.time[s] Err(L2(ω))2 Err(H1(ω))2 Err(L2(γ))2

1/64 8450/44 20 0.2808 4.2348e-004 5.2662e-001 9.7813e-004
1/128 33282/68 19 0.39 1.7261e-004 3.3539e-001 3.4267e-004
1/256 132098/124 34 2.371 3.8171e-005 1.5851e-001 1.4673e-004
1/512 526338/212 46 16.26 1.0374e-005 8.2440e-002 2.9814e-005
1/1024 2101250/384 77 109 4.7117e-006 5.5679e-002 1.1683e-005

Convergence rates: 1.7036 0.8508 1.6298

Acknowledgement: This work has been supported by the grant 101/08/0574 of the Grant Agency of
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Použit́ı T-FETI pro řešeńı 3D kvazistatických
kontaktńıch úloh s Coulombovým třeńım

J. Haslinger, O. Vlach, R. Kučera

Univerzita Karlova, Praha

VŠB-Technická univerzita Ostrava

Řeš́ıme kontaktńı úlohu pružného tělesa lež́ıćım na tuhém podlož́ı. Klasické okrajové podmı́nky
jsou z tohoto d̊uvodu rozš́ı̌reny o podmı́nky nepronikáńı a podmı́nky Coulombova ťreńı. Stat-
ický př́ıpad je poměrně dobře prozkoumán. Je však známo, že výsledná deformace po ustáleńı
p̊usob́ıćıch sil nezáviśı pouze na jejich konečném stavu, ale také na historii jejich pr̊uběhu, což
popisuje mimo jiné kvazistatický model. Ten předpokládá, že deformace při změně p̊usob́ıćıch
sil je okamžitá, a také zanedbává setrvačné śıly.

Vhodná časová diskretizace kvazistatického modelu vede na posloupnost statických úloh, u kte-
rých je zat́ıžeńı modifikováno o člen závislý na řešeńı z předchoźı časové úrovně. Tento př́ıstup
teoreticky analyzuje Rocca a Coccu v [4]. Stejně jako v [2] nahrazujeme jednotlivé statické úlohy
s Coulombovým ťreńım posloupnost́ı úloh s daným ťreńım, ve kterých je postupně iterována mez
skluzu. Užit́ım Lagrangeových multiplikátor̊u které odstraňuj́ı jednostranné okrajové podmı́nky
a regularizuj́ı ťrećı člen, přeformulujeme úlohy s daným ťreńım do duálńı podoby. Diskretizace
vede na minimizaci kvadratické funkce s jednoduchými a se separovatelnými kvadratickými
omezeńımi. Užit́ım vhodné metody rozložeńı oblast́ı pro 3D úlohy (zde T-FETI [1]), nav́ıc
zefektivńıme násobeńı duálńı matićı, které zahrnuje řešeńı soustavy s matićı tuhosti. Za cenu
rozš́ı̌reńı neznámých o daľśı Lagrangeovy multiplikátory (na které neńı kladeno omezeńı) stač́ı
řešit pouze soustavy s maticemi tuhost́ı jednotlivých podoblast́ı. Pro minimizaci použ́ıváme
algoritmus [3]. Výsledky nav́ıc porovnáme s řešeńım pomoćı nehladké Newtonovy metody.

Numerický př́ıklad

Γu
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Γ2
P

Ω
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S

Obrázek 1: Geometrie modelové úlohy
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Obrázek 2: Grafy funkćı φa, φb a φc

Pružné těleso je tvořeno kvádrem Ω = (0, 2) × (0, 1) × (0, 1)[m], materiálové vlastnosti jsou
charakterizované Youngovým modulem E = 211.9e9[Pa] a Poissonovou konstantou σ = 0.277.
Rozložeńı hranice ∂Ω na jednotlivé části je patrno z obr. 1. Na části Γu jsou předepsána nulová
posunut́ı, na Γc podmı́nky nepronikáńı a ťreńı. Část hranice ΓP = Γ1

P ∪ Γ2
P je zat́ıžena silami

o hustotách:
P (t) = φa(t)( 0 , 0 , 10)1e7 na Γ1

P

P (t) = φx(t)( 3 , 0 , 5)1e7 na Γ2
P , x ∈ {b, c}.

}
(1)
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Grafy funkćı φa, φb a φc jsou na obrázku 2. Sledujeme dvě historie zatěžováńı, kde namı́sto φx
použijeme v prvńım př́ıpadě φb a ve druhém φc. V obou př́ıpadech je zat́ıžeńı v koncovém čase
stejné. Výsledné rozložeńı velikosti tečného napět́ı (ťreńı) v čase t = 1 pro obě historie zatěžováńı
je zobrazeno na obr. 3.a,b). Velikost rychlosti tečného posunut́ı na kontaktu je zobrazena na
obr. 3.c,d).
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Obrázek 3: Pr̊uběhy ||Tt|| a ||u̇t|| na Γc
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On the Golub-Kahan Iterative Bidiagonalization
and Revealing the Size of the Noise in a Data

I. Hnětynková, M. Plešinger, Z. Strakoš

Institute of Computer Science AS CR, Prague

Regularization techniques based on the Golub-Kahan iterative bidiagonalization belong among
popular approaches for solving large ill-posed problems. First, the original problem is projected
onto a lower dimensional subspace using the bidiagonalization algorithm, which by itself repre-
sents a form of regularization by projection. The projected problem however inherits a part of
the ill-posedness of the original problem, and therefore some form of inner regularization must
be applied. Stopping criteria for the whole process are then based on the regularization of the
projected (small) problem.

In this lecture we consider an ill-posed problem with a noisy right-hand side (observation vector),
where the size of the noise is unknown. We show how the information from the Golub-Kahan
iterative bidiagonalization can be used for revealing the unknown level of the noise. Such
information can be useful in construction of an efficient stopping criteria in solving large ill-
posed problems.
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Řešeńı úlohy prouděńı v rozsáhlé diskrétńı śıti puklin
v kontextu sdružených úloh prouděńı-mechanika

M. Hokr, J. Kopal, J. Havĺıček

Technická univerzita v Liberci

1 Úvod

Numerické výpočty maj́ı nezastupitelné mı́sto v geovědńıch aplikaćıch jako je modelováńı proudě-
ńı vody, vedeńı tepla a napjatosti v horninovém prosťred́ı. Jedńım z významných problémů je
analýza funkčnosti a bezpečnosti konceptu hlubinného ukládáńı vyhořelého jaderného paliva, kde
typicky jde o řešeńı sdružených úloh z výše jmenovaných fyzikálńıch proces̊u (T-H-M). Specifika,
která vedou na složité úlohy matematické formulace a numerického řešeńı, jsou např́ıklad

• velký geometrický rozsah úloh zároveň s požadavky na přesnost v lokálńım měř́ıtku,

• dlouhý časový interval pro studované procesy,

• složité chováńı geomateriál̊u při věťśım zat́ıžeńı (nelinearity), vliv nehomogenity a mikro-
struktury

Kompaktńı horninový masiv, který je uvažován jako možné prosťred́ı pro hlubinné úložǐstě,
je ve skutečnosti geometricky velmi složité prosťred́ı, kde dominantńı význam na mechanické
a hydraulické vlastnosti maj́ı existuj́ıćı pukliny - v modelech je prosťred́ı reprezentováno jako
ekvivalentńı kontinuum nebo diskrétńı śı̌t puklin. V článku se zabýváme otázkou stanoveńı
makroskopických hydro-mechanických vlastnost́ı na základě řešeńı modelu v detailńı škále –
je analyzován vliv struktury a materiálových parametr̊u jednotlivých puklin jak na globálńı
hydraulické vlastnosti, tak na kvantitativńı vyjádřeńı nehomogenity toku a vlivu mechanického
zat́ıžeńı na tyto vlastnosti.

2 Definice úlohy

Geometrie úlohy je zadána jako diskrétńı puklinová śı̌t ve 2D, tj. systém vzájemně se prot́ınaj́ı-
ćıch úseček v rovině xy, vyplňuj́ıćı čtverec s rozměry 20x20m se sťredem v počátku souřadné
soustavy [1, 3]. Uvažujeme ustálené prouděńı, které se na jednotlivých puklinách ř́ıd́ı rovnicemi

u = −K∇p
∇ · u = q, (1)

kde u(x, t) je neznámá rychlost, p(x, t) neznámá tlaková výška a K je hydraulická vodivost a q
zdroje/propady. V mı́stě pr̊useč́ık̊u puklin je předpokládána spojitost tlak̊u a bilance toku.

Pro úlohu prouděńı je předepsána Dirichletova okrajová podmı́nka na celé hranici, odpov́ıdaj́ıćı
konstantńımu gradientu ve směru x resp. y (Obr. 1), rozd́ıl tlakové výšky mezi protilehlými
hranami je p2 − p1 = 20m. Pro úlohy mechaniky je předepsán normálový tlak na celé hranici,
konstantńı podél každé hrany, rozd́ılný ve směrech x a y.
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Puklinová śı̌t byla vygenerována podle stochastického modelu [1], který proti běžným model̊um
reflektuje korelaci mezi délkou pukliny a jej́ım rozevřeńım (̌śı̌rkou), která koresponduje s reálným
pozorováńım hornin. Celkový počet puklin je 7786. Každé puklině př́ısluš́ı jiná š́ı̌rka (rozevřeńı)
b, která určuje podle standardńıho vztahu K = ̺g

12µb
2 jej́ı hydraulickou vodivost. Mechanické

konstitutivńı vztahy jsou schematizaćı reálného pozorováńı, ve formě nelineárńıho vztahu mezi
rozevřeńım a normálovým a smykovým napět́ım jsou uvedeny v [3] a hodnota rozevřeńı tak
zároveň udává vazbu mezi úlohou napjatosti a úlohou prouděńı.

V tomto článku se zabýváme v prvńı fázi řešeńım úlohy prouděńı a stručně je naznačeno zahrnut́ı
vazby na úlohu mechaniky. Protože mezi jednotlivými pr̊useč́ıky puklin nedocháźı k daľśım
jev̊um ovlivňuj́ıćım prouděńı, jde v jednorozměrném př́ıpadě úseku pukliny o jednoduchý lineárńı
vztah, který nevyžaduje daľśı diskretizaci – pro referenčńı př́ıpad je numerická diskretizace ve
smyslu metody konečných prvk̊u tedy dána pouze vzájemnou polohou puklin a jednotlivé liniové
elementy jsou úsečky mezi pr̊useč́ıky.

3 Numerické řešeńı a výsledky

Úloha je numericky řešena smı́̌senou hybridńı metodou konečných prvk̊u s lineárńımi vek-
torovými bázovými funkcemi pro rychlost a po částech konstantńımi funkcemi pro tlaky. Pro
úlohu s kombinaćı 1D, 2D a 3D element̊u je metoda formulována v [4] a implementována v kódu
Flow123D vyvinutém na Technické univerzitě v Liberci [5]. Kód použ́ıvá exterńı řešič soustavy
lineárńıch rovnic, která pro uvedenou formulaci má indefinitńı symetrickou matici. Pro prezen-
tované úlohy je použit řešič ISOL vyvinutý P. Jiránkem (TU Liberec), založený na metodě
GMRES. Pro postprocesing je použit program GMSH.

Vlivem složité struktury prot́ınańı puklin jde o rozsáhlou úlohu s 74826 elementy s velkým
poměrem délky nejdeľśıho a nejkraťśıho (Tab.1). Vodivost elementu koresponduj́ıćı s hodno-

tami prvk̊u ve výsledné soustavě lineárńıch rovnic je dána Kb
∆x ∼ b3

∆x (kde ∆x je délka ele-
mentu), podmı́něnost úlohy je pak ovlivněna kombinaćı geometrických a materiálových koefi-
cient̊u a s přihlédnut́ım k pozitivńı korelaci mezi délkou pukliny (jako celku) a rozevřeńım b
jsou tedy nejméně př́ıznivé př́ıpady krátkých element̊u na velkých (dlouhých i širokých) puk-
linách a dlouhých element̊u na malých (krátkých a tenkých) puklinách. Hodnoty pro konkrétńı
př́ıpad puklinové śıtě ilustruje tabulka 1. Velikost soustavy rovnic ze smı́̌sené hybridńı metody
je 273570, se 773994 nenulovými prvky.

Pro řešeńı úlohy mechaniky je uvažována standardńı úloha pružnosti na spojité oblasti s puk-
linami vyjádřenými jako pásy konečné š́ı̌rky a př́ıslušnými nelineárńımi konstitutivńımi vztahy.
Z výsledného pole posunut́ı lze určit změnu rozevřeńı pukliny (která vstupuje jako materiálový
parametr do úlohy prouděńı) jako pr̊umět rozd́ılu posunut́ı protilehlých bod̊u na puklině do

normály, ∆b = ( ~u1 − ~u2) · ~b
||~b|| , kde ~b je vektor spojuj́ıćı protilehlé body pukliny.

Výsledky potvrzuj́ı předpokládanou výraznou nehomogenitu toku oblast́ı (Obr. 2 a 3). Dlouhé
dobře vodivé pukliny vytvářej́ı tzv. preferenčńı cesty a ve velké části drobných puklin jsou
rychlosti o několik řád̊u nižš́ı (nejsou vidět ve vizualizaci). Z d̊uvodu výše zmı́něné špatné
podmı́něnosti byl výpočet testován i s rovnoměrně přeškálovanými parametry hydraulické vodi-
vosti K a rozevřeńı b a byla potvrzena úměrnost hodnot rychlosti. Daľśı testy byly zaměřeny na
vliv úprav puklinové śıtě zmı́rňuj́ıćı nepř́ıznivé geometrické vlastnosti a velikost úlohy – sloučeńı
velmi bĺızkých bod̊u a vynecháńı slepých úsek̊u puklin.
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Obrázek 1: Typy zadáńı Dirichletovy okrajové podmı́nky (předepsaná tlaková výška).

Obrázek 2: Výsledky úlohy s horizontálńım tokem - hodnoty rychlosti v puklinách a celkový tok
koncovými body na odtokové hranici [m3/s].

Obrázek 3: Výsledky úlohy s vertikálńım tokem - hodnoty rychlosti v puklinách a celkový tok
koncovými body na odtokové hranici [m3/s]

Table 1: Geometrické a materiálové parametry element̊u s vlivem na podmı́něnost úlohy.

K b ∆x Kb
∆x skutečné Kb

∆x nejnepř́ıznivěǰśı

Maximum 2.4e-2 2e-4 8.4e-1 2.6e-1 maxKd
min∆x=2.4

Minimum 1.1e-5 4.1e-6 2e-6 1.1e-10 minKd
max ∆x=5.4e-11

Max./Min. 2.2e+3 4.7e+1 4.1e+5 2.4e+9 4.5e+10
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4 Závěr

Prezentované výpočty jsou úvodńım krokem řešeńı zadáńı rozsáhleǰśıho projektu sdružených
úloh prouděńı-mechanika na puklinových śıt́ıch a potvrdily schopnost navržených numerických
metody a vytvořeného kódu řešit úlohu takového rozsahu, s výraznými nehomogenitami ma-
teriálových koeficient̊u zp̊usobuj́ıch špatnou podmı́něnost.

V daľśı fázi řešeńı bude provedeno spojeńı výpočtu napjatosti a prouděńı: Předpokládaný efekt
mechanického zat́ıžeńı v rámci sdružené úlohy je, že v závislosti na poměru tlak̊u v r̊uzných
směrech, dojde buď k rovnoměrnému sńıžeńı toku nebo zvýšeńı v puklinách určité (nepř́ıznivé)
orientace a tedy k daľśımu ześıleńı nehomogenity. Použitý koncept řešeńı úlohy napjatosti
z d̊uvodu plné 2D diskretizace neumožńı řešit úlohu s tak velkým počtem puklin a bude využit
koncept částečné homogenizace (náhrady ekvivalentńım kontinuem), tj. řešeńı úlohy na kom-
binaci 2D kontinua a 1D diskrétńı śıtě. Tento koncept který se osvědčil u úloh prouděńı jako
kompromis mezi přesnost́ı a výpočetńı a datovou náročnost́ı, bude zobecněn pro úlohu nap-
jatosti, kde v daném kontextu neńı běžně použ́ıván.

Daľśı navazuj́ıćı oblast́ı je vývoj pokročilých metod řešeńı výsledné soustavy lineárńıch rovnic.
V práci [2] byla odvozena konstrukce paralelizovatelného předpodmı́něńı technikou rozš́ı̌rených
Lagrangián̊u a Schwarzovou metodou, pro indefinitńı matici jako celek. Druhým možným pos-
tupem je využit́ı blokové struktury matice a pomoćı Schurova doplňku převést soustavu na
pozitivně definitńı, řešenou sdruženými gradienty, rovněž s možnost́ı paralelizace výpočtu.

Poděkováńı: Tento článek vznikl za podpory MŠMT, projekt č.1M0554, a Správy úložǐsť
radioaktivńıch odpad̊u, projekt č. 2008/031/Slo, v rámci účasti v mezinárodńım projektu De-
covalex.
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Our Blue Gene Experience

O. Jakl, J. Starý

Institute of Geonics AS CR, Ostrava

1 The Blue Gene project

The original Blue Gene project was a computer architecture project aiming at moving the fron-
tiers in supercomputing, to produce supercomputers with operating speeds in the petaFLOPS
range, see e.g. [3], [4]. It was announced for the years 1999 – 2004, operating with a budget of
$ 100 million. The main participators in the project were IBM, the Lawrence Livermore National
Laboratory (LLNL), the United States Department of Energy and academia. Recall that 2002 –
2004 were the years of the Japanese Earth Simulator domination in the TOP500 supercomputer
list.

The project originally focused to advance the understanding of important biological processes
such as protein folding, later the design became more general purpose. Nevertheless it retains
the goal of an extreme scalability appropriate for molecular modelling, with the first system
in the series called Blue Gene/L (BG/L) targeting at least 65 536 nodes at full scale. Another
unique aspects include:

• trading the speed of the (PowerPC) processors for lower power consumption;

• system-on-a-chip design;

• 3D torus interconnect with auxiliary networks for global communications, I/O, and man-
agement;

• lightweight operating system per node for minimum system overhead.

A BG/L prototype reached a speed of 70.72 TFLOPS by November 2004, taking first place in
the TOP500 list. Since then, thanks to continuous development, a machine of this type, installed
at LLNL, has been occupying the premier positions, nowadays being No. 4 with 478 TFLOPS
Rmax Linpack performance, delivered by its 212 992 processing elements.

IBM now offers the Blue Gene/P (BG/P) solution as a more commercial follow-on product to
the successful BG/L generation. It provides ultrascale performance within a standard program-
ming environment and high efficiency in power, cooling and floor-space consumption. BG/P
extends the performance through a density and frequency jump, doubling the performance of
the processors and interconnects.

2 Blue Gene installation in Bulgaria

It was exactly the Blue Gene/P system deployed in Sofia by mid 2008 through which Bulgaria
became one of the first countries from the former socialist block (after Russia and Poland) that
made an investment into supercomputing facilities of the highest ranking, see [5]. The following
goals are given as motivation: (1) to solve high-end computing-intensive projects in life sciences,
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new drugs discovery, financial modelling and education, (2) to allow Bulgarian businesses and
research institutes to join European partners in research and other projects and (3) to become
the regional supercomputing centre for South East Europe. The project is run by a consortium
of Bulgarian state and academic institutions (including Bulgarian Academy of Sciences) and
IBM.

The machine consists of two BG/P racks with 2048 four-processor chips, in total 8192 PowerPC
450 processing elements running on 850 MHz and accelerated by a double-precision, dual pipe
floating-point unit. The chips reside on compute cards with 2 GB of shared memory, which
are connected through several types of interconnects: 3D torus for two-point communications,
collective network for collective communications and global interrupt network for fast barriers.
With Linpack performance Rmax = 23.42 TFLOPS the machine would have shared the 74th
place in the TOP500 list at the installation time (July 2008); in the latest 32nd list it is ranked
the 126th.

3 Initial experiments

Thanks to our colleagues in BAS we have got a precious short-time opportunity to make some
hands-on experience with the Bulgarian Blue Gene/P machine (let us call it BG) at the end of
2008. In this period, BG was entering the production mode, but rather frequent drop-outs of
the backend, some missing utilities, lack of tailored documentation, etc. revealed that the new
system (and its administration) has not been tuned yet.1

As far as the working environment on BG is concerned, the user has to make himself familiar
with several points. In general, although he will find common tools for code development and
execution on BG, most of them have been adapted and those specifics have to be learned and
considered to get good performance. The user will access BG through a front-end, which is an
IBM System p 64-bit server, but not binary compatible with BG. Without having direct access
to the nodes of BG, one has to create jobs for batch processing, which is controlled by the IBM
LoadLeveler job scheduler. When preparing the (parallel) application codes on the front-end,
cross-compilers have to be used.

Compilers and sequential performance. BG supports two alternatives for compilations,
GNU Compilers and IBM XL Compilers. In the benchmarks based on our (sequential) solvers,
the latter showed slightly (25 %) better performance on the front-end, so we made use of them,
namely of the XLF 11.1 Fortran compiler, in the following tests. In this phase, we also studied
the influence of the various optimization options offered by the compiler on the performance of
our codes. To our surprise, the best timings of our sequential solver on a (single) processor of
BG were by more than 40 % longer than on our seven years old Thea cluster with AMD Athlon
1400 MHz processors and Fast Ethernet interconnect, and almost five times longer than on
the front-end. This observation confirms that the Blue Gene architecture can be advantageous
mainly for highly scalable parallel applications capable to utilize a great number of processors.

Processors versus cores. BG provided us with an interesting opportunity to carry out the
4× 1 vs. 1× 4 processor× core performance comparison. Recall that the compute nodes on
BG/P have four processing elements (cores) with 2 GB of local RAM on a single chip. The
user can specify the run mode, e.g. the virtual node (VN) mode, when the compute node can

1But the conditions were evidently improving.
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host four parallel processes, each assigned to one core and 1/4 of the RAM (0.5 GB), or the
SMP mode, when not more than one process is assigned to the compute node, using the entire
RAM available.2 We chose a benchmark problem sufficiently small to match the restricted
memory and a (displacement decomposition) solver giving rise to four parallel processes, and
observed that there is almost no difference between the VN and SMP modes, i.e. that at least in
our application, the interchip communication is comparable in performance with the intrachip
communication. A good message since in the VN mode the amount of RAM per process is too
restrictive.

Parallel scalability of the DD solver. Most interestingly, BG allowed us also to test the
parallel scalability of our domain decomposition (DD) finite element solver on a greater number
of processors. We prepared a benchmark problem (called FOOT240z) with a large number of
nodes especially in the Z direction (61 × 61 × 241 nodes, i.e. 2 690 283 DOF), along which the
problem is decomposed in the solver, that allowed us to employ up to 64 processors before the
domains became too “thin”. The selected results of a fairly large number of runs are summarized
in Fig. 1.

Figure 1: DD solver on BG: Computing times with increasing number of processors.

When no coarse grid in used (the upper curve), we can observe almost uninterrupted decrease
of the computing time, up to 112 s, which is more than 11 times shorter than the 1252 s of the
sequential solver (the relative efficiency is about 0.17). With a coarse grid, the absolute times
are much favourable, however the curves are “dentate”. The reason can be found in the fact
that each coarse grid is appropriate only for a limited range of decompositions, when its process
matches in computing time the processes of the domains. Outside this range, another coarse
grid should be applied. In the lower curve in Fig. 1, we tried to compose a “ideal” scalable

2The process can start up to four parallel threads.
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coarse grid computation making use of three different coarse grids. With such a construction,
the computing time on 64 processors is 30 s and the relative efficiency does not drop below 0.48.

4 Microstructure computations

We completed our BG experience with a number of tests related to the microstructure 3D
finite element modelling, the current topic of our research, see e.g. [2]. The problem under
consideration deals with the analysis of mechanical behaviour of geocomposites that arose from
the injection of polyurethane resin into the coal environment. Such technology can be used e.g.
to reinforce coal pillars during mining. The questions to be answered based on the modelling
results can read as follows: What are the upscaled elastic properties of coal geocomposites due
to their complicated microstructure given by porous and disturbed coal? How sensitive are these
properties on the quality of filling of the coal matrix by the polyurethane?

The homogenized properties are determined by numerical upscaling. The structure of a geocom-
posite sample is digitalized by X-ray computer tomograph (CT), then the upscaled properties are
obtained via numerical implementation of loading tests. We consider strain and stress driven
tests implemented numerically by means of the FE analysis of the microstructure, when the
standard conforming linear tetrahedral finite elements are applied.

We considered two kinds of parallel iterative solution methods for the FEM system arising from
a CT scan of 231 × 231 × 37 voxels: conjugate gradients with parallel displacement decomposi-
tion – MIC(0) factorization preconditioning (DiD–MIC(0) – fixed number of subdomains) and
conjugate gradients with two-level Schwarz type preconditioning (DD–ACG - varying number
of subdomains), where coarse subproblems created by aggregation are used. The timings of the
solution on the Thea cluster and on BG are presented in Table 1.

Thea BG
Solver # Subd. # Iter. T [s] T [s]

seq–MIC(0) 1 75 544 1473

DiD–MIC(0) 3 75 678 387

DD–ACG 2 47 361 425
4 43 196 209
8 41 119 123

16 41 103

Table 1: Solution times of the microstructure problem on BG and Thea.

There are some strange values among in the results, e.g. that of the sequential run on BG, which
we did not manage to explain in the short period of BG’s accessibility. But in total, as one can
see, BG has not contributed much to the speed of solution of this particular problem, because on
16 BG’s processors, the computation was only slightly shorter than on Thea with 8 processors
and the discretization provided not enough nodes in the Z direction to employ more processors.

5 Conclusions

The Blue Gene/P platform, including its Bulgarian installation, is without question very inter-
esting and powerful — cf. the TOP500 lists. However, to take full advantage of its potential,
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it may not be enough to make technical tuning of the existing codes. Remember that this ar-
chitecture, in accordance with the aims of the original Blue Gene project, is distinguished by a
large number of relatively slow processors with fast interconnects, cf. e.g. [1]. As a consequence,
it is most appropriate fine-grained parallel decompositions, which may be unsuitable for some
problems. Anyway, porting an application to BG (and, in general, to a parallel system with
thousands of processors) is usually a great challenge: One has to reconsider the potential of the
problem to be parallelized and make it match with the strong sides of the target supercomputer.3

Of course, this fully holds for our solvers.

Acknowledgement: We acknowledge the support of the Grand Agency of the Czech Reublic
(GAČR) under the grant No. 105/09/1830.
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On a stable variant of Simpler GMRES and GCR
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1 Introduction

Systems of linear algebraic equations

Ax = b, A ∈ R
N×N , b ∈ R

N , (1)

where A is a large and sparse nonsingular matrix, arise in a large variety of scientific problems.
Almost all modern iterative solvers for treating large-scale sparse systems belong to the wide
class of Krylov subspace methods. Starting from an arbitrary initial guess x0, such iterative
methods seek at the nth iteration the approximate solution xn in the affine subspace x0 +
Kn(A, r0), where r0 := b−Ax0 is the initial residual vector corresponding to x0 and Kn(A, r0) :=
span{r0, Ar0, . . . , An−1r0} stands for the nth Krylov subspace generated by A from r0. Minimum
residual methods like GMRES [11] or GCR [5], which are usual methods of choice for solving
general nonsymmetric problems, construct the approximate solution xn ∈ x0 + Kn(A, r0) such
that its corresponding residual vector rn := b−Axn has a minimal Euclidean norm:

‖rn‖ = ‖b−A(x0 + dn)‖ = min
d∈Kn(A,r0)

‖b−A(x0 + d)‖. (2)

The minimum norm property (2) is equivalent to the orthogonality of the rn to the residual
subspace AKn(A, r0):

〈rn, w〉 = 0 ∀w ∈ AKn(A, r0). (3)

Here and henceforth, 〈·, ·〉 stands for the standard Euclidean inner product and ‖ · ‖ denotes the
Euclidean vector norm as well as the induced spectral matrix norm.

The classical implementation of GMRES [11] is based on the Arnoldi process [1] providing an
orthonormal basisQn of the Krylov subspace Kn(A, r0). The norm of the residual rn is minimized
in (2) by solving an (n+ 1) × n upper Hessenberg least squares problem. The implementations
based on the modified Gram-Schmidt and the Householder QR were shown to be backward
stable [4] and [10]. Another implementation of GMRES called Simpler GMRES and proposed
by Walker and Zhou [13] generates an orthonormal basis Vn of AKn(A, r0) and carries out
the relation (3) simply by projecting the initial residual r0 onto the orthogonal complement
of the column-span of Vn. In particular, let Zn := [z1, . . . , zn] be a basis of Kn(A, r0) such
that span{z1, . . . , zk} = Kk(A, r0) for k = 1, . . . , n and assume that all zk are normalized. The
orthonormal basis of AKn(A, r0) can be formed by computing the QR factorization

AZn = VnUn, (4)

where Vn := [v1, . . . , vn] has orthonormal columns and Un is an n × n nonsingular and upper
triangular matrix. The residual vector is then computed as rn = (I − VnV

T
n )r0 = rn−1 − αnvn,
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αn = 〈rn−1, vn〉 and the corresponding minimum residual norm approximation xn = x0 + Zntn
is found by solving the upper triangular system Untn = V T

n r0 = [α1, . . . , αn]
T .

In the original Simpler GMRES implementation [13] the basis Zn of Kn(A, r0) consists of the
normalized initial residual r0 and the first n − 1 columns of Vn. As it was shown in [9] and
partially also in [13], the condition number of Zn = [r0/‖r0‖, Vn−1] (equal to the ratio of its
extremal singular values) can be bounded as

‖r0‖
‖rn−1‖

≤ κ([r0/‖r0‖, Vn−1]) ≤ 2
‖r0‖

‖rn−1‖
.

The fast convergence in the residual norm leads hence to a poor conditioning of the Krylov
subspace basis possibly resulting to the numerical instability. On the other hand, the basis
conditioning is not dramatically deteriorated by poor convergence of the residuals. When the
Simpler GMRES basis [r0/‖r0‖, Vn−1] is replaced by scaled residual vectors [ r0

‖r0‖ , . . . ,
rn−1

‖rn−1‖ ]

as in RB-SGMRES proposed in [8] (and similarly to GCR [5]), we can observe essentially the
opposite behavior and give the following bounds

max
k=1,...,n

(‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2

) 1
2

≤ κ

([
r0
‖r0‖

, . . . ,
rn−1

‖rn−1‖

])
≤ n

1
2

(
1 +

n−1∑

k=1

‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2

) 1
2

.

Hence the fast convergence implies well-conditioning of the Krylov subspace basis and vice
versa. It is not surprising since the residuals obtained by GMRES in this case are close to the
orthogonal residuals computed using FOM [11, 3]. For the similar result see also [12]. In the
following section we try to combine the good properties of both bases by proposing an adaptive
version of Simpler GMRES.

2 Adaptive Simpler GMRES

In this section we propose an adaptive variant of Simpler GMRES computing the Krylov sub-
space basis Zn with condition number kept at a reasonably small level. This is achieved by an
adaptive switching between the bases of Simpler GMRES and RB-SGMRES (GCR) using an
intermediate residual norm decrease criterion: if the residual norm at given step is sufficiently
reduced the Krylov subspace basis is extended with the normalized residual vector as in RB-
SGMRES or GCR; otherwise we use the last available vector of the orthonormal basis as in
Simpler GMRES. We introduce a threshold parameter ν ∈ [0, 1] and at the nth step (n > 1) we
use either zn = rn−1/‖rn−1‖ provided that ‖rn−1‖ ≤ ν‖rn−2‖ or zn = vn−1 in the latter case.
The algorithm can be formulated as follows:

Adaptive Simpler GMRES:

1: Initialization: Choose an initial guess x0 and the threshold parameter ν ∈ [0, 1],
compute the initial residual r0 = b−Ax0 and ρ0 = ‖r0‖.

2: Compute the bases Zm and Vm:
for n = 1, . . . ,m (until convergence) do

2.1: Compute the new direction vector zn:

zn =





r0/ρ0 if n = 1,

rn−1/ρn−1 if n > 1 and ρn−1 ≤ νρn−2,

vn−1 otherwise.
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Figure 1: Left plot: Test problem with the matrix FS1836 and b equal to the left singular
vector corresponding to the smallest singular value of A solved by adaptive Simpler GMRES
with ν = 0.9. Right plot: The dependence of the condition number of Zm on the choice of the
threshold parameter ν for various problems from Matrix Market.

2.2: Update the QR factorization AZn = VnUn.

2.3: Compute αn = 〈rn−1, vn〉.
2.4: Update rn = rn−1 − αnvn and ρn = ‖rn‖.

3: Compute the approximate solution: Solve the upper triangular system
Umtm = [α1, . . . , αm]T and compute xm = x0 + Zmtm.

If ν = 0 then Zn = [r0/ρ0, Vn−1] we obtain the algorithm identical to Simpler GMRES [13].
The case ν = 1 results in Zn = [r0/ρ0, . . . , rn−1/ρn−1] and corresponds to RB-SGMRES, closely
related to the GCR method. It is known that in the minimal residual method the residuals can
be linearly dependent if the stagnation occurs, in particular when 0 belongs to the field of values
of A resulting in the breakdown of RB-SGMRES and GCR. However, setting ν < 1 prevents
extending the basis with a linearly dependent residual vector and hence the adaptive Simpler
GMRES does not break down until the exact solution has been computed.

3 Conditioning of Zm and accuracy of the adaptive variant

It was shown in [8] that the condition number of the basis Zm can significantly affect the accuracy
of the computed approximate solution in algorithms based on (4). Such algorithms deliver a
backward stable solution provided that Zm is well-conditioned. In particular, if cuκ(A)κ(Zm) <
1 the gap between the true residual corresponding to the approximate solution x̂m and the
updated residual vector rm can be estimated as follows:

‖b−Ax̂m − rm‖
‖A‖‖x̂m‖

≤ cuκ(Zm)

(
1 +

‖x0‖
‖x̂m‖

)
.

Here c denotes a moderate generic constant dependent on N and m and u stands for the unit
roundoff of the underlying finite precision arithmetic.
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For the sake of simplicity, we assume that Zm computed in adaptive Simpler GMRES is equal
to [r0/ρ0, v1, . . . , vq−1, rq/ρq, . . . , rm−1/ρm−1]: we have ‖rn‖ > ν‖rn−1‖ for n = 2, . . . , q − 1 and
‖rn‖ ≤ ν‖rn−1‖ for n = q, . . . ,m − 1. Hence in the first stage of the convergence we use the
Simpler GMRES basis and the residual basis in the second stage. Such a convergence behavior,
i.e., the initial stagnation of the residual norm, appears often in practical computations. Then
the conditioning of Zm can be bounded as

γ
m,q

‖r0‖
‖rq−1‖

≤ κ(Zm) ≤ 2 γm,q
‖r0‖
‖rq−1‖

, (5)

where

γ
q,m

:= max
n=q,...,m−1

(‖rn−1‖2+‖rn‖2

‖rn−1‖2−‖rn‖2

) 1
2

, γq,m := (m−q+1)
1
2

(
1 +

m−1∑

n=q

‖rn−1‖2+‖rn‖2

‖rn−1‖2−‖rn‖2

) 1
2

.

In addition we can obtain the stronger bound in terms of the parameter ν

1 ≤ κ(Zm) ≤ 2
√

2

νq−1

1 + ν

1 − ν
. (6)

Note that (6) does not (entirely) follow from (5); for more details as well as for the analysis of
a more general Zm, we refer to [7].

The left plot in Figure 1 shows the relative residual norms as well as the normwise backward
errors for adaptive Simpler GMRES with the threshold parameter ν = 0.9 and for the modified
Gram-Schmidt implementation of the GMRES method for a matrix FS1836 from the Matrix
Market [2] with the right-hand side equal to the left singular vector corresponding to the smallest
singular value of A. For this problem, the residual basis is nearly rank deficient in the initial
stage of the convergence, which leads to the numerical instability in RB-SGMRES and GCR.
On the other hand, an adaptive basis with ν = 0.9 provides a well-conditioned basis. By circles
on the residual curve, we denote the iteration steps, where the Simpler GMRES basis is used. In
the right plot we show the dependence of κ(Zm) on the value of the parameter ν = [0, 1] at the
iteration step, where the normwise backward error is smaller than 10−14 for various problems
from the same repository. It is clear, that the values of ν close to 1 should be preferred. This
is also apparent from the value νopt minimizing the right-hand side in (6) for a fixed iteration
number m corresponding to the maximum number of iterations or the restart parameter. This
leads to

νopt =

√
1 +m2 − 1

m
→ 1 as m→ ∞

and
κ(Zm)|ν=νopt = O(m).

Even though the value νopt does not necessarily lead to an optimal conditioning of Zm, it
still provides a well-conditioned basis growing at most linearly with m. It was also observed
that the poor conditioning of Zm does not always cause numerical instability. Nevertheless,
the adaptive switching providing a well-conditioned Krylov subspace basis should be used in
order to develop a robust iterative solver based on Simpler GMRES, which has a guarantee of
delivering the accurate approximate solutions to (1) as well as other quantities like the harmonic
Ritz values [6], which is however beyond the scope of this contribution.
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GACR, by the project IAA100300802 of the GAAS, and by the Institutional Research Plan
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Graph partitioning

K. Jurková
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1 Introduction

The problem of proper graph partitioning is one of the classical problems of the parallel comput-
ing. It is well-known that the process of computing high-quality graph partitionings arising in
most practical situations is reasonably understood. This is, e.g., if we consider standard criteria
for partitionings expressed by balancing sizes of domains and minimizing separator sizes. How-
ever, the situation may be different if we need to balance, for example, the time to perform some
specific operations, as the time to compute matrix decompositions, incomplete factorizations, or
some auxiliary numerical transformations used by linear equations solvers. It can happen, that
a partitioning which is well-balanced partitioning with respect to the standard criteria may be
completely unbalanced with respect to some time-critical operations on the domains.

The graph partitioning is tightly coupled with the general problems of load balancing. In
particular, the partitioning represents a static load balancing. In practice, also as mentioned
above, work distribution in the computation may be completely different from what was assumed
at its beginning. In general context, dynamic load balancing strategies can redistribute the work
dynamically. A lot of interest was devoted to analysis and possible cure of such problems [2],
[6], [8]. In some situations, in order to allow complicated and unpredictably time-consuming
operations on the domains, we can talk about minimizing with respect to the complex objectives
[7]. A strategy which was proposed in this case is to improve the partitioning iteratively during
the course of the computation. Nevertheless, in some cases we know more about these critical
operations, and we may be able to include this knowledge into the the graph partitioner, or
we may be able to use this information to improve the graph partitioning in one simple step,
while having some guarantees on its quality, at the same time. Both these strategies have
their own advantages and disadvantages. Probably the most efficient strategy is to integrate
additional knowledge on the matrix factorization or other desired operations into the graph
partitioner, but this approach may not be very flexible. In addition, its analysis may not be
simple. A redistribution in one subsequent step which follows the partitioning provides the
useful flexibility, and may not add too much additional computational effort.

The paper introduces a new approach to the graph partitioning problem, where we assume that a
full or incomplete matrix factorization will be performed on the domains. Our strategy is based
on analyzing the factorizations using graph-theoretic tools. In particular, we will deal with
solving the most simple problem of this kind. Namely, we will discuss the complete factorization
of a matrix which is symmetric and positive definite. In this case, the underlying model of the
factorization is the elimination tree. Based on its properties, we will provide related theoretical
and algorithmic results for a post-processing of a given graph partitioning such that the new,
redistributed graph is better balanced with respect to the factorization.

Section 2 of the paper summarizes some basic terminology and states the problem we would like
to solve. Section 3 is devoted to summarizing our future goals.
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2 Basic terminology and our limitations

In order to describe our contribution we are forced to introduce some basic definitions and
concepts related to the sparse matrix factorizations. As mentioned above, we will treat the case
of complete factorization of symmetric and positive definite matrices.

The decomposition of an SPD matrix A is directed by the elimination tree. This tree and its
subtrees represent and provide most of the structural information which is relevant to the sparse
factorization. For example, based on the elimination tree, we are able quickly determine sizes
of matrix factors, their sparsity structure, or other useful counts [1], [3]. In our case a subtree
of the elimination tree corresponds to a connected subgraph of the original undirected graph.
The elimination tree T (A) is the rooted tree with the same node set as G(A) and vertex n as
the root. It may be represented by the vector PARENT[.] defined as follows:

PARENT [j] =

{
min{i > j| lij 6= 0}, j < n,

0, j = n,

where lij are entries of L. The n-th column is the only column which does not have any
offdiagonal entries.

Many quantities related to the sparse factorization of SPD matrices can be efficiently computed
only if the matrix is preordered by some specific reorderings. One of those is a postordering. It
is induced by a postordering of the elimination tree of the matrix. In particular, a postordering
of a tree is its topological ordering.

For a given rooted tree, we define a topological ordering of the tree to be an ordering that
numbers children nodes before their parent node. A topological ordering of a directed acyclic
graph (directed graphs without cycles) is one such that for every directed edge from a node u
to v, u is ordered before v. In the case of a rooted tree, if we treat each tree edge as a directed
edge that goes from a child to its parent, our definition of a topological ordering of a rooted tree
is the same as that used for directed acyclic graphs. Note that the root of a subtree will always
be labeled last among nodes in the subtree.

The postorder sequence of a rooted tree T is can be computed recursively as we demonstrate in
the following figure, and in the subsequent algorithm.

Algorithm 1 Postordering(T)

if s=0

then sequence is r

else sequence is Postordering(T1), Postordering(T2), .., Postordering(Ts), r
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Note that any reordering of a sparse matrix that numbers a node ahead of its parent node in
its elimination tree is equivalent to the original ordering in terms of fills and computation. In
particular, postorderings are equivalent reorderings in this sense.

Let us now summarize additional assumptions which we adopt in this paper. First, we will
explicitly assume that the graph was divided just into two domains which are separated by
an edge separator. Further, we will deal only with the standard graph model instead of the
factorgraph model which would capture matrix blocks. Nevertheless, note that considering
matrix blocks seems to be a must in many practical cases, e.g., for a typical matrix arising in
finite element computations.

3 Our goals

As mentioned above, we are interested in solving problems of numerical linear algebra. In
particular, the operations of our interest are incomplete or full decompositions of large sparse
matrices. Such decompositions offer a lot of tools to estimate their sizes even before actual
decompositions are performed. Many of them are based on the elimination tree of the related
decomposition. We believe that in this case it is not always necessary to use an outer loop to
balance the computation as mentioned in [7]. It may be possible to use cheaper tools instead.

We will briefly explain the basic steps of our new approach. The approach is applied as a
postprocessing of a given partitioning, that is, in the form of a repartitioning. It is considered
if we encounter a lack of balance between the sizes of the Cholesky factors. The result of this
repartitioning step will be the new distribution of the graph into the domains which implicitly
defines the graph separator as well. The repartitioning problem can be split into the two simpler
subproblems. First, we need to decide which vertices should be removed from one domain and
added to the other domain. Second, we need to find where these removed nodes should be placed
in the reordering sequence of the other domain. This second reveals slight symmetry of these
two tasks and shows that here we couple the standard graph partitioning problem with the
problem of graph reordering. In the other words, in order to compare the above mentioned
theoretical quantities with the help of the elimination tree we need to assume that the separated
subgraphs were reordered, and we need to get the new reorderings as well. Note that first steps
were considered in [5]. Here we will present some theoretical results along this line.
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The solution of problems with the pure Neumann
boundary conditions on the outer boundary

R. Kohut
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Introduction

For some practical problems it is necessary to use the pure Neumann boundary conditions
(see [1]). The pure Neumann boundary conditions are more flexible and we can expect higher
accuracy of the results if we use this kind of boundary conditions, especially in cases when the
outer boundary is not far enough from the considered sites. On the other hand this type of
boundary conditions can cause some computational troubles.

The pure Neumann boundary value problem is solvable only if all the applied extenal forces (i.e.
surface forces and volume forces given by the weight of rocks) are balanced which means that the
resultants of all forces and their moments vanish. If the domain is not homogeneous (material
with different weight, holes etc.) it is not simple to determine balanced forces and the condition
of balanced forces can be disturbed. This disturbation although not very big, indicates some
incorrectness in the model formulation and causes divergence of the used iterative method. For
obtaining some numerical results, we must seek generalized solution and modify the numerical
techniques.

Projection of rhs

The FE analysis of the boundary value problems of elasticity requires numerical solution of the
linear system

Au = f, u, f ∈ Rn (1)

where A is a large sparse symmetric matrix which is singular and positive semidefinite for pure
Neumann boundary conditions.

Due to symmetry of A, the space Rn can be decomposed as

Rn = R(A) ⊕N(A), (2)

whereR(A) is the range and N(A) is the null space of the matrix A. We shall say that the system
(1) is consistent if f ∈ R(A). The consistent system has a (non unique) solution. Generally, the
rhs f can be decomposed into consistent and inconsistent parts,

f = fp + f̂ , fp ∈ R(A), f̂ ∈ N(A). (3)

Any solution of Au = fp is then called the generalized solution of (1).

Due to a not ideal balance between volume and boundary forces and also due to roundoff errors,
we can obtain a slightly inconsistent system Au = f . In this case the PCG method converges at
an initial phase and then starts to diverge. If the initial phase provides an iteration ui with a
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sufficiently small residual then ui gives also a suitable approximation for the generalized solution
of (1) because (due to orthogonality)

‖ Aui − fp ‖≤
√

‖ Aui − fp ‖2 + ‖ f̂ ‖2 =‖ Aui − f ‖ . (4)

For the elasticity problems, we know that the nullspace N(A) consists from rigid translations and
rotations. Thererefore, we can also project the rhs f into R(A) (PRf = fp) and/or stabilize the
iterative process by projecting the transformed residuals wi = B(ri), where B is preconditioner
into R(A).

If w1, w2, w3 are three independent rigid body translations,

w1 = (1, 0, 0, 1, 0, 0, ...), (5)

w2 = (0, 1, 0, 0, 1, 0, 0, 1, 0, ...), (6)

w3 = (0, 0, 1, 0, 0, 1, ...), (7)

and w4, w5, w6 are three independent rigit body rotations,

w4 = (0,−z1, y1, 0,−z2, y2, ...), (8)

w5 = (z1, 0,−x1, z2, 0,−x2, ...), (9)

w6 = (−y1, x1, 0,−y2, x2, 0, ...) (10)

(vectors w1, .., w6 form the base of the nulspace N(A)), the projection fp =∈ R(A) can be
constructed numerically

fp = f − f̂ = b−
∑

αiwi, for i = 1, .., 6 (11)

fp ⊥ f̂ ⇒
∑

αi < wi, wj >=< f,wj > . (12)

The coeficients αi, i = 1, ..., 6 can be determined solving system in (12). During PCG iterations
the roundoff errors may cause instability and/or divergence which leads to finding a more sub-
stantial stabilization of the PCG algorithm. This can be done by projecting all the computed
residuals back to the theoretical range R(A), i.e.all computations of the residuals ri, i = 0, 1, ...
are folowed by the projection

ri := ri − PN (ri). (13)

Becase we’ll do the projections after each iterations it’s useful to orthonormalize the basis
{w1, w2, w3, w4, w5, w6}. We obtain new orthonormalized basis {w̃1, w̃2, w̃3, w̃4, w̃5, w̃6} and for
the coeficients αi it holds αi =< f, w̃i >, i = 1, ..., 6.

In some practical problems (e.g. uniaxial pressure tests on specimens) we suppose normal Dirich-
let nonhomogeneous boundary conditions on the two oposite faces of the hexahedral domain and
homogeneous Neumann conditions on the other faces. In this case the nullspace N(A) consists
from two rigid translations and one rotation, both in the direction orthogonal to the direction
of the given normal Dirichlet BC. If e.g. the Dirichlet BC are in the direction of z-coordinate,
the corresponding nullspace vectors are w1, w2, w6 (see (5),(8)).

The matrix A is singular and positive semidefinite for pure Neumann boundary conditions and
for vectors v ∈ N(A) the relations Av = 0 holds. But in the case of Dirichlet BC on two
opposite sides we modify the matrix A in our software in such a way that the columns and rows
corresponding to components of nodal vectors where the normal Dirichlet BC are given have
all members equal zero except of diagonal member which is equal to 1. In the same way the
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columns and rows corresponding to nodes in ”empty” area (a hole in the domain) are modified.
After this modification we receive matrix AM which has following form:

AM =

(
AS 0
0 D

)
, (14)

where AS is symmetric, singular and positive semidefinite, D is the unit diagonal matrix. The
vectors vM from nullspace N(AM ) have form

vM =

(
vS
0

)
,

where the vectors vS ∈ N(AS).

Numerical tests

The computed residuals are projecting back to the range R(A) (see (13)). Due to the roundoff
errors the functions v from the theoretical nullspace N(A) do not fulfill exactly the condition
Av = 0. If all matrices and vectors are stored in the single precision (real ∗ 4), the l2 norm
of Awi, i = 1, 6 is between 10−2 and 100, in the case of the double precision (real ∗ 8) the l2
norm of Awi is between 10−10 and 10−6. How these precisions influenced the results we can
see on Figures 1 - 2. The test were done on model task with 1842750 unknowns for accuracy
ε = 1.0 × 10−6. In the case of real*4 the ”exact” residual vector rex = Aui − fp shows the
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Figure 1: The behaviour of ‖rk‖l2 , for ”exact” rk, ”recurent” rk, the precision real*4 : a)(left)
the projection of all ri, b)(right) the projection only for rhs f .

convergence till the value 5.0 × 10−3 both in Figure 1a and 1b, while ‖rkrec‖ (rk = rk−1 + ...)
shows incorrectly the permanent convergence in the case with the projection in each iteration
(Figure 1a).

In the case of real*8 the ”exact” residual vector rex behaves in the same way as ”recurent” rk
and the figures show that projection only of initial rhs is sufficient. If we compare the computed

66



R8, r
i
=Au

i
−f

p
, all pr. R8, recut r

i
, all pr.

0 500 1000 1500 2000
−7

−6

−5

−4

−3

−2

−1

0

1

2

R8, r
i
=Au

i
−f

p
, 1 pr. R8, recur r

i
, 1 pr.

0 500 1000 1500 2000
−7

−6

−5

−4

−3

−2

−1

0

1

2

Figure 2: The behaviour of ‖rk‖l2 , for ”exact” rk, ”recurent” rk, the precision real*8: a)(left)
the projection of all rk, b)(right) the projection only for rhs f .

stress fields for single and double precision, the difference is about 0.2%. It means that in our
model example the accuracy close to 5.0×10−3 is sufficient and we can use the code using single
precision.
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Adaptive hp-FEM for 3D Problems
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1 Introduction

We present a new adaptive hp-FEM based on arbitrary-level hanging nodes. The goal of this
work is to create a general framework for solving partial differential equations corresponding
to various physical fields. Achievement of this goal is essential for the next step of our work –
solving coupled problems. Each field usually exhibits different behavior, such as singularities or
boundary layers. hp-FEM method allowes us to use optimal type of elements for each field and
each part of the computational domain, such as large higher-order elements for areas, where
solution is smooth and small low-order elements close to singularities and boundary layers. This
leads to better convergence, compared to standard h-adaptivity.

2 Constrained approximation

Constrained hp-FEM approximation was first introduced by Demkowicz [1] who uses one-level
hanging nodes (both in 2D and 3D). It was demonstrated in [1] that the hp-FEM with one-level
hanging nodes was more efficient than the approximation on regular meshes, but he still has
been reporting problems with forced refinements. By forced refinements we mean refinements of
elements which are not marked for refinement because of a large approximation error, but which
are refined for technical reasons (to preserve mesh regularity). Forced refinements slow down
the convergence of the adaptive process since the error is not reduced optimally, and moreover,
they induce additional degrees of freedom whose numbers cannot be predicted easily due to their
recursive nature.

3 Arbitrary level hanging nodes

In order to eliminate the forced refinements completely, we proposed a new hp-FEM with
arbitrary-level hanging nodes for two-dimensional elliptic problems in [3] and generalized it later
to two-dimensional time-harmonic Maxwell’s equations solved by higher-order edge elements in
[4]. In both cases, the absence of forced refinements improved the performance of automatic
hp-adaptivity while simplifying its algorithmic treatment significantly.

4 Extension to 3D

The extension of the technique to 3D was nontrivial due to the more complex structure of
higher-order shape functions and also because the structure of direct and indirect constraints in
3D is more complicated. Nevertheless, we can confirm once more that the technique was worth
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developing – the algorithmic treatment of automatic hp-adaptivity in 3D (referred to as “pro-
grammer’s nightmare” by Demkowicz) becomes modular and very simple, and the performance
is much better compared to algorithms which need to deal with forced refinements. Numerical
examples and comparisons are presented.

5 Example Application

Despite its higher programming complexity, adaptive hp-FEM is becoming increasingly popular
in engineering circles due to its unconditional extremely fast convergence. In this study, we
illustrate this fact using the standard benchmark example called Fichera corner. We solve the
problem

−∆u = f in Ω,

u = uD on ∂Ω,

where Ω = (−1, 1)3 \ [0, 1]3 and f and uD are chosen to comply with the exact solution

u(x1, x2, x3) = (x2
1 + x2

2 + x2
3)

1/4.

The missing part of the cube represents a metallic object. The solution, representing the electric
potential in the surrounding air itself is smooth, but it’s gradient exhibits a strong singularity
near the re-entrant corner and edges. The convergence curve shown in Fig. 1 was obtained after
several iterations of the automatic adaptive algorithm, starting with seven hexahedral elements
only. It can be seen that the hp-FEM outperforms both piecewise-linear and piecewise-quadratic
FEM significantly.

From the graph shown in Fig. 1 it can be seen, that if one does not require very small relative
error, quadratic, or even linear elements can be used. On the other hand, if one needs really good
approximation with relative error below 0.1 percent, both linear and quadratic approximations
become too expensive and hp-FEM is the most suitable. We can conclude that the future of the
adaptive hp-FEM lies in large problems, where high accuracy is requested, such as singular or
multiscale problems in 3D.

6 Conclusion

In this work we showed several aspects of hp-FEM adaptivity with arbitrary level hanging nodes.
Despite its rather difficult algorithmic treatment, numerical results suggest, that this method
can be successfully used. We believe, that its advantages will be even more significant for more
complicated and coupled problems.
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No. 102/05/0629 and 102/07/0496) and by the Grant Agency of the Academy of Sciences of
the Czech Republic (Project No. IAA100760702)
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On pressure boundary conditions for steady flows
of incompressible fluids with pressure and shear

rate dependent viscosities
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Institute of Mathematics AS CR, Prague

Abstract

We consider a class of incompressible fluids whose viscosities depend on the pressure and
the shear rate. Suitable boundary conditions on the surface force at the inflow/outflow part
of boundary are given. As an advantage of this, the mean value of the pressure over the
domain is no more a free parameter which would have to be prescribed otherwise. We prove
the existence and the uniqueness of weak solutions (the later for small data) and discuss
particular applications of the results.

1 Introduction

A well-known property of the Navier-Stokes equations describing the motion of an incom-
pressible Newtonian fluid is that the fluid pressure is determined to within a constant. This
degree of freedom does not play important role as far as only the pressure gradient is present
in the equations of motion. It is however not the case of fluids whose viscosities depend on
the pressure and the shear rate. Since the value of the pressure affects the whole solution of
the equations, one has to provide an additional parameter in order to fix this value.

In previous theoretical studies, such as [5], the mean value of the pressure either over the
whole domain or over its nontrivial subdomain was prescribed as one of the input parameters.
A difficulty of this approach lies in the fact that the pressure mean value is not a proper
quantity from the practical point of view, i.e. there is no hint on the value which should
be prescribed for a particular application. The objective of this paper is to propose an
alternative way of fixing the pressure, namely to use a suitable inflow/outflow boundary
condition. Proofs of the results can be found in [7].

2 Definition of the problem and the main result

We investigate the following system of PDEs:

div(vvv ⊗ vvv) − div S + ∇p = fff
div vvv = 0

}
in Ω,

where
S ≡ S(p,D(vvv)) = ν(p, |D(vvv)|2)D(vvv) . (2.1)

Here vvv, p, fff , ν(p, |D(vvv)|2) is the velocity, the kinematic pressure, the body force and the
kinematic viscosity, respectively. The equations describe the motion of an incompressible
homogeneous fluid in a bounded domain Ω ⊂ Rd, d = 2 or 3. The domain boundary consists
of three parts: ∂Ω := ΓD∪Γ1∪Γ2, on which we prescribe the following boundary conditions:

vvv = 000 on ΓD , (2.2)

pnnn− Snnn = bbb1(vvv) on Γ1 , (2.3)

vvv
p− Snnn ·nnn

= (vvv ·nnn)nnn
= b2(vvv)

}
on Γ2 . (2.4)
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Throughout the paper we will assume that Ω has the Lipschitz boundary. Further we will
denote Γ := Γ1 ∪Γ2 and suppose that |ΓD| > 0 and |Γ| > 0, i.e. the Dirichlet condition (2.2)
and at least one of the conditions (2.3), (2.4) is present.

2.1 Structural assumptions

The following assumptions on S are considered.

(A1) For a given r ∈ (1, 2), there are positive constants C1 andC2 such that for all symmetric
linear transformations B, D ∈ Rd×d and all p ∈ R:

C1(1 + |D|2) r−2

2 |B|2 ≤ ∂S(p,D(vvv))

∂D
· (B⊗ B) ≤ C2(1 + |D|2) r−2

2 |B|2 ,

where (B ⊗ B)ijkl = BijBkl.

(A2) For all symmetric linear transformations D ∈ R
d×d and for all p ∈ R:

∣∣∣∣
∂S(p,D(vvv))

∂p

∣∣∣∣ ≤ γ0(1 + |D|2) r−2

4 ≤ γ0 ,

with γ0 > 0 specified later.

2.2 Boundary assumptions

Concerning the boundary conditions (2.3)–(2.4), we define

〈bbb(vvv),ϕϕϕ〉 := 〈bbb1(vvv),ϕϕϕ〉Γ1
+ 〈b2(vvv ·nnn),ϕϕϕ ·nnn〉Γ2

and assume the following:

(B1) With some γ1 ∈ 〈3, r∗), the mapping

bbb1(·) : Lγ1(Γ1) → Lγ1(Γ1)
∗ (2.5)

is continuous and bounded. Here r∗ := (d−1)r
d−r denotes the exponent for which

W1,r(Ω) →֒ Lr∗

(∂Ω).

(B2) With some β1 ≥ 0,

〈bbb1(uuu),uuu〉Γ1
≥ −1

2

∫

Γ1

(uuu ·nnn)|uuu|2 dxxx− β1‖uuu‖γ1,Γ1
(2.6)

for all uuu ∈ Lγ1(Γ1).

(B3) With some γ2 ≥ 3, the mapping

b2(·) : Lγ2(Γ2) → Lγ2(Γ2)
∗ (2.7)

is continuous and bounded.

(B4) With some β2 ≥ 0 and β2 > 0,

〈b2(uuu ·nnn),uuu ·nnn〉Γ2
≥ −1

2

∫

Γ2

(uuu ·nnn)|uuu|2 dxxx+ β2 ‖uuu‖γ2

γ2,Γ2
− β2 (2.8)

for all uuu ∈ Lγ2(Γ2).

(B5) With some continuous function m : R+ → R+, where lim
xց0

m(x) = 0, b2 is

uniformly monotone:

〈b2(w) − b2(z), w − z〉Γ2
≥ m(‖w − z‖γ2,Γ2

) , (2.9)

for all w 6= z ∈ Lγ2(Γ2).
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Additionally, in order to prove uniqueness of solutions we will require that the following
stronger properties hold:

(B6) With some λ1 > 0 and K1 > 0 (specified later),

‖bbb1(uuu1) − bbb1(uuu
2)‖γ′

1
,Γ1

≤ λ1‖uuu1 − uuu2‖γ1,Γ1
(2.10)

for all uuu1,uuu2 ∈ Lγ1(Γ1), ‖uuui‖γ1,Γ1
≤ K1, i = 1, 2.

(B7) With some λ2 > 0 and K2 > 0 (specified later),

‖b2(uuu1 ·nnn) − b2(uuu
2 ·nnn)‖1,Γ2

≤ λ2‖uuu1 − uuu2‖r∗,Γ2
(2.11)

for all uuu1,uuu2 ∈ Lγ2(Γ2), ‖uuui‖γ2,Γ2
≤ K2, i = 1, 2.

2.3 Weak formulation

We define the following function spaces:

W1,r
b.c.(Ω) :=

{
vvv ∈ W1,r(Ω) ; trvvv

∣∣
ΓD

= 000 , trvvv
∣∣
Γ2

= (trvvv ·nnn)nnn ∈ Lγ2(Γ2)
}
,

W1,r
b.c,div(Ω) :=

{
vvv ∈ W1,r

b.c(Ω) ; divvvv = 0 a.e. in Ω
}
.

Definition 2 (Problem (P)) A pair (vvv, p) ∈ W1,r
b.c.,div(Ω) × Lr′

(Ω) is said to be a weak

solution of Problem (P) iff for every ϕϕϕ ∈ W1,r
b.c.(Ω)

∫

Ω

div(vvv ⊗ vvv) ·ϕϕϕdxxx+

∫

Ω

S(p,D(vvv)) : D(ϕϕϕ) dxxx−
∫

Ω

p divϕϕϕdxxx+ 〈bbb(vvv),ϕϕϕ〉 = 〈fff,ϕϕϕ〉. (2.12)

2.4 Main result

Theorem 3 (Well-posedness of (P)) Let fff ∈ W−1,r′

(Ω) and assume that (A1)–(A2)
hold for the viscosity, (B1)–(B5) hold for the boundary data, with

3d

d+ 2
< r < 2 and γ0 <

1

C̃div(Ω,Γ1,Γ2, 2)

C1

C1 + C2
. (2.13)

Then

(i) there exists a weak solution to (P);

(ii) for any weak solution (vvv, p) of (P), the velocity vvv satisfies the estimate

‖vvv‖1,r + ‖vvv‖γ2,Γ2
≤ K , (2.14)

where K ց 0 whenever (‖fff‖−1,r′ , β1, β2) ց 000, the other problem data being fixed;

(iii) if additionally (B6)–(B7) are satisfied and if K and λ1, λ2 are small enough, then
the weak solution to (P) is unique.

Remark 4 (Pressure is fixed by velocity) Let (vvv, p1) and (vvv, p2) be weak solutions to
(P). Then, under the assumptions of Theorem 3, p1 = p2.

3 Boundary conditions in applications

Although the assumptions (B1)–(B7) seem to be motivated mainly by PDE analysis, they
cover important engineering applications; we mention three types of them in the following.
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Artificial boundary.

In numerical simulations, large or even unbounded domains arising from the physical model
must be truncated and the boundary condition for artificial boundaries has to be provided.
For example in [3], an application to the flow through a cascade of profiles with the outflow
condition

−Tnnn = hhh(xxx) +
1

2
(vvv ·nnn)−vvv (3.1)

is considered (see also Section 1). In [1], several b.c. including (3.1) were proposed (for
unsteady incompressible Navier-Stokes equations) in order to perform long-time simulations
at high Reynolds numbers.

Conditions involving Bernoulli’s pressure.

In some applications, the quantity p+ 1
2 |vvv|2, referred to as total pressure or Bernoulli pressure,

is used for prescribing the inflow/outflow boundary conditions on artificial boundaries (see
e.g. [6, 2]). Note that this class of conditions:

(
p+

1

2
|vvv|2
)
nnn− Snnn = hhh(xxx) (3.2)

is covered by our theory.

Porous wall.

Boundary conditions of the type (2.4) are applicable to the flows, where an inflow/outflow
is possible through a porous wall (filtration boundary conditions). In most studies, for the
flow through an isotropic porous medium the linear law of Darcy is considered. However,
Darcy’s law is valid only for slow flows. It can be in fact derived from the Stokes equation, i.e.
neglecting the inertia of the fluid, see e.g. [8]. For higher Reynolds numbers, the experimental
observations “did not allow to find a universally accepted formula” [8]. Nevertheless, the
relation

−∇p =
µ

k
vvv + d2|vvv|vvv + d3|vvv|2vvv , with d2, d3 > 0, (3.3)

was proposed more than a century ago in [4]. Here, the last two terms were added to make
the equation fit the experimental results. Formula (3.3) with d3 = 0 is well established as
the Forchheimer equation.

As an analogy of (3.3), the boundary condition of the type

−Tnnn ·nnn = pout + (c1 + c2|vvv ·nnn| + c3|vvv ·nnn|2)vvv ·nnn with c1, c2, c3 ≥ 0, (3.4)

can be prescribed for the normal component of velocity. If c3 > 0 or c2 >
1
2 then (B3)–(B5)

and (B7) are satisfied (the last property for K2 > 0 small enough).
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Mathematical modeling of geosynthetic tubes

J. Maĺık

Institute of Geonics AS CR, Ostrava

1 Introduction

Geosynthetic tubes are comprised of thin sheets and pumped with water or slurry. The tubes
are made of synthetic fabrics (geotextile). They have been used as dikes or breakwaters and to
prevent beach erosion. They have many other applications in geoengineering (see [2]).

Geosynthetic tubes on rigid foundation are studied, for instance, in [1, 3]. These results are
generalized for tubes on elastic foundation [5]. Geosynthetic tubes in mutual contact are studied
in [6]. Some problems connected with 3D modeling are solved in [7]. Similar techniques have
been applied for solving some quite different problems. Floating liquid filled membranes are
studied in [8, 9]. The shape of a towed boom of logs is studied in [4].

The main purpose of this paper is to give the strict mathematical formulation and analysis of
some problems connected with the geosynthetic tubes on the rigid foundation. These problems
can be of practical use and their solutions can contribute to the optimal design. The basic
governing equations to the problems are presented. These problems are studied in [11].

Similar problems are studied in [1]. First of all the authors deal with extensible elastic mem-
branes holding liquid and gases. Inextensible membranes are studied as a limit case of extensible
ones. In this paper inextensible membranes are studied, which is quite natural for the problems
connected with geosynthetical tubes.

2 Basic hypotheses and setting up problems

Geosynthetic tubes have diameters ranging from one to several meters and have theoretically
infinite length. Let us consider that all cross sections are identical, so we can study the geosyn-
thetic tubes as a two-dimensional problem. The modeling is based on the following hypotheses:

1. The geosynthetic is inextensible and flexible and its weight can be neglected.

2. The filling medium (water or slurry) behaves as an ideal liquid which generates hydrostatic
pressure in every point and act in the perpendicular direction to the geosynthetic.

3. There is no friction between the foundation and the geosynthetic.

The geosynthetic tube is filled through the inlets on the top of the tube, which results in the
process, where the certain part of the geosynthetic rises and the other part of the geosynthetic
rests on the rigid foundation (see Fig.1.).

Let us consider the coordinates in Fig.1 with the origin in the point O and with the axes x, y
oriented in the way depicted in Fig.1. Let us use the notation
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x

y

α

rigid foundation

O

C

n A

B

geotextile

Fig.1 Cross section of a geosynthetic tube

ρ the density of the water or slurry.
g the gravitational acceleration.
p the pressure of the water or slurry at the point O.

The pressure p can be interpreted as the pumping pressure of the water or slurry which is
transported into the tube. Let us set up equilibrium conditions on the curve representing the
shape of the cross section of the geosynthetic tube.

Let s be the parameter representing the length of the curve. The parameter is equal 0 in the
point O and is oriented in the anticlockwise direction.

Let n = (nx, ny) be the normal vector to the curve, H(s) be the tension force in the geosynthetic
in the point corresponding to the parameter s, and the functions x(s), y(s) describe the shape
of the curve between the points O, C.

The basic equlibrium equations read as follows

d

ds

(
H
dx

ds

)
+
dy

ds
(gρy + p) = 0,

d

ds

(
H
dy

ds

)
− dx

ds
(gρy + p) = 0,

(2.1)

which hold on the interval OC (see Fig. 1.).

3 Numerical solutions.

This section contains some examples connected with the mathematical modeling og geosynthet-
ical tubes.

The algorithms were implemented in MATLAB. Now let us apply the MATLAB code for solving
some model problems. Let us consider that we have a tube with the perimeter 10m filled with
water (ρ = 1000kg/m3) and g = 10m/s2. The graphs in Fig. 2 describe the shapes of the tube
for some values of the parameters p, H and L = 10m. The graphs in Figs. 3-5 describe the
functional dependences between h and p, H, V for L = 10m.
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Fig.2 The shapes of the tube with the perimeter 10m for some values of height
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Fig.3 The functional dependence between h and H for the tube with the perimeter 10m

4 Conclusion

From the graphs above it is clear that the dependence between the parameters p, H, L, h, V is
nonlinear. The result show how to choose some parameters of the geotextile so that the tension
H does not exceed the limits which can result in a destruction of the tube. Such information
can contribute to the optimal design.
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Modifications of IAD methods for large scale computing

I. Pultarová

Czech Technical University in Prague

1 Introduction

The iterative aggregation - disaggregation (IAD) methods attract an attention especially due
to their ability to solve large or not well conditioned problems. Nevertheless, the convergence
analysis has not brought enough satisfactory results yet. There are available a lot of modifica-
tions of the aggregation approach, still the convergence of these algorithms is mostly controlled
by checking the error and by changing the number of basic iterations and this in general cannot
be estimated in advance. In this short contribution we introduce some new observations and
estimates on the spectra of the error matrices which are connected to the IAD methods.

2 Solving Perron eigenvector by the IAD metod

We assume an N × N column stochastic matrix B. We want to get an eigenvector x̂ of B for
which Bx̂ = x̂, eT x̂ = 1, where e is an all ones vector. We will assume that B is irreducible
which implies that x̂ is unique.

We may divide the set of indices {1, 2, . . . ,N} into n ≤ N subgroups G1, . . . , Gn and consider
them as for a new set of macro-states. Let the ordering fulfils that if i ∈ Gk, j ∈ Gm, k < m then
i < j. We need the following notation. Let R be an n ×N matrix for which Rij = 1 if j ∈ Gi
and Rij = 0 otherwise. For any positive vector x we define a matrix S(x) with the elements
S(x)ij = xi/

∑
k∈Gj xk if i ∈ Gj and S(x)ij = 0 otherwise. Let P (x) = S(x)R.

Let us denote B(x)a the aggregated matrix B(x)a = RBS(x). Starting with some positive
vector x0 we solve the equation

B(x0)az = z

for z. Then z is prolonged to the size N by y = S(x0)z and several steps of some basic iterative
method is performed. We may use e.g. the power method, Jacobi or Gauss-Seidel methods or
their block forms. Let us denote M −W some weak nonnegative splitting of I −B, where I is
an identity matrix. Then the basic iteration matrix will be T = M−1W . Then x1 = Tmy for
some chosen integer m. This finishes one loop of the IAD method.

It was derived that for the sequence of the computed approximations it is xk+1− x̂ = J(xk)(xk−
x̂), where the error matrix is

J(x) = Tm(I − P (x)Z)−1(I − P (x)),

where Z = B − x̂eT . In the next section we show some properties of J(x̂) for some special
structures of data.
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3 Convergence and divergence in local sense

We know that cycles in B may cause divergence of IAD methods even in local sense. That is
why we study such kind of matrices in this paper. Matrix B is assumed to be cyclic, B1,n = 1,
Bi+1,i = 1 for i = 1, 2, . . . , N − 1, and Bij = 0 otherwise. Now we study the spectral radius of
J(x̂) in order to determine the asymptotic rate of convergence of the IAD method or to prove
divergence. Since we want to distinquish among several types of the IAD methods in which
different basic iteration matrices are used, we denote the corresponding error matrix J(Tm, x̂).
Let us denote B1 the block diagonal of B where the indices of the particular blocks correspond
to the aggregation groups G1, . . . , Gn.

Lemma 1. Asymptotic spectral radii of the error matrices corresponding to the IAD methods
for the basic iteration matrices B, BN and (I −B1)

−1B2, respectively, are

ρ(J(B, x̂)) = 1,

ρ(J(BN , x̂)) = 1,

and
ρ(J((I −B1)

−1B2, x̂)) = 0,

respectively.

It is assumed that the IAD methods converge for great part of the set of irreducible stochastic
matrices. But we introduce examples, that for cyclic B the spectral radius of J(BN−1, x̂) can
be arbitrarily close to 2. In Figure 1 one can see the spectra (dots in bold) of the error matrices
J(BN−1, x̂) for the partitioning with two blocks each including 100 elements, and for 30 blocks
each of 20 elements. There are also displayed two thin circles in each figure, which help to
recognize the location of the eigenvalues.
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Figure 1: Spectra of J(BN−1, x̂) for N = 200, n = 2 (left) and for N = 600, n = 30 (right).

From the above considerations we may conclude that two following properties of the IAD meth-
ods are important. Firstly, when B is close to a cyclic matrix, the proper ordering is desirable.
And secondly, an appropriate basic iteration matrix in this case is (I−B1)

−1B2, where (I−B1)
−1

can be substituted by I +B1 +B2
1 + · · · +Bm

1 .
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J. Š́ıstek, J. Novotný, P. Burda, M. Čert́ıková
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1 Introduction

Numerical solution of linear problems arising from isotropic elasticity discretized by finite ele-
ments is important in many areas of engineering. The matrix of the system is typically large,
sparse, and ill-conditioned. The classical frontal solver [2] has become a popular direct method
for solving problems with such matrices arising from finite element analyses. For large prob-
lems, iterative methods such as the preconditioned conjugate gradients (PCG) are usually less
expensive in terms of memory and computational time. However, their convergence rate dete-
riorates with growing condition number of the solved linear system and good preconditioning
becomes essential. The need of first-rate preconditioners tailored to the solved problem that can
be implemented in parallel gave rise to the field of domain decomposition methods [3].

The Balancing Domain Decomposition based on Constraints (BDDC) [4, 5] is one of the most
advanced preconditioners of this class. However, the additional custom coding effort required
represents a difficulty in incorporating the method to an existing finite element code. We propose
an implementation of BDDC built on top of common components of existing finite element codes
– the frontal solver and the element stiffness matrix generation. The implementation requires
only a minimal amount of additional code.

2 The BDDC method

After discretization by the finite element method (FEM), the linear system Ku = f is to be
solved for a vector u of unknown values of displacements at nodes of a given domain.

The domain is split into nonoverlapping subdomains with the interface formed by unknowns
common to at least two subdomains. Then the problem is reduced to the Schur complement
problem with respect to the interface and this reduced problem is solved by PCG method. The
BDDC method is used as a preconditioner, that splits the computation of the preconditioned
residual needed in every iteration of PCG to solution of independent subdomain problems (2.1)
and the global coarse problem (2.2). The preconditioned residual is obtained as a combination
of their solutions (for details see [3, 4, 5]).

The subdomain problems can be expressed as saddle point problems

[
Ki Ci

T

Ci 0

][
ui

µi

]
=

[
ri

0

]
, (2.1)
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where Ki denotes the subdomain local stiffness matrix, matrix Ci enforces zero values of coarse
degrees of freedom and so ensures continuity constraints at coarse degrees of freedom across the
interface, and µi is the vector of Lagrange multipliers. Matrix Ci contains both constraints
enforcing continuity across corners (point constraints), and constraints enforcing equality of
averages over edges and faces of subdomains. The former type corresponds to just one nonzero
entry equal to 1 on a row of Ci, while the latter leads to several nonzero entries on a row.

The coarse problem for coarse unknowns uc is

Kcuc = rc, (2.2)

where the coarse matrix Kc can be assembled from local coarse matrices in a similar way as
the global stiffnes matrix is assembled from element matrices in standard FEM. Construction
of a local coarse matrix also relies on efficient solution of problem (2.1).

3 The implementation

The frontal solver implements the solution of a square linear system Ax = f with some of
the variables having prescribed values. Equations that correspond to these fixed variables are
omitted and the values of these variables are substituted into the solution vector directly. The
output of the solver consists of the solution and the resulting imbalance in the equations, called
reaction forces. In matrix notation this can be expressed as

[
A11 A12

A21 A22

] [
x1

x2

]
=

[
f1

f2

]
+

[
0
r2

]
, (3.1)

where fixed variable values x2 and the load vectors f1 and f2 are the inputs, the solution x1 and
the reaction r2 are the outputs. System matrix A is not assembled or stored as a whole, instead
stiffness matrices of elements are subsequently assembled and eliminated as needed during the
factorization.

As the frontal solver treats naturally only point constraints, the implementation relies on the
separation of point constraints and enforcing the rest by Lagrange multipliers, as suggested
already in [4]. An early version of the implementation that used simplified coarse problem based
only on point constraints was presented in [6].

The local substructure problems (2.1) can be written in the frontal solver form (3.1) (with index
i omitted for simplicity) as



Kff Kfc CTf
Kcf Kcc 0
Cf 0 0





vf
0
µ


 =



r
0
0


+




0
R
0


 , where Ki =

[
Kff Kfc

Kcf Kcc

]
, (3.2)

subscript c denotes coarse variables representing point constraints, subscript f denotes the rest
of the variables, R is the residual at point constraints and the block [Cf 0] involves only the
rows of Ci that represent constraints on averages (point constraints are omitted).

From (3.2) the problem for Lagrange multipliers µ can be extracted as

CfK
−1
ff C

T
f µ = CfK

−1
ff r,

the matrix of which is dense but small with the order equal to the number of averages on the
subdomain and can be factorized directly. After computing µ and substituting it into (3.2), the
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subdomain problem takes form suitable for the frontal solver:

[
Kff Kfc

Kcf Kcc

] [
vf
0

]
=

[
r − CTf µ

0

]
+

[
0
R

]
,

from which the subdomain correction vf can be computed.

Coarse problem (2.2) is solved by the multifrontal algorithm using the package MUMPS ([1])
just like an ordinary finite element problem, with subdomains playing the role of elements. Thus
the coarse matrix in not assembled as a whole but stored distributed among processors as local
coarse matrices.

Detailed description of the implementation can be found in [7].

4 Numerical results

The method was applied to a problem of stress analysis of a mine reel. The computational
mesh consists of 140 816 quadratic elements, 579 737 nodes and 1 739 211 degrees of freedom. Its
division into 16 subdomains is presented in Figure 1 with a detail of computational mesh of the
steel rope. Here, the neighbouring subdomain is hidden to reveal the difficult interface.

An experiment with adding constraints on averages to the optimal set (2 000) of coarse nodes
is summarized in Table 1. The iterface is divided into 2 edges and 22 faces. We can see, that
the choice of averages is rather delicate task. The effect of edges is negligible in comparison
to the effect of faces due to their number. However, although additional averages improve the
condition number and reduce the number of PCG iterations, they may not necessarily reduce
the computational time, since the time saved on iterations may be spent in factorization of the
larger coarse problem.

Figure 1: Mine reel problem, division into 16 subdomains (left), central part of 8 subdomains
(centre), and detail of the computational mesh of the steel rope (right)

5 Conclusion

We have presented an approach to implementation of the recent BDDC method using common
components of finite element codes, such as frontal solver and matrix assembly process. The key
idea here is the different treatment of pointwise continuity constraints and equality of averages
over edges and faces across subdomains. In this way, we are able to minimize the amount of
additional code that is necessary for the BDDC method. The approach was implemented into
our previous implementation based only on coarse nodes.
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coarse problem c c+e c+f c+e+f

iterations 142 141 117 112

cond. number est. 13 982 13 982 1 287 1 272

factorization (sec) 12 694 12 956 15 142 15 309

pcg iter (sec) 4 138 4 097 3 124 3 406

total (sec) 17 532 17 753 18 965 19 423

Table 1: Mine reel problem, 16 subdomains, 2 000 coarse nodes, ‘c’ – continuity in coarse nodes,
‘e’ – equivalence of averages over edges, ‘f’ – equivalence of averages over faces
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Modelováńı rekonexe magnetických poĺı ve
slunečńı koróně metodou konečných prvk̊u

J. Skála 1, M. Bárta 2, M. Varady 1,2

1 Univerzita J. E. Purkyně, Úst́ı nad Labem
2 Astronomický ústav AV ČR, Ondřejov

Při rekonexi magnetického pole docháźı ke změně jeho topologie tak, že pole přejde z konfigurace
které odpov́ıdá vyšš́ı energie do konfigurace s energíı nižš́ı (viz. obr. 1). Energie uvolněná při
rekonexi hraje kĺıčovou roli v řadě dynamických proces̊u ve slunečńı atmosféře. Nejenergetičtěǰśı
z těchto proces̊u jsou slunečńı erupce, kdy se během rekonexe uvolńı na časových škálách ∼
10− 100 s ohromné množstv́ı energie v řádech 1022 − 1025 J. Z pozorováńı je známo, že energie
uvolněná při rekonexi se transformuje do vysoce energetických svazk̊u elektron̊u a proton̊u,
magneto-hydrodynamických (MHD) vln, do energie plazmoid̊u vyvržených ze slunečńı koróny
a podobně. Kinetická energie svazk̊u částic směrovaných ke slunečńı fotosféře se termalizuje
v hustých vrstvách atmosféry a v př́ıpadě slunečńıch erupćı zde docháźı k prudkému ohřevu
plazmatu a mohutnému explozivńımu vypařováńı hustého plazmatu podél magnetických siločar
směrem do koróny (předpokládá se plazma s ńızkým β parametrem4). V d̊usledku toho se
okoĺı magnetických siločar v koróně naplńı plazmatem s teplotou až 30 MK a hustotou řádově
1016 m−3. Takto popisuje vznik erupce tzv. standardńı model slunečńıch erupćı.

Obrázek 1: Schématické znázorněńı rekonexe magnetického pole ve 2D geometrii. Na levé
části obrázku je magnetické pole před rekonex́ı – ve vyšš́ım energetickém stavu, na pravé je
magnetické pole po rekonexi – v nižš́ım energetickém stavu. Uzavřené siločáry mg. pole (ve
slunečńıch erupćıch představuj́ı erupčńı smyčky) vznikly přepojeńım, neboli rekonex́ı p̊uvodńıch
anti-paralelńıch otevřených siločar.

Velkoškálová dynamika magnetického pole a plazmatu při rekonexi se standardně modeluje
v tzv. magnetohydrodynamickém (MHD) přibĺıžeńı. Chováńı plazmatu popisuj́ı zjednodušené
Maxwellovy rovnice společně s Ohmovým zákonem a soustavou hydrodynamických zákon̊u za-
chováńı [1]. Základńımi předpoklady nerelativistické magnetohydrodynamiky jsou dostatečně
velké prostorové a časové škály popisovaných proces̊u a ńızké rychlosti plazmatu (v porovnáńı
s rychlost́ı světla), což umožňuje zanedbáńı posuvného proudu v Maxwellových rovnićıch. Rov-
nice kontinuity pro elektrický náboj se tak zjednoduš́ı na tvar ∇ · j = 0. Základńı rovnice MHD

4Parametr β je poměr tlaku plazmatu ku magnetickému tlaku.
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jsou

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂ρv

∂t
+ ∇ · (ρvv) = −∇p+ j × B ,

∂E

∂t
+ ∇ · S = 0 ,

∂B

∂t
= ∇× (v × B) + ∇× (ηj) ,

j = ∇× B/µ0 ,

p =
kB

m
ρT ,

kde B je magnetická indukce, µ0 je permeabilita vakua, v je makroskopická rychlost plazmatu,
ρ je hustota plazmatu, p tlak plazmatu, η je rezistivita plazmatu, m je sťredńı hmotnost částic,
kB je Boltzmanova konstanta a T je termodynamická teplota plazmatu. E je celková energie
a S je tok energie [3]

E =
p

γ − 1
+

1

2
ρv2 +

B2

2µ0
,

S =

(
U + p+

B2

2µ0

)
v +

v · B
µ0

B +
η

µ0
j × B .

Pro účely simulaćı je vhodné přepsat rovnice MHD do konzervativńıho tvaru

∂ρ

∂t
= − ∂

∂xj
(ρvj) ,

∂ρvi
∂t

= − ∂

∂xj

[
ρvivj −

BiBj
µ0

+ δij

( |B|2
2µ0

+ p

)]
,

∂E

∂t
= − ∂

∂xj
Sj ,

∂Bi
∂t

= εijk
∂

∂xj
(εklmvlBm − ηjk) .

Tato soustava rovnic se v současnosti standardně řeš́ı metodou konečných diferenćı, přičemž
v mı́stech s velkými gradienty, a tedy současně také v oblastech kde lze očekávat zaj́ımavé fyzikál-
ńı procesy jako např́ıklad urychlováńı svazk̊u částic [4], se śı̌t zjemňuje pomoćı r̊uzných adap-
tivńıch metod [2], které v závislosti na vývoji simulace generuj́ı strukturované (e.g. PARAMESH
[5]) nebo nestrukturované śıtě. Tento zp̊usob řešeńı problému naráž́ı na řadu obt́ıž́ı např́ıklad při
správném ošeťreńı okrajových podmı́nek na hranici śıt́ı s r̊uzným rozlǐseńım, při volbě časového
kroku nebo při paralelńı implementaci kódu. Na druhou stranu metoda konečných prvk̊u
(FEM) umožňuje bez problému konstrukci nestrukturované śıtě a přesněǰśı implementováńı
okrajových podmı́nek. Přestože jsou metody FEM hojně už́ıvány pro numerické modelováńı
v mnoha fyzikálńıch i technických oborech, ve fyzice plazmatu a magnetohydrodynamice je je-
jich využit́ı teprve v počátćıch. Protože ćılem projektu je porozuměńı přenosu energie v rekonexi
od makroskopických škál (globálńı škála erupce je zhruba 10000 km) směrem ke škálám na nichž
docháźı k vlastńı disipaci a urychlováńı částic (̌rádově 10 m), je poťreba současně studovat pro-
cesy jak na velkých tak i malých měř́ıtkách. Metoda konečných prvk̊u s možnost́ı měnit hustotu
śıtě a řád bázových funkćı je proto velmi vhodná pro řešeńı této úlohy.
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Using triangular preconditioner updates
in matrix-free implementations

J. Duintjer Tebbens, M. T̊uma

Institute of Computer Science AS CR, Prague

1 Introduction

We consider sequences of linear systems of the form

A(i)x = b(i), i = 1, . . . , (1.1)

where A(i) ∈ Rn×n are general nonsingular sparse matrices and b(i) ∈ Rn are corresponding
right-hand sides. Such sequences arise, for example, when a system of nonlinear equations is
solved by a Newton or Broyden-type method [11], [12]. Among the most successful approaches
for solving the arising linear systems are Krylov subspace methods. They have the property
that the system matrix is needed only in the form of matrix-vector products; in a matrix-free
implementation of a Krylov subspace method the matrix is not represented explicitly. Krylov
subspace methods must be preconditioned in order to be efficient and robust. However most
of the strong preconditioners require the system matrix explicitly. To reduce the costs of the
computation of preconditioners, we may reuse a preconditioner over several systems of the given
sequence of systems of linear equations. In addition, the quality of the reused preconditioner may
be enhanced through updates containing information extracted from the sequence of matrices, or
from previous application of the Krylov subspace method. In this extended abstract we briefly
describe the main idea of two techniques to solve a sequence of general nonsymmetric systems
by preconditioned Krylov subspace methods, where the preconditioners are based on incomplete
LU decompositions, they use triangular rank-n updates, and all the computations are done in
matrix-free environment. The techniques are described in more detail in [7].

Due to the costs that are related to estimate the system matrix, avoiding frequent recompu-
tations of the preconditioner from scratch seems to be even more important in matrix-free
environment than if the matrices are given explicitly. Some new approaches to approximate
preconditioner updates were introduced recently, see e.g. [13]. The authors in [1] introduced
approximate diagonal updates to solve parabolic PDEs, see also [2]. Nonsymmetric updates of
general incomplete LU decompositions were proposed in [8, 9], see also some results in solving
CFD problems in [3]. So far, neither of these approaches has addressed the challenges related
to updating in matrix-free environment.

This extended abstract deals with matrix-free algorithms to solve the sequences of linear sys-
tems based on the general triangular preconditioner updates introduced in [8]. The abstract is
organized as follows. In Section 2 the general preconditioner updates are briefly recapped. In
Section 3 the main idea of the two matrix-free approaches are described.

2 Triangular preconditioner updates

The triangular preconditioner updates for nonsymmetric sequences from [8] can be described as
follows. Let A be the system matrix of a reference system and let A+ be the current system
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matrix. Assume LDU is an incomplete triangular decomposition of A and let B = A − A+

be the difference matrix. Then a triangularly updated preconditioner for the current system is
defined as

(LD − tril(B))U, (2.1)

where tril denotes the lower triangular part. A preconditioner which updates the upper tri-
angular part DU can be defined analogously, see [8]; we here concentrate on lower triangular
updates. We assume that (LD − tril(B)) is nonsingular.

In matrix-free environment the factorization LDU has been obtained through estimating the
reference matrix A, and it is stored explicitly. The update needs in addition the difference
matrix B which is not given explicitly (only A has been estimated). The two strategies we will
describe enable application of (2.1) without or with very cheap partial estimation of B.

3 Matrix-free updates

3.1 Partial matrix estimation

As the straightforward estimation of the difference matrix B may be expensive, one possible
strategy which we propose is based on using enhanced partial and approximate matrix estimation.
The classical matrix estimation problem is the problem of estimating a sparse matrix by a
small number of well-chosen matrix-vector multiplications (matvecs). In [6] it was shown that
all nonzero entries of a sparse matrix can be estimated, given the sparsity pattern, using a
number of matvecs which is often much smaller than its dimension. Coleman and Moré [4]
demonstrated the relation of estimating a matrix with a minimum number of matvecs to the
coloring of a related graph G by a minimum number of colors. So-called direct methods for
solving the matrix estimation problem for a matrix B use as G the intersection graph of B, that
is the adjacency graph GBTB of BTB. For an (undirected) adjacency graph GC of a square and
symmetric matrix C the set of vertices is defined as V (GC) = {1, . . . , n} and its set of edges as
E(GC) = {{i, j} | cij is nonzero}. A coloring of the intersection graph labels every vertex with
a color such that no two adjacent vertices have the same color. Then the number of groups of
vertices of the related graph with the same color corresponds to the number of matvecs needed
to estimate the entries of the matrix. If we need to estimate only a part of a given matrix, we
speak about a partial matrix estimation problem [10], [5].

To use the triangular updates described above we only have to estimate, in addition to A which
was estimated earlier, the lower triangular part of A+. This leads to a particular partial matrix
estimation problem. We will formulate this problem as a graph coloring problem for a graph
which is different from the intersection graph of A+. The following theorem describes this graph.

Theorem 3.1 Consider the graph

GT (B) = GU (LB) ∪GK ,

where GU (LB) = (VU , EU ) is the intersection graph of the lower triangular part of the matrix B
and GK is defined as

GK = ∪ni=1Gi, Gi = (Vi, Ei) = (VU , {{k, j}| bik 6= 0 ∧ bij 6= 0 ∧ k ≤ i < j}).

If the graph GT (B) can be colored by p colors, then the entries of the lower triangular part LB
of B can be computed by p matvecs of B with vectors d1, . . . dp such that for each nonzero entry
lij of LB there is a vector dk, 1 ≤ k ≤ p, satisfying (Bdk)i = lij(dk)j .
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P r o o f : See [7, Section 3].

Note that the graph GT (B) contains only a subset of edges of the adjacency graph G(BTB).
Consequently, in order to estimate only a triangular part of A+ we may need a smaller number
of matvecs than in the case of estimation of the whole B. In combination with a sparsification
strategy for the nonzero entries of tril(A+), the estimation of tril(A+) needed in (2.1) is con-
siderably less expensive than the estimation of A+. For examples demonstrating the gain in
computational costs, see [7, Section 5].

3.2 Mixed implicit/explicit forward solves

Another strategy to use the triangular updates in matrix-free environment is beneficial only
when function components are separable. Let us explain what we mean here by separability.
Consider a matrix-free implementation of a Krylov subspace method where the product of the
system matrix A with a vector v is replaced by the value of a function F evaluated at v. We
say that F is separable if the evaluation of F can be separated in the evaluation of its function
components with low costs. That is, if the components of the function F : Rn → Rn can be
written as Fi : Rn → R, where eTi F(v) = Fi(v), and computing Fi(v) costs about one n-th of
the full function evaluation F(v).

Every application of (2.1) requires a forward solve with LD− tril(B) and a backward solve with
U , which is trivial as U is stored explicitly. With separable function components we propose
the following mixed explicit-implicit strategy for the forward solve: Split the lower triangular
matrix LD− tril(B) as LD− tril(B) = E+ tril(A+), i.e. E ≡ LD− tril(A) is stored explicitly
and the implicit part tril(A+) contains entries of the new system matrix. Let the function F+

represent A+ implicitly. We have to solve triangular systems of the form
(
E + tril(A+)

)
z = y,

which yields the forward solve loop

zi =
yi −

∑
j<i eijzj −

∑
j<i a

+
ijzj

eii + a+
ii

, i = 1, 2, . . . , n. (3.1)

Note that the values eii are known explicitly. The values a+
ii can be obtained with the n function

component evaluations
a+
ii = F+

i (ei), 1 ≤ i ≤ n.

In the numerator of (3.1), the first sum can be computed explicitly and the second sum can be
computed by the function evaluation

∑

j<i

a+
ijzj = F+

i

(
(z1, . . . , zi−1, 0, . . . , 0)

T
)
. (3.2)

With this technique one avoids estimation and storage of A+ (except for its main diagonal).
The cost of every forward solve is that of a forward solve with LD plus about one full function
evaluation.
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Survey of Discrete Maximum Principles
for Higher-Order Finite Elements

T. Vejchodský

Institute of Mathematics AS CR, Prague

1 Introduction

Many second order (both linear and nonlinear) elliptic and parabolic problems satisfy the max-
imum principle. Besides the theoretical importance, the maximum principle mirrors the natural
property of the modelled physics. For example, in the heat conduction problem, the maximum
principle guarantees the nonnegativity of the obtained temperature. Similarly, the maximum
principle is important for modeling of the other naturally nonnegative quantities, like concen-
tration, density, etc.

The natural question if the maximum principle is satisfied after the discretization by a suitable
method has been studied for several decades. The first result (up to the author’s knowledge)
about the discrete maximum principle (DMP) for linear elliptic problems was published by
Varga [3] in 1966. Since that time many generalizations to different problems and methods
appeared. Majority of these results concern with the lowest-order finite difference and finite
element methods and the results are based on the special properties of the system matrices
(theory of M-matrices, cf. [2]).

Surprisingly, much less attention was paid to the DMPs for higher order approximations [1, 8].
Let us emphasize the negative result of Höhn and Mittelman [1] which shows that a strong
version of the DMP is satisfied in 2D for quadratic and cubic finite elements under unrealistic
assumptions on the triangulation only. The standard version of the DMP was proved recently
[4, 5, 6] for 1D diffusion problems discretized by the hp-version of the finite element method (hp-
FEM). Realistic conditions for the validity of the DMP in higher dimension are still unknown.

In the talk, we present the DMP result for the 1D Poisson equation [4] discretized by higher-
order finite elements. We also mention generalizations to the mixed boundary conditions and
to the case with piecewise constant coefficients [5, 6]. The main emphasis will be put on the
generalization of the DMP result from the Poisson problem to the diffusion-reaction problem.

2 Diffusion-Reaction Problem and its Discretization

In particular, we will consider 1D diffusion-reaction problem

−(au′)′ + κ2u = f in Ω = (aΩ, bΩ), u(aΩ) = u(bΩ) = 0, (2.1)

where the coefficients a and κ are assumed to be piecewise constant. This problem is discretized
by the higher-order finite element method, where various polynomial degrees on different ele-
ments are allowed (hp-FEM). Hence, we consider a partition Thp of the interval Ω into a finite
number of elements and a polynomial degree pK for each element K ∈ Thp. This defines the
finite element space

Vhp = {vh ∈ H1
0 (Ω) : vh|K ∈ P pK (K) for all K ∈ Thp},
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where H1
0 (Ω) =

{
v ∈ L2(Ω) : v′ ∈ L2(Ω), v = 0 on ∂Ω

}
denotes the Sobolev space and P pK (K)

stands of the space of polynomials of degree at most pK in the interval K. The hp-FEM solution
is then define as uhp ∈ Vhp such that

∫

Ω

(
au′hpv

′
hp + κ2uhpvhp

)
dx =

∫

Ω
fvhp dx ∀vhp ∈ Vhp. (2.2)

3 Discrete Maximum Principle

The original problem (2.1) satisfies the well-known maximum principle. However, since we con-
sider homogeneous Dirichlet boundary conditions, the standard maximum principle for problem
(2.1) is equivalent to the conservation of nonnegativity

f ≥ 0 a.e. in Ω ⇒ u ≥ 0 a.e. in Ω.

However, if we replace u by uhp then it is not difficult to find counterexamples violating this
implication.

On the other hand, it is possible to characterize a suitable class of finite element meshes (and
consequently a class of finite element spaces Vhp) such that implication

f ≥ 0 a.e. in Ω ⇒ uhp ≥ 0 in Ω (3.1)

holds true for all f ∈ L2(Ω) and for uhp ∈ Vhp given by (2.2). Thus, if implication (3.1) is satisfied
for a fixed mesh Thp (consequently for a fixed space Vhp) then we say that the discretization
(2.2) satisfies the discrete maximum principle (DMP).

The discrete Green’s function (DGF) has proved to be a very usefull tool for investigation of
the DMP for higher-order finite element methods. For y ∈ Ω, the DGF Ghp,y ∈ Vhp is defined
as the unique solution of the problem

∫

Ω

(
aw′

hpG
′
hp,y + κ2whpGhp,y

)
dx = whp(y) ∀whp ∈ Vhp.

We denote Ghp(x, y) = Ghp,y(x). The following properties are important and easy to prove:

(i) uhp(y) =

∫

Ω
Ghp(x, y)f(x) dx

(ii) If ϕ1, ϕ2, . . . , ϕN is a basis of Vhp and if A ∈ R
N×N is the stiffness matrix with entries

Aij =
∫
Ω(aϕ′

iϕ
′
j + κ2ϕiϕj) dx, i, j = 1, 2, . . . ,N , then

Ghp(x, y) =

N∑

i=1

N∑

j=1

(A−1)ijϕi(x)ϕj(y).

Property (i) immediately implies that the DMP (3.1) is satisfied if and only if Ghp(x, y) ≥ 0 for
all (x, y) ∈ Ω2. The nonnegativity of Ghp in Ω2 can be investigated directly using the explicit
formula from property (ii).

3.1 DMP for Poisson Problem

For Poisson problem, i.e., in case a = 1 and κ = 0, there exist an explicit formula for the entries
of the inverse of the stiffness matrix (A−1)ij for linear finite elements. This formula together
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with other special properties of the 1D Poisson problem enables to localize the investigation of
the nonnegativity of Ghp on the reference element K̂ = [−1, 1]. Hence, for given polynomial

degree pK of an element K ∈ Thp we construct a reference DGF Ĝhp(ξ, η) for (ξ, η) ∈ K̂2.
The reference DGF depends also on the position of K in Ω and on the size of K. The special
structure of Ĝhp(ξ, η) enables to guarantee its nonnegativity independently on the position of K

in Ω provided certain polynomial of degree pK−1 in both ξ and η is nonnegative for (ξ, η) ∈ K̂2.
Nonnegativity of this polynomial can be investigated analytically for pK ≤ 3 and numerically
for higher polynomial degrees, see Section 4 below. Afterall, we show that discretization (2.2)
satisfies the DMP if HK

rel = hK/(bΩ−aΩ) ≤ 9/10 for all K ∈ Thp, where hK stands for the length
of K. The detailed analysis can be found in [4].

3.2 DMP for Diffusion-Reaction Problem

The special properties of the Poisson problem, however, are not available for the diffusion-
reaction problem. Therefore, we use a concept based on the discrete minimum energy exten-
sions ψi of the standard (Courante) lowest-order basis functions ϕi with respect to all remaining
higher-order basis functions. This easily enables to infer the following conditions which guaran-
tee the DMP:
(a) the discrete minimum energy extensions ψi are nonnegative in Ω,
(b) the off-diagonal entries of the stiffness matrix assembled from ψi are nonpositive,
(c) the DGF restricted to the square K2 is nonnegative for all elements K ∈ Thp.

Verification of these conditions is, unfortunately, quite demanding, but feasible for the 1D
diffusion-reaction problem. The analysis of condition (c) for given polynomial degree pK of
K relies on the nonnegativity of certain polynomial. Nonnegativity of this polynomial was ver-
ified for elements of degree up to 10 using the technique of interval arithmetic, see Section 4
below. The following theorem, see [7], shows the weakest and simplest condition we obtained.

Theorem. Let Thp be a finite element mesh in an interval Ω = (aΩ, bΩ). Let the polynomial

degrees pK of the elements K ∈ Thp do not exceed 10. Denote by hK and HK
rel = hK/(bΩ − aΩ)

the length and the relative length of the element K ∈ Thp and by κ2
K and aK the constant values

of the coefficients κ2 and a on the element K. If

κ2
Kh

2
K/aK

κ2
Kh

2
K/aK + γ3

≤ HK
rel ≤ 1/3 for all K ∈ Thp,

where γ3 ≈ 5.608797, then the discretization (2.2) satisfies the DMP.

Let us remark that the value γ3 comes from the analysis of the cubic elements and leads to the
most strict condition for all the considered polynomial degrees. Further, we remark that our
computations indicate the validity the above theorem for arbitrary distribution of polynomial
degrees. Practically, however, we checked it for polynomials of degree at most 10.

4 Nonnegativity of Multivariate Polynomials

The DMP results for both Poisson and diffusion-reaction problems are based on verification
of nonnegativity of certain multivariate polynomials on a rectangular domain. The rectangu-
lar domain can be easily transformed to the entire Euclidean space. Clearly, a polynomial is
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nonnegative if it can be written as a sum of squares of another polynomials. Unfortunately,
there exists nonnegative polynomials which cannot be written as a sum of squares of another
polynomials. An example is the Motzkin form f(x, y, z) = z6 + x4y2 + x2y4 − 3x2y2z2.

The 17th of the famous 24 Hilbert’s problems is to prove that any nonnegative polynomial can
be written as a sum of squares of rational functions. This was proved in 1927 by Emil Artin.
There exist (NP-hard) algorithms for finding these sums of squares. However, these algorithms
are complicated and difficult to use.

An interesting and easy to implement approach is the usage of interval arithmetic. In the interval
arithmetic the arithmetic operations are defined on intervals. If I and J are two intervals and
if ∗ is an arithmetic operation then the interval R = I ∗ J is guaranteed to contain all possible
results {r = a ∗ b, where a ∈ I, b ∈ J}.
The idea how to verify nonnegativity of a function f on an interval I is to use the interval
arithmetic and compute an interval R = f(I) containing all possible outputs of a function f on
an interval I. If R is nonnegative (contains nonnegative numbers only) then nonnegativity of f
in I is verified. If not, we split I into two (or more) subintervals and repeat the process for all
these subintervals. If this algorithm terminates after a finite number of steps, the nonnegativity
of f in I is verified.

Acknowledgement: The support of Grant No. 102/07/0496 of the Czech Science Foundation,
Grant No. IAA100760702 of the Grant Agency of the Academy of Sciences of the Czech Republic,
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Parallel MatSol library for solution of contact problems
and contact shape optimization problems

V. Vondrák, T. Kozubek, A. Markopoulos, T. Brzobohatý

VSB-Technical University of Ostrava

1 Introduction

During last several years, our research team in the Dept. of Applied Mathematics, VŠB-
Technical University of Ostrava has been focused to development of scalable algorithms for
contact problems and contact shape optimization problems. These algorithms are based on
FETI domain decomposition methods which are well known by its parallel and numerical scal-
ability. Our algorithms were originally implemented in C++ library called OOSol (Object
Oriented SOLvers) [2]. This library benefits from their modularity and extensibility, neverthe-
less the slow development of the code caused by unavailability of advanced auxiliary algorithms
necessary for debugging of complex algorithms, shows to be its biggest disadvantage. Therefore
we started to implement simultaneously all these algorithms into new library that is developed
in Mathworks Matlab environment [3] which is equipped with many of these helpful functions.
We call this library MatSol (MATlab SOLvers) [1]. Several years ago the Mathworks company
introduced Matlab Distributed Computing Engine which allowed to run Matlab functions also
on parallel computers. Hence, the MatSol got full functionality of OOSol library including paral-
lel algorithms and recently represents our primary testing and developing library. In our paper,
we would like to present functionality of the MatSol library to the solution of realistic contact
problems with millions of degrees of freedom showing parallel and numerical scalability of the
implemented Total FETI method. The interface between MatSol and ANSYS or COMSOL
[4, 5] will be presented as well. This feature allows very simply plug the MatSol library into the
commercial finite element packages. Some comparisons of the commercial solvers and MatSol
will be shown. The efficiency of the solving algorithms will be also presented on such complex
problem as contact shape optimization problems.

2 Structure of MatSol library

In 2007, authors of the paper established development of a new library MatSol for domain
decomposition based solution of problems in mechanics. Today structure of the library with the
typical solution process flow is described in Figure 1. The solution process starts from the model
which is either already in model database or it is converted to the model database from standard
commercial and non-commercial preprocessors like ANSA, ANSYS, COMSOL, PMD [4, 5, 6]
etc. The list of preprocessing tools is not limited and any of new one can be simply plugged
into the library creating proper database convertor. Preprocessing part continues in MatSol
depending on solved problem. User can solve deterministic or stochastic problems, static or
transient analysis, optimization problems, problems in linear and non-linear elasticity, contact
problems. For assemble of numerical model we are using finite or boundary element methods.
As the domain decomposition techniques the FETI or BETI methods are implemented. The
solution process could be run either in sequential or parallel mode. The solution algorithms are
implemented in such a way, that the code is the same for both sequential and parallel mode.
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The parallel mode is run using Matlab Parallel Computing Server and Parallel Computing
Toolbox. MatSol library includes also tools for postprocessing of results and advanced tools for
postplotting of the problems. The results of the problem are then through the model database
converted to the modelling tools for further postprocessing.
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Figure 1: Structure of MatSol library

Described structure of MatSol library allows to override standard solvers in commercial and non-
commercial finite element packages and substitute them by these ones which are implemented
in MatSol. This gives a very useful alternative to users of commercial packages and great tool
for algorithm developers to test the new algorithms on the realistic problems.

3 Solved problems

In this section, we shall present typical problems solved using MatSol library and efficiency of
implemented algorithms. All problems were solved on the computational cluster HP BLc7000
with 9 nodes. Each node is equipped with 2 dual core AMD Opteron processors and 8GB
RAM and interconnected by infiniband network. On this cluster we have installed 24 licences
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of Matlab parallel computing server.

The first example we would like to present is a part of gear box as depicted in Figure 2. It
is typical mechanical engineering application in the linear elasticity. The finite element model
was discretized by 0.5 mil. nodes, i.e. 1.5 mil. degrees of freedom (DOFs). The model was
decomposed into 10, 20, 40 and 80 subdomains and performance of solving algorithms you can
see in Figure 5.

Figure 2: Part of a gear box Figure 3: 2D Hertz problem Figure 4: Ball bearing

The second problem is classical benchmark of contact mechanics. It is 2D Hertz problem with
floating upper body, see Figure 3. The model was decomposed into 2k, k = 1, 2, ..., 9 subdo-
mains, each discretized by 100×100 nodes. The largest problem solved 10,240.000 unknown
DOFs! Summarized number of iterations and solution times are collected in Table 1. More
realistic contact problem is depicted in Figure 4. The ball bearing is assembled from 10 totally
independent and free parts in mutual contact. We have solved 2 discretization models. First
one with 300 thousands DOFs decomposed into 28 subdomains and second one with 1.5 millions
DOFs decomposed into 63 subdomains. Solution time was 2380s for the smaller problem using
sequential code, resp. 339s in case of parallel code. The solution of the larger model needed
6.5 hours in case of parallel code. Unfortunately the sequential code we couldn’t use because
needed computer with at least 48GB of RAM.

Figure 5: Scalability of Total FETI MatSol solver - a gear box problem

We would like to demonstrate MatSol contact shape optimization capabilities on Hertz problem
which is depicted in Figure 6. The shape of the bottom body was parameterized with 16
design variables. The compliance was used as the shape optimization objective function with
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Table 1: Performance of MatSol parallel library - 2D Hertz problem

#Subdomains 2 4 8 16 32 64 128 256 512
Primal variables 40k 80k 160k 320k 640k 1280k 2560k 5120k 10240k
Dual variables 600 1200 2400 5200 11200 23200 48000 97600 198400
Hessian multiplications 45 65 52 60 88 91 127 109 134
CG steps 28 42 38 46 41 33 23 28 44
Preprocessing time (s) 6 6 6 6 12 18 40 119 149
Solver time (s) 3 4 10 18 34 45 117 223 458
Total Time (s) 10 12 25 40 78 130 290 660 1300

constraints on feasible design. Optimized design was obtained after 120 design iterations and
the parallel solution of the one design step was six times faster than the standard sequential
code. Comparison of the initial and optimized stress distribution is in Figures 6 and 7.

Figure 6: Initial design stress distribution
Figure 7: Optimized design stress distribu-
tion
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Goal: to work out a sufficiently accurate, robust and theo-

retically based method for the numerical solution of com-

pressible flow with a wide range of Mach numbers and

Reynolds numbers

Difficulties:

nonlinear convection dominating over diffusion =⇒
– boundary layers, wakes for large Reynolds numbers

– shock waves, contact discontinuities for large Mach num-

bers

– instabilities caused by acoustic effects for low Mach num-

bers

One of promising, efficient methods for the solution of

compressible flow is the discontinuous Galerkin finite el-

ement method (DGFEM) using piecewise polynomial ap-

proximation of a sought solution without any requirement

on the continuity between neighbouring elements.

In this paper we shall be concerned with the analysis of

the DGFEM for the solution of a nonlinear nonstationary

convection-diffusion equation, which is a simple prototype

of the compressible Navier-Stokes system.

Continuous model problem

Let us consider the problem to find u : QT = Ω× (0, T ) → IR

such that

a)
∂u

∂t
+

d∑

s=1

∂fs(u)

∂xs
= ε∆u+ g in QT , (1)

b) u|ΓD×(0,T ) = uD, c) ε
∂u

∂n
|ΓN×(0,T ) = gN ,

d) u(x,0) = u0(x), x ∈ Ω.

We assume that Ω ⊂ IRd, d = 2,3, is a bounded polygonal

(if d = 2) or polyhedral (if d = 3) domain with Lipschitz-

continuous boundary ∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅ and T > 0.

The diffusion coefficient ε > 0 is a given constant, g : QT →
IR, uD : ΓD × (0, T ) → IR, gN : ΓN × (0, T ) → IR, and u0 : Ω → IR

are given functions, fs ∈ C1(IR), s = 1, . . . , d, are prescribed

fluxes.

DG space semidiscretization
Let Th (h > 0) be a partition of the closure Ω of the do-

main Ω into a finite number of closed triangles (d = 2) or

tetrahedra (d = 3) K with mutually disjoint interiors such

that

Ω =
⋃

K∈Th
K. (2)

We call Th a triangulation of Ω and do not require the stan-

dard conforming properties from the finite element method.

hK = diam(K), h = maxK ∈ Th, ρK = largest ball in-

scribed into K

Let K,K′ ∈ Th. We say that K and K′ are neighbours, if the

set ∂K ∩ ∂K′ has positive (d− 1)-dimensional measure. We

say that Γ ⊂ K is a face of K, if it is a maximal connected

open subset either of ∂K ∩ ∂K′, where K′ is a neighbour of

K, or of ∂K ∩ ∂Ω.

Fh= the system of all faces of all elements K ∈ Th,
the set of all innner faces:

FI
h = {Γ ∈ Fh; Γ ⊂ Ω} , (3)

the set of all “Dirichlet” boundary faces:

FD
h = {Γ ∈ Fh; Γ ⊂ ∂ΩD} , (4)

the set of all “Neumann” boundary faces:

FN
h = {Γ ∈ Fh, Γ ⊂ ∂ΩN} . (5)

Obviously, Fh = FI
h ∪ FD

h ∪ FN
h . For a shorter notation we

put

FID
h = FI

h ∪ FD
h , FDN

h = FD
h ∪ FN

h . (6)

For each Γ ∈ Fh we define a unit normal vector nΓ. We

assume that for Γ ∈ FDN
h the normal nΓ has the same ori-

entation as the outer normal to ∂Ω. For each face Γ ∈ FI
h

the orientation of nΓ is arbitrary but fixed. See Figure .
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Elements with hanging nodes

d(Γ) = diameter of Γ ∈ Fh.

Broken Sobolev spaces

Over a triangulation Th we define the so-called broken Sobolev

space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th} (7)

with the norm

‖v‖Hk(Ω,Th) =



∑

K∈Th
‖v‖2

Hk(K)




1/2

(8)

and the seminorm

|v|Hk(Ω,Th) =



∑

K∈Th
|v|2
Hk(K)




1/2

. (9)

K
(L)
Γ

K
(R)
Γ

Γ

~nΓ

Neighbouring elements

For each Γ ∈ FI
h there exist two neighbouring elements

K
(L)
Γ ,K

(R)
Γ ∈ Th such that Γ ⊂ ∂K

p
Γ ∩ ∂Kn

Γ. We use a conven-

tion that K
(R)
Γ lies in the direction of nΓ and K

(L)
Γ lies in

the opposite direction to nΓ, see Figure . (K
(L)
Γ , K

(R)
Γ are

neighbours.)

For v ∈ H1(Ω, Th) and Γ ∈ FI
h, we introduce the following

notation:

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, (10)

v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ =
1

2

(
v|(L)

Γ + v|(R)
Γ

)
,

[v]Γ = v|(L)
Γ − v|(R)

Γ .

The value [v]Γ depends on the orientation of nΓ, but the

value [v]ΓnΓ is independent of this orientation.

For Γ ∈ FDN
h there exists element K

(L)
Γ ∈ Th such that Γ ⊂

Kp ∩ ∂Ω. For v ∈ H1(Ω, Th), we set

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, (11)

For Γ ∈ FDN
h by v|(R)

Γ we formally denote the exterior trace

of v on Γ given either by a Dirichlet boundary condition or

by an extrapolation from the interior of Ω.

The approximate solution – sought in the space of discon-

tinuous piecewise polynomial functions

Sh = S
p,−1
h = {v; v|K ∈ P p(K) ∀K ∈ Th},

p > 0 – integer, P p(K) – the space of all polynomials on K

of degree at most p.

Derivation of the discrete problem

Assume that u – sufficiently regular exact solution

– multiply equation (1), a) by any ϕ ∈ H2(Ω, Th)
– integrate over K ∈ Th
– apply Green’s theorem

– sum over all K ∈ Th

After some manipulation we obtain the identity
∫

Ω

∂u

∂t
ϕdx (12)

+
∑

K∈Th

∑

Γ∈Fh
Γ⊂∂K

∫

Γ

d∑

s=1

fs(u) (n∂K)sϕ|Γ dS

−
∑

K∈Th

∫

K

d∑

s=1

fs(u)
∂ϕ

∂xs
dx

+
∑

K∈Th

∫

K
ε∇u · ∇ϕdx

−
∑

Γ∈FI
h

∫

Γ
ε〈∇u〉 · nΓ[ϕ] dS

−
∑

Γ∈FD
h

∫

Γ
ε∇u · nΓϕdS

=
∫

Ω
g ϕdx+

∑

Γ∈FN
h

∫

Γ
ε∇u · nΓϕdS.



To the left-hand side of (12) we add now the terms

−θ
∑

Γ∈FI
h

∫

Γ
ε〈∇ϕ〉 · nΓ[u] dS (= 0). (13)

Further, to the left-hand side and the right-hand side of

(12) we add the terms

−θ
∑

Γ∈FD
h

∫

Γ
ε∇ϕ · nΓ udS (14)

and

−θ
∑

Γ∈FD
h

∫

Γ
ε∇ϕ · nΓ uD dS,

respectively, which are identical due to the Dirichlet con-

dition

We consider tho following possibilities:

θ = −1 nonsymmetric discretization of diffusion terms(15)

(NIPG)

θ = 1 symmetric discretization of diffusion terms (SIPG)

θ = 0 incomplete discretization of diffusion terms (IIPG)

In view of the Neumann condition, we replace the second

term on the right-hand side of (12) by

∑

Γ∈FN
h

∫

Γ
gN ϕdS. (16)

Because of the stabilization of the scheme we introduce

the interior penalty

ε
∑

Γ∈FI
h

∫

Γ
σ[u] [ϕ] dS (= 0) (17)

and the boundary penalty

ε
∑

Γ∈FD
h

∫

Γ
σ uϕdS = ε

∑

Γ∈FD
h

∫

Γ
σuDϕdS, (18)

where σ is a suitable weight.

On the basis of above considerations we introduce the fol-

lowing forms defined for u, ϕ ∈ H2(Ω, Th):
(·, ·) – L2(Ω)-scalar product,

ah(u, ϕ) =
∑

K∈Th

∫

K
ε∇u · ∇ϕdx (19)

−
∑

Γ∈FI
h

∫

Γ
ε〈∇u〉 · nΓ[ϕ] dS

−θ
∑

Γ∈FI
h

∫

Γ
ε〈∇ϕ〉 · nΓ[u] dS

−
∑

Γ∈FD
h

∫

Γ
ε∇u · nΓϕdS

−θ
∑

Γ∈FD
h

∫

Γ
ε∇ϕ · nΓ udS

diffusion form

θ = −1 nonsymmetric discretization of diffusion terms (NIPG)

θ = 1 symmetric discretization of diffusion terms (SIPG)

θ = 0 incomplete discretization of diffusion terms (IIPG)

Jσh(u, ϕ) =
∑

Γ∈FI
h

∫

Γ
σ[u] [ϕ] dS+

∑

Γ∈FD
h

∫

Γ
σ uϕdS (20)

interior and boundary penalty

ℓh(ϕ)(t) =
∫

Ω
g(t)ϕdx+

∑

Γ∈FN
h

∫

Γ
gN(t)ϕdS (21)

−θ
∑

Γ∈FD
h

∫

Γ
ε∇ϕ · nΓ uD(t) dS

+ ε
∑

Γ∈FD
h

∫

Γ
σ uD(t)ϕdS

right-hand side form

Finally, the convective terms are approximated with the aid

of a numerical flux H = H(u, v,n) by the form

bh(u, ϕ) = −
∑

K∈Th

∫

K

d∑

s=1

fs(u)
∂ϕ

∂xs
dx (22)

+
∑

Γ∈FI
h

∫

Γ
H

(
u|(L)

Γ , u|(R)
Γ ,nΓ

)
[ϕ]|Γ dS

+
∑

Γ∈FDN
h

∫

Γ
H

(
u|(L)

Γ , u|(R)
Γ ,nΓ

)
ϕ|(L)

Γ dS

convective form

H – numerical flux

Definition of the boundary state u|(R)
Γ for Γ ⊂ ∂Ω : u|(R)

Γ :=

u|(L)
Γ (extrapolation)

Assumptions (H):

1. H(u, v,n) is defined in IR2×B1, where B1 = {n ∈ IRd; |n| =
1}, and Lipschitz-continuous with respect to u, v:

|H(u, v,n) −H(u∗, v∗,n)| ≤ CL(|u− u∗| + |v − v∗|),
u, v, u∗, v∗ ∈ IR, n ∈ B1.

2. H(u, v,n) is consistent:

H(u, u,n) =
d∑

s=1

fs(u)ns, u ∈ IR, n = (n1, . . . , nd) ∈ B1.

3. H(u, v,n) is conservative:

H(u, v,n) = −H(v, u,−n), u, v ∈ IR, n ∈ B1.



The exact sufficiently regular solution u satisfies the iden-

tity
(
∂u(t)

∂t
, ϕh

)
+ bh(u(t), ϕh) + ah(u(t), ϕh) + εJσh(u(t), ϕh)

=ℓh(ϕh) (t) for all ϕh ∈ Sh and for a.a. t ∈ (0, T ).

Discrete problem

We say that uh is a DGFE approximate solution of the

convection-diffusion problem (1), if

a) uh ∈ C1([0, T ];Sh), (23)

b) (
∂uh(t)

∂t
, ϕh) + ah(uh(t), ϕh) + bh(uh(t), ϕh) + Jσh(uh(t), ϕh)

=ℓh(ϕh) (t) ∀ϕh ∈ Sh, ∀ t ∈ (0, T ),

c) uh(0) = u0
h = Sh−approximation of u0.

The discrete problem is equivalent to a large system of

nonlinear ordinary differential equations.

In practical computations: suitable time discretization is ap-

plied, e.g.

– Euler forward or backward scheme,

– Runge–Kutta methods,

– discontinuous Galerkin time discretization

The forward Euler and Runge-Kutta schemes are condi-

tionally stable – time step is strongly restricted by the CFL-

stability condition.

Suitable: semi-implicit scheme - leads to a linear algebraic

system on each time level

Integrals are evaluated with the aid of numerical integration.

Error analysis

Assumptions

– Assumptions (H)

– The weak solution u of problem (1) is regular, namely

∂u

∂t
∈ L2(0, T ;Hp+1(Ω)). (24)

Then

d

dt
(u(t), ϕh) + ah(u(t), ϕh) + εJσh(u(t), ϕh) (25)

+bh(u(t), ϕh) = ℓh(ϕh)(t),

∀ϕh ∈ Sh, for a.e. t ∈ (0, T ).

– {Th}h∈(0,h0)
, h0 > 0, - regular system of triangulations of

the domain Ω: there exists CT > 0 such that

hK
ρK

≤ CT ∀K ∈ Th ∀h ∈ (0, h0). (26)

Some auxiliary results

Multiplicative trace inequality:

There exists a constant CM > 0 independent of v, h and K

such that

‖v‖2
L2(∂K)

(27)

≤ CM
(
‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖2
L2(K)

)
,

K ∈ Th, v ∈ H1(K), h ∈ (0, h0).

Inverse inequality:

There exists a constant CI > 0 independent of v, h, and K

such that

|v|H1(K) ≤ CIh
−1
K ‖v‖L2(K), v ∈ P p(K), K ∈ Th, h ∈ (0, h0).

(28)

Sh-interpolation:

For v ∈ L2(Ω) we denote by Πhv the L2(Ω)-projection of v

on Sh:

Πhv ∈ Sh, (Πhv − v, ϕh) = 0 ∀ϕh ∈ Sh. (29)

Properties of the operator Πh:

There exists a constant CA > 0 independent of h,K, v such

that

‖Πhv − v‖L2(K) ≤ CAh
k+1
K |v|Hk+1(K), (30)

|Πhv − v|H1(K) ≤ CAh
k
K|v|Hk+1(K),

|Πhv − v|H2(K) ≤ CAh
k−1
K |v|Hk+1(K),

for all v ∈ Hk+1(K), K ∈ Th and h ∈ (0, h0), where k ∈ [1, p] is

an integer.

If u and uh denote the exact and approximate solutions,

then we set η(t) = Πhu(t)−u(t), ξ(t) = uh(t)−Πhu(t)(∈ Sh) for

a.e. t ∈ (0, T ).

Truncation error in the convection form: If ∂ΩD = ∂Ω, ∂ΩN = ∅,
then

|bh(u, ξ) − bh(uh, ξ)| (31)

≤ C
(
|ξ|2
H1(Ω,Th) + Jσh(ξ, ξ)

)1/2 (
hp+1|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

)
.

If ∂ΩN 6= ∅, then

|bh(u, ξ) − bh(uh, ξ)| (32)

≤ C
(
|ξ|2
H1(Ω,Th) + Jσh(ξ, ξ)

)1/2 (
hp+1/2|u|Hp+1(Ω) + ‖ξ‖L2(Ω)

)
.

Coercivity:

An important step in the analysis of error estimates is the

coercivity of the form

Ah(u, v) = ah(u, v) + εJσh(u, v), (33)

which reads

Ah(ϕh, ϕh) ≥ ε

2

(
|ϕh|2H1(Ω,Th) + Jσh(ϕh, ϕh)

)
, (34)

ϕ ∈ Sh, h ∈ (0, h0).



We shall discuss the validity of estimate (34) in various

situations.

(I) Conforming mesh Th

Let the mesh Th have the standard properties from the

finite element method:

if K, K′ ∈ Th, K 6= K′, then K ∩K′ = ∅ or K ∩K′ is a common

vertex or K ∩K′ is a common edge (or K ∩K′ is a common

face in the case d = 3) of K and K′.
In this case we set

σ|Γ =
CW
d(Γ)

, Γ ∈ Fh. (35)

Then the coercivity inequality (34) holds under the follow-

ing choice of the constant CW :

CW > 0 (e. g. CW = 1) for NIPG version, (36)

CW ≥ 4CM(1 + CI) for SIPG version, (37)

CW ≥ CM(1 + CI) for IIPG version, (38)

where CM and CI are constants from (27) and (28), re-

spectively.

(II) Nonconforming mesh Th

In this case Th is formed by closed triangles with mutually

disjoint interiors with hanging nodes in general. Then the

coercivity inequality (34) is guaranteed under conditions

(36) – (38). However, in this case it is necessary to assume

that

hK ≤ CD d(Γ), Γ ∈ Fh,Γ ⊂ ∂K, (39)

in order to prove the estimate

Jσh(η, η) ≤ Chp|u|Hp+1(Ω). (40)

(III) Nonconforming mesh Th without assumption (39)

It is obvious that condition (39) is rather restrictive in some

cases. In order to avoid it, we change the definition of the

weight σ:

σ|Γ =
2CW

h
K

(L)
Γ

+ h
K

(R)
Γ

, Γ ∈ FI
h, (41)

σ|Γ =
CW
h
K

(L)
Γ

, Γ ∈ FD
h .

Due to theoretical analysis, it is necessary to introduce the

assumption of a “quasiuniformity” of the mesh:

h
K

(L)
Γ

≤ CN hK(R)
Γ

, Γ ∈ FI
h. (42)

(Hence, CN ≥ 1.)

Then the coercivity inequality (34) holds under the follow-

ing choice of CW :

CW > 0 (e. g. CW = 1) for NIPG version, (43)

CW ≥ 2CM(1 + CI) (1 + CN) for SIPG version, (44)

CW ≥ CM(1 + CI) (1 + CN) for IIPG version. (45)

Proof of the coercivity inequality (34) in the case (III) for SIPG

version:

Using the definition of the forms ah and Jσh and the Cauchy

and Young’s inequalities, we find that for any δ > 0 we have

ah(ϕh, ϕh) ≥ ε|ϕh|2H1(Ω,Th) − εω − ε
δ

CW
Jσh(ϕh, ϕh),

where

ω =
1

δ

∑

Γ∈FI
h

∫

Γ

h
K

(L)
Γ

+ h
K

(R)
Γ

2
|〈∇ϕh〉|2 dS +

∑

Γ∈FD
h

∫

Γ
h
K

(L)
Γ

|∇ϕh|2dS.

In view of (42),

ω ≤ 1

δ

1 + CN
2

∑

K∈Th
hK

∫

∂K
|∇ϕh|2dS.

Now, the application of (27) and (28) yields the estimate

ω ≤ 1

2δ
CM(1 + CI) (1 + CN) |ϕh|2H1(Ω,Th).

If we set δ := CM(1+CI) (1+CN) and use assumption (44),

we immediately arrive at (34).

In the IIPG case we can proceed similarly.

Error estimates

Assumptions:

– (H),

– regularity of u,

– regularity of the mesh,

– u0
h = Πhu

0,

– σ, d(Γ), hK and CW satisfy assumptions from the cases (I)

or (II) or (III).

Then the error eh = u− uh satisfies the estimate

maxt∈[0,T ]‖eh(t)‖2L2(Ω)
(46)

+
ε

2

∫ t

0
(|eh(ϑ)|2H1(Ω,Th) + Jσh(eh(ϑ), eh(ϑ))) dϑ

≤ C h2p, h ∈ (0, h0), (47)

with a constant C > 0 independent of h.



Sketch of the proof

Let us subtract the relations valid for the exact and ap-

proximate solutions, set ϕh = ξh and use the coercivity in-

equality:

1

2

d

dt
‖ξ(t)‖2

L2(Ω)
+
ε

2
|ξ(t)|2

H1(Ω,Th) +
ε

2
Jσh(ξ(t), ξ(t)) (48)

≤ bh(u(t), ξ(t)) − bh(uh(t), ξ(t)) −
(
∂η(t)

∂t
, ξ(t)

)

−ah(η(t), ξ(t)) − εJσh(η(t), ξ(t)) for a.a. (0, T ).

Now we estimate individual terms in (48):

d

dt
‖ξ‖2

L2(Ω)
+ ε|ξ|2

H1(Ω,Th) + εJσh(ξ, ξ) (49)

≤ C
{(
Jσh(ξ, ξ)

1/2 + |ξ|H1(Ω,Th)
) (

‖ξ‖L2(Ω) + hp|u|Hp+1(Ω)

)

+hp+1 |∂u/∂t|Hp+1(Ω) ‖ξ‖L2(Ω)

+ε hp+1/2|u|Hp+1(Ω)

(
Jσh(ξ, ξ)

1/2 + |ξ|H1(Ω,Th)
)}

Now we apply Young’s inequality:

d

dt
‖ξ‖2

L2(Ω)
+ ε|ξ|2

H1(Ω,Th) + εJσh(ξ, ξ) (50)

≤ ε

2

(
Jσh(ξ, ξ) + |ξ|2

H1(Ω,Th)
)
+ C

{(
1 +

1

ε

)
‖ξ‖2

L2(Ω)

+
1

ε

(
(ε2h2p + h2p+1) |u|2

Hp+1(Ω)

)
+ h2p+2 |∂u/∂t|2

Hp+1(Ω)

}

a. e. in (0, T ).

The integration of (50) from 0 to t ∈ [0, T ] and the relation

ξ(0) = u0
h − Πhu

0 = 0 yield

‖ξ(t)‖2
L2(Ω)

+
ε

2

∫ t

0

(
|ξ(ϑ)|2

H1(Ω,Th) + Jσh(ξ(ϑ), ξ(ϑ))
)
dϑ (51)

≤ C

{(
1 +

1

ε

) ∫ t

0
‖ξ(ϑ)‖2

L2(Ω)
dϑ+

1

ε
h2p

∫ t

0

(
(ε2 + h) |u(ϑ)|2

Hp+1(Ω)

)
dϑ

+ h2p+2
∫ t

0
|∂u(ϑ)/∂t|2

Hp+1(Ω)
dϑ

}
, t ∈ [0, T ].

Using Gronwall’s lemma, we get

‖ξ(t)‖2
L2(Ω)

+
ε

2

∫ t

0

(
|ξ(ϑ)|2

H1(Ω,Th) + Jσh(ξ(ϑ), ξ(ϑ))
)
dϑ (52)

≤ C
(
(ε+ h/ε)‖u‖2

L2(0,T ;Hp+1(Ω))
+ h2‖∂u/∂t‖2

L2(0,T ;Hp+1(Ω))

)

×h2p exp

(
C̃

1 + ε

ε
t

)
, t ∈ [0, T ],

(C and C̃ are constants independent of t, h, ε, u).

Now, since eh = ξ+ η and thus,

‖eh‖2L2(Ω)
≤ 2

(
‖ξ‖2

L2(Ω)
+ ‖η‖2

L2(Ω)

)
, (53)

|eh|2H1(Ω,Th) ≤ 2
(
|ξ|2
H1(Ω,Th) + |η|2

H1(Ω,Th)
)
,

Jσh(eh, eh) ≤ 2
(
Jσh(ξ, ξ) + Jσh(η, η)

)
,

we use the above result, estimate the terms with η and

obtain the sought error estimate.

Optimal error estimates

The error estimate (46) is optimal in the L2(H1)-norm, but

suboptimal in the L∞(L2)-norm.

We carried out the analysis of the L∞(L2)-optimal error es-

timate under the following assumptions.

Assumptions (B):

– the discrete diffusion form ah is symmetric (i.e. we con-

sider the SIPG version),

– the polygonal domain Ω is convex,

– the exact solution u satisfies the regularity condition,

– conditions (H) are satisfied,

– u0
h = Πhu

0,

– ΓD = ∂Ω and ΓN = ∅.

The application of the Aubin-Nitsche technique based on

the use of the elliptic dual problem considered for each

z ∈ L2(Ω):

−∆ψ = z in Ω, ψ|∂Ω = 0. (54)

Then the weak solution ψ ∈ H2(Ω) and there exists a con-

stant C > 0, independent of z, such that

‖ψ‖H2(Ω) ≤ C‖z‖L2(Ω). (55)

For each h ∈ (0, h0) and t ∈ [0, T ] we define the function

u∗h(t) as the “Ah-projection” of u(t) on Sh, i. e. a function

satifying the conditions

u∗h(t) ∈ Sh, Ah(u
∗
h(t), ϕh) = Ah(u(t), ϕh) ∀ϕh ∈ Sh, (56)

and set χ = u− u∗h.
Using the elliptic dual problem (54), we proved the exis-

tence of a constant C > 0 such that

‖χ‖L2(Ω) ≤ Chp+1|u|Hp+1(Ω), (57)

‖χt‖L2(Ω) ≤ Chp+1|ut|Hp+1(Ω), h ∈ (0, h0). (58)

This, the estimate of the truncation error in the form bh
(31), multiple application of Young’s inequality and Gron-

wall’s lemma represent important tools for obtaining the

L∞(L2)-error estimate:

Theorem. Let assumptions (B) be fulfilled. Then the error

eh = u− uh satisfies the estimate

‖eh‖L∞(0,T ;L2(Ω)) ≤ Chp+1, (59)

with a constant C > 0 independent of h.

Remark The constant C in the error estimates is of the order

O(exp(C̃T/ε), which blows up for ε→ 0+.

= a consequence of the application of necessary tools for over-

coming the nonlinear convective terms, namely Young’s inequal-

ity and Gronwall’s lemma.



Improved estimates for a linear model convection-
diffusion-reaction problem
Find u : QT = Ω × (0, T ) → IR such that

∂u

∂t
+ v · ∇u− ε△u+ cu = g in QT ,

u = uD on ΓD × (0, T ),

ε
∂u

∂n
= uN on ΓN × (0, T ),

u(x,0) = u0(x), x ∈ Ω.

ΓD = inlet, where v · n < 0

In the case ε = 0 we put uN = 0 and ignore the Neumann

condition; ΓD = inlet: v · n < 0

Assumptions on data (A)

a) some regularity of g, u0, uD, uN ,v, c

b) c− 1
2divv ≥ γ0 > 0 in QT with a constant γ0,

c) ε ≥ 0.

M.F. & K. Švadlenka: Error estimate

max
t∈[0,T ]

‖eh(t)‖2L2(Ω)

+
ε

2

∫ T

0

(
|eh(ϑ)|2H1(Ω,Th) + Jσh(eh(ϑ), eh(ϑ))

)
dϑ

≤ C(ε+ h)h2p,

with C independent of ε→ 0+.

Is this estimate optimal??

Example

2D linear hyperbolic equation

∂u

∂t
+ v1

∂u

∂x1
+ v2

∂u

∂x2
+ cu = g in Ω × (0, T ),

with Ω = (0,1)2, v1 = 0.3, v2 = 0.4 and c = 0.5, equipped with

initial condition and boundary condition.

g, u0 – defined so that the exact solution has the form

u(x1, x2, t) =
(
1 − e−t

) (
x1x

2
2 − x22e

2
x1−1
ν − x1e

3
x2−1
ν + e

2x1+3x2−5
ν

)
,

Linear elements applied on a sequence of meshes

The meshes Th1
and Th7

.
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Computational errors in L2-norm and the experimental or-

der of convergence

ν = 0.1 ν = 0.01
l Th hl ehl αl ehl αl
1 125 0.173 0.0257 – 0.400 –
2 250 0.128 0.0158 1.61 0.272 1.28
3 500 0.090 0.0068 2.40 0.136 1.97
4 1000 0.064 0.0048 1.01 0.098 0.96
5 2000 0.045 0.0020 2.53 0.044 2.27
6 4000 0.032 0.0014 1.00 0.033 0.84
7 8000 0.023 0.0006 2.67 0.014 2.47

global order of accuracy ᾱ 1.85 1.66

Conclusion

Further results:

– the effect of numerical integration (M.F., V. Sobot́ıková)

– analysis of nonlinear diffusion depending on the sought

solution (M.F., V. Kučera) and on the gradient of the so-

lution (V. Doleǰśı),

– analysis of the hp-version of the DGFEM (V. Doleǰśı)

– analysis of BDF DG schemes (V. Doleǰśı, M. Vlasák)

– DGFEM in space and time (M.F., K. Švadlenka, J. Hájek,

J. Česenek, V. Doleǰśı, M. Vlasák)

– DGFEM is rather robust and efficient technique for the

numerical solution of convection-diffusion problems and com-

pressible flow

– developed method allows to solve compressible flow with

a wide range of Mach numbers



Discontinuous Galerkin Methods and
Applications to Compressible Flow

Part 4. Examples of Some Further Applications
of the DGFEM to Compressible Flow

Standard numerical methods have difficulties with the so-

lution of low Mach number flows

=⇒ various modifications of the Euler (Navier-Stokes) equa-

tions are introduced (e.g. R. Klein, C.-D. Munz,...) allow-

ing the solution of low Mach number flows

M.F., V. Doleǰśı, V. Kučera: DG unconditionally stable

scheme for the solution of compressible flow using con-

servative variables – allowing the solution of flow with all

positive Mach numbers

Main ingredients:

– semi-implicit time stepping based on

homogeneity of fluxes

Vijayasundaram numerical flux

– characteristic treatment of the boundary conditions

– isoparametric elements at curved boundaries

– limiting of order of accuracy in order to avoid the Gibbs

phenomenon:

a)Define the discontinuity indicator gk(i) proposed by M.F.,

Doleǰśı and Schwab: Math. Comput. Simul. (2003):

gk(K) =
∫

∂K
[ρkh]

2 dS/(hK|K|3/4), K ∈ Th. (60)

b)Define the discrete indicator

Gk(K) = 0 if gk(K) < 1, Gk(K) = 1 if gk(K) ≥ 1, Ki ∈ Th.
(61)

c)To the left-hand side of of the scheme we add the arti-

ficial viscosity form

βh(w
k
h,w

k+1
h ,ϕ) = ν1

∑

K∈Th
hKG

k(K)
∫

K
∇wk+1

h · ∇ϕdx (62)

d)Augment the left-hand side of the scheme by adding the

form

Jh(w
k
h,w

k+1
h ,ϕ) = ν2

∑

Γ∈FI
h

1

2
(Gk(K

(L)
Γ )+Gk(K

(R)
Γ )

∫

Γ
[wk+1

h ]·[ϕ] dS,

(63)

ν1, ν2 ≈ 1.

Examples
quadratic triangular elements

1) Inviscid flow
a) Low Mach number flow at incompressible limit
Stationary flow past a Joukowski profile

constant far field quantities =⇒ the flow is irrotational and

homoentropic

complex function method: exact solution of incompressible

inviscid irrotational flow satisfying the Kutta–Joukowski

trailing condition, provided the velocity circulation around

the profile, related to the magnitude of the far field veloc-

ity, γref = 0.7158

Compressible flow: M∞ = 10−4, #Th = 5418

The maximum density variation in compressible flow ρmax−
ρmin = 1.04 · 10−8.

Computed velocity circulation related to the magnitude of

the far field velocity: γrefcomp = 0.7205, =⇒ the relative

error 0.66%

Compressible low Mach flow past a Joukowski profile, ap-

proximate solution, streamlines
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Velocity distribution along the profile: ◦ ◦ ◦ – exact solu-

tion of incompressible flow, —— – approximate solution

of compressible low Mach flow



b) Transonic and hypersonic flow with shock waves
past the Joukowski profile
with far field Mach number M∞ = 0.8 and M∞ = 2.0, re-

spectively

The maximum density variation: ρmax − ρmin = 0.94 for

M∞ = 0.8 and ρmax − ρmin = 2.61 for M∞ = 2.0

Mach number isolines of the flow past a Joukowski profile

with M∞ = 0.8 (left) and M∞ = 2.0 (right)

Entropy isolines of the flow past a Joukowski profile with

M∞ = 0.8 (left) and M∞ = 2.0 (right)

2) Viscous compressible flow
a) Stationary viscous flow past NACA0012 profile
θ = 0 – IIPG

far-field Mach number M = 0.5

angle of attack α = 2◦

Reynolds number Re = 5000

NACA0012 α = 2◦ viscous flow, Mach number isolines

(left), pressure isolines (right)

entropy isolines.

b) Non-stationary viscous flow past NACA0012
profile

far-field flow has Mach number M = 0.5

angle of attack α = 25◦

Reynolds number Re = 5000

possible to observe an unsteady vortex shedding from the

airfoil

figures illustrate the flow situation at time t = 8.5

NACA0012 α = 25◦ viscous flow, Mach number isolines

(left), streamlines (right)

NACA0012 α = 25◦ viscous flow, entropy isolines



c) Hypersonic viscous flow

Flow past NACA0012 profile:

Far field Mach number M∞ = 2, α = 10◦

Reynolds number = 1000

-1  0  1  2  3  4

Mesh for viscous flow - constructed by ANGENER - V. Doleǰśı

-1  0  1  2  3  4

Mach number isolines for viscous flow

Distribution of the Mach number for viscous flow

3) Nonstationary inviscid flow in time-dependent
domains

- part of simulation of fluid-structure interaction

DG combined with the ALE technique

(M. F., V. Kučera, J. Prokopová)

Importance of the simulation of fluid and structure inter-

action:

– design of airplanes (investigation of wings and tails vi-

brations)

– design of steam turbomachines (vibrations of blades)

– car industry (in order to avoid noise)

– civil engineering (interaction of a strong wind with struc-

tures - TV towers, cooling towers, bridges etc.)

– medicine (creation of voice)

In all these examples: flow of gases, i.e. compressible flow

for low Mach numbers often incompressible model used

sometimes the compressibility plays an important role

Continuous problem

Consider inviscid compressible flow in a bounded domain

Ωt ⊂ IR2 depending on time t ∈ [0, T ]. Let the boundary of

Ωt consist of three different parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt

ΓI - inlet

ΓO - outlet

ΓWt
- impermeable walls that may move in dependence on

time.

Euler equations written in the conservative form:

∂w

∂t
+

2∑

s=1

∂fs(w)

∂xs
= 0, in Ωt, t ∈ (0, T ), (64)

w = (ρ, ρv1, ρv2, E)T ∈ IR4,

f i(w)

= (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (E + p)vi)
T.

p = (γ − 1) (E − ρ|v|2/2). (65)

Notation: ρ - fluid density, p - pressure

v = (v1, v2) - velocity vector, E - total energy, γ > 1 - Pois-

son adiabatic constant

Initial condition: w(x,0) = w0(x), x ∈ Ω0

Boundary conditions: based on the solution of a local lin-

earized Riemann problem



ALE formulation

The dependence of the domain on time is taken into ac-

count with the aid of a regular ALE mapping from a ref-

erence domain Ω0 onto the current configuration Ωt:

At : Ω0 → Ωt, i.e. At : X ∈ Ω0 7→ x = x(X, t) ∈ Ωt. (66)

The ALE mapping At.

Domain velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0, (67)

z(x, t) = z̃(A−1
t (x), t), t ∈ [0, T ], x ∈ Ωt

ALE derivative of a function f = f(x, t) defined for x ∈
Ωt, t ∈ [0, T ]:

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t)|

X=A−1
t (x)

, (68)

where

f̃(X, t) = f(At(X), t), X ∈ Ω0.

It is possible to show that

DAf

Dt
=
∂f

∂t
+ z · grad f =

∂f

∂t
+ div(zf) − f divz. (69)

=⇒ ALE formulation of the Euler equations:

DAw

Dt
+

2∑

s=1

∂gs(w)

∂xs
+ w divz = 0,

gs, s = 1,2, - ALE modified inviscid fluxes:

gs(w) := fs(w) − zsw. (70)

Example

Consider compressible flow in a channel with the initial

rectangular shape Ω0 = [−2,2] × [0,1], where the lower wall

of the channel is moving in the interval X1 ∈ (−1,1):

0.45 sin(0.4t) (cos(πX1) + 1), X1 ∈ (−1,1). (71)

This movement is interpolated to the whole domain result-

ing in the ALE mapping At.

Figure 1: velocity isolines at different time instants during

one period

The solution contains a vortex formation, when the lower

wall starts to descend, convected through the domain.

Moreover, we see that a contact discontinuity is developed,

when the channel becomes narrow.
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Conclusion

– DGFEM = a robust and accurate method for the solution

of compressible flow

– combination with ALE method allows the solution of flow

problems in time dependent domains

Further goals:

– include viscosity

– coupling with structure models

– applications to complex FSI problems

.



Duality for QP problems with semidefinite
Hessian and contact problems

Z. Dostál

VSB-Technical University Ostrava

1 Introduction

The duality theory of convex programming turned out to be an important tool in the develop-
ment of scalable algorithms for the numerical solution of elliptic partial differential equations,
such as the Lamé equations describing equilibrium of an elastic body subject to prescribed
traction [14], as it enables to reduce the original problem to the problem with more favorable
structure. It seems that it is even more important for the solution contact problems of elasticity,
as it reduces the inequality constraints, which describe the non-penetration conditions (friction-
less problems) [13] or stick-slip conditions (Tresca friction) [7], to the bound constraints, which
can be treated much more efficiently by the recently proposed algorithms [6, 16]. Moreover,
it can turn the more difficult semicoercive contact problems into much simpler strictly convex
quadratic problems.

To exploit the latter feature effectively, it is necessary to have the duality theory for convex
quadratic problems which admits cost functions with symmetric positive semidefinite (SPS)
Hessian. In spite of its obvious importance, the author have not found a convenient reference
to the duality theory concerning the primal problem

min
x∈ΩIE

f(x), ΩIE = {x ∈ R
n : [Bx]I ≤ cI , [Bx]E = cE}, (1.1)

where f is a quadratic function with the symmetric Hessian A ∈ R
n×n and the linear term

defined by b ∈ R
n, B = [b1, . . . , bm]T ∈ R

m×n is a matrix with possibly dependent rows,
c = [ci] ∈ R

m, and I, E are disjoint sets of indices which decompose {1, . . . ,m}. The point of
this lecture is to fill in this gap and to indicate applications in development of effective solvers
for contact problems.

2 Constrained dual problem

First observe that if A is only positive semidefinite and b 6= o, then the cost function f need
not be bounded from below. Thus −∞ can be in the range of the dual function Θ. We resolve
this problem by keeping Θ quadratic at the cost of introducing equality constraints. The basic
results read as follows.

Theorem 5 Let matrices A,B, vectors b, c, and index sets I, E be those from the definition of
problem (1.1) with A positive semidefinite and ΩIE 6= ∅. Let R ∈ R

n×d be a full rank matrix
such that

ImR = KerA,

let A+ denote a symmetric positive semidefinite generalized inverse of A, and let

Θ(λ) = −1

2
λTBA+BTλ + λT (BA+b − c) − 1

2
bTA+b. (2.1)



Then the following statements hold:
(i) If (x,λ) is a KKT pair for (1.1), then λ is a solution of

max
λ∈ΩBE

Θ(λ), ΩBE = {λ ∈ R
m : λI ≥ o, RTBTλ = RT b}. (2.2)

Moreover, there is α ∈ R
d such that (λ,α) is a KKT pair for problem (2.2) and

x = A+(b − BTλ) + Rα. (2.3)

(ii) If (λ,α) is a KKT pair for problem (2.2), then x defined by (2.3) is a solution of the equality
and inequality constrained problem (1.1).
(iii) If (x,λ) is a KKT pair for problem (1.1), then

f(x) = Θ(λ). (2.4)

For the proof see [6].

2.0.1 Uniqueness of a KKT pair

We shall supply our basic result on duality with the results concerning the uniqueness of the
solution for the constrained dual problem

min
λ∈ΩBE

θ(λ), ΩBE = {λ ∈ R
m : λI ≥ o, RTBTλ = RT b}, (2.5)

where θ is defined by

θ(λ) = −Θ(λ) − 1

2
bTA+b =

1

2
λTBA+BTλ − λT (BA+b − c). (2.6)

Theorem 6 Let the matrices A,B, the vectors b, c, and the index sets I, E be those from the
definition of problem (1.1) with A positive semidefinite, ΩIE 6= ∅, and ΩBE 6= ∅. Let R ∈ R

n×d

be a full rank matrix such that
ImR = KerA.

Then the following statements hold:

(i) If BT and BR are full column rank matrices, then there is a unique solution λ̂ of problem
(2.5).

(ii) If λ̂ is a unique solution of the constrained dual problem (2.5),

A = {i : [λ]i > 0} ∪ E ,
and BA∗R is a full column rank matrix, then there is a unique triple (x̂, λ̂, α̂) such that (x̂, λ̂)
solves the primal problem (1.1) and (λ̂, α̂) solves the constrained dual problem (2.5). If λ̂ is
known, then

α̂ = (RTBT
A∗BA∗R)−1RTBT

A∗
(
BA∗A

+BT λ̂ − (BA∗A
+b − cA)

)
(2.7)

and
x̂ = A+(b − BT λ̂) + Rα̂. (2.8)

(iii) If BT and BE∗R are full column rank matrices, then there is a unique triple (x̂, λ̂, α̂)
such that (x̂, λ̂) solves the primal problem (1.1) and (λ̂, α̂) solves the constrained dual problem
(2.5).

For the proof see [6]. The mechanical illustration of the above theorem is in Figure 1 and
Figure 2.



Figure 1: Unique displacement Figure 2: Nonunique displacement

b

R

b

R

3 Optimal solution of contact problems

The above results are, together with the Total FETI [9] and the results in development of
optimal quadratic programming algorithms [6, 4, 12], the key ingredients in the development of
scalable algorithms for the solution of contact problems of elasticity discretized either by the
boundary element method [2, 17] or the finite element method [11]. After resolving some long
standing problems, such as convergence of the algorithms for longer steps [5] or stable and cheap
evaluation of the generalized inverse [10], the algorithms were implemented into our MATLAB
code MatSol [15] and used to the parallel solution of large academic problems (with more then
10 millions of nodal variables) [11] and difficult real world problems, such as analysis of ball
bearings in Figure 3 (see [3]).

Figure 3: Ball bearings

4 Conclusion

We have presented some recent results of duality theory and indicated their role in development
of optimal algorithms for contact problems. Current research includes parallel implementation
of the algorithms in C, implementation of preconditioners, and adaptation of our algorithms to
the solution of more complex problems [12].

Acknowledgement: This research is supported by the project MSM6198910027 provided by
the Ministry of Education of Czech Republic and the project GAČR 201/07/0294 provided by
the Grant Agency of Czech Republic.
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VŠB-Technical University of Ostrava (2008)

















What Is the Role of the Worst Scenario Method in Solving
Problems with Uncertain Input Data ?

J. Chleboun

Czech Technical University in Prague

1 Introduction

The worst scenario method is inspired by one of the leading principles of safe design: to be on the
safe side even if the design and, more adequately for the purposes of our lecture, its mathematical
(computational) model are burdened with uncertainty. The amount of uncertainty in the model
behavior has to be analyzed to exclude or admit a possible violation of the safe side policy.

In other words, if input data of a mathematical model is uncertain, then model output data is
uncertain too. To evaluate the uncertainty of outputs, their extremal values that can appear
due to the uncertain inputs have to be identified, which is usually done through identifying the
particular inputs that are responsible for the extremal output values. This is the key idea of the
worst (case) scenario method.

Although such an idea is not new, its applications to ODE- or PDE-driven problems does not
seem to be common, especially if the uncertainty is not limited to scalar parameters but also
burdens the functions that appear in differential equations as input data.

By knowing the extremes that bounds the behavior of a mathematical model, an analyst can
be more confident in making decisions. In practice, however, the knowledge of mere extremes
may not be particularly important because the inputs are often weighted, but the worst scenario
method does not take the weights into consideration. The most notable methods that deal with
weighted uncertainty are stochastic methods. Although coupling the worst scenario idea with
stochastic approaches is possible, we will not elaborate on it here. Instead, we will focus on two
less common weighting approaches and we will show that to analyze the propagation of weighted
uncertainty from model inputs to model outputs, we have to resort to the worst scenario method
as a tool for obtaining the weight of outputs.

2 Mathematical Framework

Let us consider the following abstract problem (state problem): Find u(a) ∈ V such that

A(a;u(a)) = f, (2.1)

where A is a differential operator dependent on a parameter a (consequently, the solution u(a)
is also a-dependent, as indicated by the notation), f stands for a right-hand side function, and
V is the relevant space of functions. Instead of (2.1), one can imagine an a-dependent elliptic
boundary value problem characterized by A, an operator, and V ⊂ H where H is the relevant
Sobolev space.

The parameter a belongs to Uad, the set of admissible parameters. This set represents the
amount and the character of uncertainty that accompanies a. It is assumed that problem (2.1)
is uniquely solvable for any ∈ Uad .



Let the state solution u(a) be evaluated through a functional Φ(a, u(a)). By virtue of the
uniqueness of u(a), we can define

Ψ(a) = Φ(a, u(a)), (2.2)

the criterion-functional (also called the quantity of interest) that defines a direct link between
a particular value of the uncertain parameter and the feature of the state solution that is
represented through Φ. Again, one can imagine, for example, an a-dependent elasticity problem
whose solution (a displacement field) is “processed” by Ψ to deliver numeral information the
analyst is interested in.

In the worst scenario method, we are searching for a0 ∈ Uad such that

a0 = arg min
a∈Uad

Ψ(a). (2.3)

A slight modification of (2.3) leads to the other extreme

a0 = arg max
a∈Uad

Ψ(a). (2.4)

The compactness of Uad and the continuity of Ψ are sufficient for obtaining a0 and a0; a more
detailed analysis can be found in [4]. It is assumed that the image of Uad under the map Ψ is
an interval.

An approximation of (2.3) and (2.4) is necessary to numerically solve the respective problems.
To this end, Uad is approximated by UN

ad
, a set identifiable with a compact subset of R

N . If Uad

comprises functions (which is the case we focus on), their finite-dimensional approximation is
necessary. Also, the state problem is approximated by a proper method; take for instance the
finite element method, the boundary element method, etc. As a consequence, problems

a0,N = arg min
aN∈UN

ad

Ψh(aN ) and a0,N = arg max
aN∈UN

ad

Ψh(aN ) (2.5)

are solved instead of (2.3)-(2.4). In (2.5), Ψh(aN ) = Φ(aN , uh(aN )) and uh is the approximate
state solution.

The relevant convergence issues are addressed in [4] and [3].

3 Weighting the Inputs

Let us sketch two non-stochastic approaches to weighting the input values.

In fuzzy set theory, a membership function µ is defined to indicate the weight of the elements
of Uad, µ : Uad → [0, 1]; see [1], [6]. The goal of the uncertainty propagation analysis is to infer
µΨ, the membership function of

IΨ = [Ψ(a0), Ψ(a0)],

the interval of the quantity of interest induced by Uad. It turns out, that µΨ can be obtained
through solving a sequence of (2.3)- and (2.4)-like problems where Uad is replaced by

αUad = {a ∈ Uad : µ(a) ≥ α} α ∈ (0, 1].

to obtain related scenarios αa0 and αa0 as well as intervals

αIΨ = [Ψ(αa0), Ψ(αa0)].



Then
µΨ(x) = max{α ∈ [0, 1] : x ∈ αIΨ}.

Inspired by the Dempster-Shafer theory [2], [5], the other approach assumes a finite family of
admissible sets that are weighted in such a way that the sum of the weights equals one; these
sets are called focal elements, see [1]. For any other set of input values (that is, unweighted), two
values, Bel and Pl, are calculated from the focal elements and their weights. These values give a
lower and an upper bound on the likelihood of the set (in other words, they indicate the relevance
of the set to the information included in the focal elements). The goal is to identify the focal
elements in the values of the quantity of interest. It is obvious that the output focal elements
are the images of the input focal elements under the map Ψ and that to obtain them, problems
like (2.3) and (2.4) have to be solved. The output focal elements and their weights allow for
calculating Bel and Pl of sets of possible output values (i.e., quantity of interest values).

4 Conclusion

The worst scenario method can be used as such without coupling with other methods. However,
it seems to be more useful as a part of a method that weights data. In that case, the uncer-
tainty analysis delivers more information but asks for the repeated solving of the worst scenario
problems, which is computationally demanding. Moreover, the method leads to solving global
optimization problems which is also a challenging task.

Acknowledgement: This work was supported by the Ministry of Education, Youth, and Sports
of the Czech Republic through contract MSM 6840770003 and through grant No. IAA100190803
from the Grant Agency of AS CR.
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Uncer tainties in Mechanics

� geometry (sizes of beams, thickness of plates)

� material parameters (Young’s modulus of elasticity, density, yield

stress, fracture energy)

� load (magnitude, orientation, time changes)
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Measured Data

density of concrete measured in concreting plant during one year (kg/m3)

number of values 470 465

minimum value 2142,22 2165,59

average value 2285,78 2284,63

maximum value 2547,73 2400,00

standard deviation 48,19 45,03

median 2284,44 2281,48

mode 2332,81 2388,79
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�2 goodness-of-fit test

i n��(xi) n��(xi)
1 5,983789 5,730882

2 36,141110 17,215111

3 107,544974 39,470382

4 157,667482 69,072631

5 113,882642 92,260082

6 40,526241 94,057806

7 7,105236 73,189540

8 0,613739 < 5 43,468671

9 0,026119 < 5 19,705020

10 0,000520 < 5 6,645456
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removed number of number �20
element removed of wrong value

elements intervals

none 0 3 1927,877841

2547,73 1 2 3,488365

2449,04 2 2 6,789602

2415,87 3 1 13,933338

2142,22 4 1 13,265698

2409,52 5 0 7,507428
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number of degrees of freedom � = 10� 2� 1 = 7
(10 intervals, 2 parameters of distribution),

p2 0,1 0,05 0,01 0,005 0,001�2p2 12,2 14,07 18,48 20,28 24,32

number of �20 critical significance

removed value value level

elements < �2p2
5 7,507428 12,2 0,1
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Strength of concrete during one year (MPa).

number of values 470

minimum value 32,13

average value 42,074

maximum value 55,16

standard deviation 3,6466

median 41,38

mode 42,49
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Classical Set Theor y - Crisp Sets
Cantor:

A set is a combination of particular, well-distinguishable objects, which

are called elements, to an ensemble.

An element x belongs to a set A: x 2 A.

A set is an ensemble of elements with property V (x), the set is

denoted by fx;V (x)g.

membership function expresses the degree of truth of the statementx 2 A.�A(x) = 1, x 2 A�A(x) = 0, x 62 A
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The functional values of �A are 0 or 1.

The classical set theory is too “strict”.

L.A. Zadeh: Outline of a New Approach to the Analysis of Complex

Systems and Decision Processes. IEEE Trans. Syst. Man. Cybern.,

1, 1973.
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Fuzzy Sets
Introduction of the fuzzy sets:

L.A. Zadeh: Fuzzy Sets. Information and Control, 8, p. 338-353, 1965.

Fuzzy Set: If U represents a fundamental set and x are the elements

of this fundamental set, to be assessed according to an uncertain

proposition and assigned to a subset A of U , the setA = f(x; �(x)) : x 2 Ug is referred to as the uncertain set or fuzzy

set on U .

L is a set of real numbers, in most cases it is an interval h0; 1i
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�A(x) = 0 element x does not belong to the set A�A(x) = 1 element x belongs to the set A�A(x) = 0; 3 element x belongs partially to the set A
The support of a fuzzy set A is a crisp setsupp A = fx;�A(x) > 0g.

The kernel of a fuzzy set A is a crisp set ker A = fx;�A(x) = 1g.

A fuzzy set A is called normal if ker A 6= ;.�-cut of fuzzy set A, where � 2 L, is a crisp setA� = fx;�A(x) � �g.�-level of fuzzy set A, where � 2 L, is a crisp setA� = fx;�A(x) = �g.
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If �1; �2 2 L and �1 � �2, then A�2 � A�1
Height of the fuzzy set A is

hgtA = maxx2U �A(x)
If kerA 6= ;, then hgtA = 1.
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The union of the fuzzy sets A and B is a set C = A [B with

membership function�C(x) = maxx2U f�A(x);�B(x)g :
The intersection of the fuzzy sets A and B is a set C = A \B with

membership function�C(x) = minx2U f�A(x);�B(x)g :
The complement of the fuzzy set A is a set �A = U � A with

membership function� �A(x) = 1� �A(x) :
A fuzzy set A � U is called convex if all �-cuts are convex sets, i.e.
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for all x; y 2 A and a number 0 � � � 1 the following relationship�x+ (1� �)y 2 A holds.

A fuzzy set A � U is convex if for all x; y 2 U and a number0 � � � 1 means �A(�x+ (1� �)y) � minf�A(x);�A(y)g
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Extension Principle

The extension principle represents the mathematical basis for the

mapping of fuzzy sets into a result space.

Extension Principle . Let U and V be fundamental sets,f : U ! V be a mapping and A � U be a subset of the

fundamental set U . The mapping f leads to the fuzzy set f(A) � V
with the membership function

maxx2f�1(y)�A(x)�f(A)(y) = ( 0; if : f�1(y) = ;
for all y 2 V .
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Fuzzy Number s
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�-cut method
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Addition of Fuzzy Number s
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Multiplication of Fuzzy Number s
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Division of Fuzzy Number s
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Vibration influenced by uncer tainties
Undamped vibration of a single degree of freedom is assumed for

simplicity

equation of motion

md2w(t)dt2 + kw(t) = 0
m > 0 denotes the weight of mass and k > 0 denotes the stiffness

of spring

natural circular frequency

!0 =r km
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equation of motiond2w(t)dt2 + !20w(t) = 0
solution

w(t) = wA sin(!ot+ �)
wA denotes the amplitude of vibration, � denotes the phase angle

initial conditions

w(0) = d ; dw(0)dt = v
d denotes the initial displacement and v denotes the initial velocity.
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Case n. 1.

the weight, stiffness and initial velocity are crisp numbers while the

initial displacement is a fuzzy number

m > 0 ; k > 0 ; v = 0 ; df = [d�; d+]
solution of the equation of motion has the form

w(t) = df sin(!0t+ �2 )
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numerical example

m = 20k = 40000d� = 0:02 d+ = 0:04v = 0� = �2
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Case n. 2.

the weight, stiffness and initial displacement are crisp numbers while

the initial velocity is a fuzzy number

m > 0 ; k > 0 ; d = 0 ; vf = [v�; v+]
solution of the equation of motion has the form

w(t) = vf!0 sin!0t
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Case n. 3.

the weight, initial displacement and initial velocity are crisp numbers

while the stiffness is a fuzzy number

m > 0 ; d 6= 0 ; v = 0 ; kf = [k�; k+]
natural circular frequency is a fuzzy number in the form

!0f =qkf=m ) !�0 =pk�=m; !+0 =pk+=m
solution of the equation of motion has the form

w(t) = d sin(!0f t+ �2 )
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d sin(!�0 (tf + T ) + �2 ) = d sin(!+0 tf + �2 )
2� = (!+0 � !�0 )tf ) tf = 2�!+0 � !�0
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numerical example

m = 20k� = 40000 k+ = 70000d = 0:02v = 0� = �2tf = 0:435141
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Vibration of Plane Frame Structure
Description of the plane frame structure

height 16 m

width 10 m

columns 0,5 x 0,5 m

beams 0,5 x 0,5 m

Young modulus of elasticity 30 GPa� 10%

density of concrete 2500 kg/m3 � 10%
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equation of motion of free vibration

(K � !20M)v = 0

K stiffness matrix

M mass matrix!0 natural circular frequency

v eigenvector (mode shape)

subspace iteration with Gram-Schmidt orthonormalization
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Response Surface Function~X space of input data~Y space of output data

X m-dimensional space of input data

Y n-dimensional space of output data

response of system

~y = ~F(~x)
y = ~F (x)
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y[l]k = ~F k(x[l])

f (k) = a(k) + i=mX
i=1 b(k)i xi + i=mX

i=1
j=mX
j=1 c(k)ij xixj

F (k)(a(k); b(k)i ; c(k)ij ) = l=sX
l=1 (f (k)(x[l])� y[l]k )2
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Vibration of Plane Frame Structure
Caused by Earthquake

equation of motion

M �d+C _d+Kd = f

expansion into eigenvectors

d = V u

equation of motion in the case of earthquake loading

V TMV �u+ V TCV _u+ V TKV u = �V TMs �dg
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system of equations

I �u+D _u+

20u = �h

�ui +Di _ui + !20;iui = hi
yi = S(!0;i)!20;i
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displacements

d = i=nX
i=1
�
vTi Msyi�vi

forces and moments

f = (K � !20M)d
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Fuzzification of Chen Model of Plasticity
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Heat Transf er
nonstationary heat transfer

k@2T@x2 + z = �c@T@t
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Parallelization
� �-cut method leads to a large number of samples, e.g., in the

case of vibration of plane frame 32�4 = 6561 and52�4 = 390625 samples were used

� independent samples

� easy parallelization
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speedup ideal speedup

singleprocessor computation 333 s

parallel computation on 6 processors 58 s 55,5 s

parallel computation on 21 processors 18 s 15,8 s
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A numerical solution of elliptic boundary value problems
with uncertain data and geometry

T. Kozubek

VSB - Technical University of Ostrava

1 Introduction

An efficient method for the numerical solution of elliptic PDEs in domains depending on random
variables has been introduced in [1]. The key feature is the combination of a fictitious domain
approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the
fictitious domain), with the original boundary condition enforced via a Lagrange multiplier act-
ing on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked
to convert such a stochastic problem into a deterministic one, depending on an extra set of
real variables (the stochastic variables). Discretization is accomplished by standard mixed finite
elements in the physical variables and a Galerkin projection method with numerical integration
(which coincides with a collocation scheme) in the stochastic variables. A stability and conver-
gence analysis of the method, as well as numerical results, are provided in [1]. The convergence is
“spectral” in the polynomial chaos order, in any subdomain which does not contain the random
boundaries.

2 Setting of the problem

Let (Ω,F, P ) be a complete probability space, where Ω is the set of outcomes, F is the σ-algebra
of events and P is the probability measure. For any ω ∈ Ω, let D(ω) ⊂ R

2 be a bounded domain
depending on ω; its boundary Γ (ω) := ∂D(ω) is assumed to be polygonal or of class C1,1, i.e.,
the boundary is locally represented by functions, whose first derivatives are Lipschitz continuous.
We suppose that all domains are contained with their boundaries in a domain D̂ ⊂ R

2, which
will serve as the fictitious domain in the fictitious domain formulation.

For the sake of simplicity, we will be concerned with the following model boundary value problem
in D(ω): Find u : D(ω) × Ω → R such that almost surely (a.s.) in Ω we have

{
−△u( · , ω) = f in D(ω),

u( · , ω) = 0 on Γ (ω),

(
P(ω)

)
where f is a given function in L2(D̂). The case

of Neumann or mixed boundary conditions or of random coefficients and data (independent of
the random variables describing the domain) could be handled at no extra difficulty.

Solving the discrete problem
(
P(ω)

)
for any ω ∈ Ω using, e.g., the finite element method, means

that by varying ω we have to: (i) remesh the new domain D(ω); (ii) assemble the new stiffness
matrix and the right hand side vector; (iii) solve the new system of linear equations. Thus
the efficiency of solving the discrete problems is crucial. Hereafter, we will explore a fictitious
domain method with nonfitted meshes as a possible way to increase efficiency: indeed, this
approach avoids completely step (i) and partially step (ii), since the stiffness matrix remains
the same for any admissible domain.



3 The stochastic FD formulation

The stochastic FD formulation reads as follows: Find û( · , ω) ∈ H1
0 (D̂) and λ( · , ω) ∈ M(ω) :=

H−1/2(Γ (ω)) such that, a.s. in Ω,

{ ∫
D̂
∇û( · , ω) · ∇v dx + 〈λ( · , ω), τv〉Γ (ω) =

∫
D̂
fv dx, ∀v ∈ H1

0 (D̂),

〈µ, τû( · , ω)〉Γ (ω) = 0, ∀µ ∈M(ω).

(
P̂(ω)

)

We assume that, a.s., Γ (ω) is obtained from a reference C1,1 or polygonal boundary Γ0 as
the image of a piecewise smooth invertible mapping γ0(ω). More precisely, we assume that
Γ (ω) = γ0(ω)(Γ0), where γ0(ω) belongs to C1,p(Γ0) (the space of all continuous and piecewise
continuously differentiable mappings γ : Γ0 → R

2) and its inverse γ0(ω)−1 exists and belongs
to C1,p(Γ (ω)). The function γ0 : Ω → C1,p(Γ0) is assumed to be a random variable belonging
to L∞(Ω, dP ;C1,p(Γ0)), i.e., γ0 is a jointly measurable function on the Borel sets of Γ0 × Ω for
which there exists a constant g0 > 0 such that ‖γ0(ω)‖C1,p(Γ0) ≤ g0 a.s. in Ω; the same occurs
for the inverse mapping, i.e., ‖γ0(ω)−1‖C1,p(Γ (ω)) ≤ g0 a.s. in Ω.

Let E [X] =
∫
ΩX(ω) dP (ω) be the expected value of a real-valued random variable X. Let

L2(Ω, dP ) = {X : Ω → R |X is a random variable such that E
[
X2
]
< +∞} be the space of

second order random variables over the probability space (Ω,F, P ). We denote by L2(Ω, dP ;
H1

0 (D̂)) the space of the random variables v : Ω → H1
0 (D̂) (i.e., v : D̂ × Ω → R is jointly

measurable and v( · , ω) ∈ H1
0 (D̂) a.s. in Ω) with finite second order moment E

[
‖v‖2

H1
0 (D̂)

]
=

∫
D̂ E

[
|∇v|2

]
dx < +∞. The definition of the space L2(Ω, dP ;H−1/2(Γ0)) is similar. Finally,

the space L2(Ω, dP ;H−1/2(Γ )) is defined as follows: µ ∈ L2(Ω, dP ;H−1/2(Γ )) means that
µ0 ∈ L2(Ω, dP ;H−1/2(Γ0)), where µ0(ω) ∈ H−1/2(Γ0) is defined a.s. in Ω by the conditions
〈µ0, v0〉Γ0

= 〈µ, v0 ◦ γ−1
0 〉Γ (ω) for all v0 ∈ H1/2(Γ0).

With such notation at hand, the stochastic FD formulation given at the beginning of the section
can be made precise as follows: Find û ∈ L2(Ω, dP ;H1

0 (D̂)) and λ ∈ L2(Ω, dP ;H−1/2(Γ )) such
that

{
E
[∫

D̂
∇û · ∇v dx

]
+ E [〈λ, τv〉Γ ] = E

[∫
D̂
fv dx

]
, ∀v ∈ L2(Ω, dP ;H1

0 (D̂)),

E [〈µ, τû〉Γ ] = 0, ∀µ ∈ L2(Ω, dP ;H−1/2(Γ )).

(
P̂S
)

Our next step will be to transform this stochastic problem into a purely deterministic one. This
will be accomplished by expanding the random variables into polynomial chaos.

4 (Wiener) polynomial chaos

This section is devoted to recalling some basic facts about polynomial chaos (see, e.g., [2]), as
well as to setting the notation.

Let Y1(ω), . . . , Yk(ω), . . . be a sequence of independent standard Gaussian random variables with
zero mean and unit variance, i.e., E [Yk] = 0, E [YkYℓ] = δkℓ for all k, ℓ ≥ 1. On the other hand,
given a real variable y, let {Hn(y)}n≥0 be the sequence of Hermite polynomials on the real line,
satisfying

1√
2π

∫

R

Hn(y)Hm(y) e−y
2/2dy = δnm, n,m ≥ 0,

where δnm is the Kronecker symbol. Next, denote by y = (yk)k≥1 ∈ R
N0 any infinite sequence

of real variables, and by ν = (νk)k≥1 ∈ N
N0 any infinite sequence of integers which is ”finite”,



i.e., such that νk > 0 only for a finite number of indices; let |ν| =
∑

k≥1 νk. Define the
multidimensional Hermite polynomials of order |ν| as Hν(y) =

∏∞
k=1Hνk(yk); note that the

definition is meaningful since H0(y) ≡ 1, hence, Hν(y) actually depends only on a finite number
of components of y. These polynomials are mutually orthonormal, in the following sense:

(Hν,Hµ) :=

∞∏

k=1

1√
2π

∫

R

Hνk(yk)Hµk(yk) e−y
2
k/2dyk = δνµ, ∀ν,µ.

Setting Y(ω) := (Yk(ω))k≥1 for all ω ∈ Ω, the random variables Hν : ω 7→ Hν(Y(ω)) are
independent and with unit variance, since E [HνHµ] = (Hν,Hµ) = δνµ, ∀ν,µ. They form the
so-called Wiener chaos (sometimes termed homogeneous chaos or Hermite chaos). The Cameron-
Martin theorem states that the family {Hν} so defined forms an orthonormal basis of the space
L2(Ω, dP ) of the second order random variables over a Gaussian space. The precise result is as
follows.

Theorem 7 Let Φ ∈ L2(Ω, dP ) and let Φν = E [ΦHν] for any finite ν. Then,

Φ =
∑

ν finite

ΦνHν in L2(Ω, dP ).

This means, for instance, that we have E

[(
Φ −∑|ν|≤N ΦνHν

)2
]
→ 0 as N → ∞.

The Cameron-Martin theorem states that Φ(ω) = ϕ(Y(ω)), where ϕ : R
N0 → R is formally

defined as ϕ(y) =
∑

ν finite ΦνHν(y). In many situations of interest, Φ will be possible to express
using a finite number of random variables Yk(ω), say using YK(ω) := (Y1(ω), . . . , YK(ω)); then,
Φ(ω) = ϕ(YK(ω)) with ϕ : R

K → R defined as ϕ(y) =
∑

ν∈NK
ΦνHν(y) for y ∈ R

K and
satisfying

1

(
√

2π)K

∫

RK

ϕ2(y) e−yT y/2dy < +∞.

Thus, for our variable Φ, the condition Φ ∈ L2(Ω, dP ) is equivalent to ϕ ∈ L2
̺(R

K), where

the weight function ̺ is defined as ̺(y) = 1
(
√

2π)K
e−yTy/2. The variable y will be termed the

stochastic variable, whereas the spatial variables x and s will be referred to as the deterministic
variables.

So far, we have focussed on Gaussian random variables. Similar representations can be given for
second order random variables over other probabilistic spaces admitting a density function. The
system of orthonormal polynomials which gives rise to a generalized polynomial chaos, similar
to the Wiener chaos, is determined by the density function; for instance, the uniform density
obviously leads to the Legendre polynomials. We refer to [2] for more details.

In general terms, a second order random variable Φ depending on a finite number K of mutually
independent real random variables Y1(ω), . . . , YK(ω) with zero mean and unit variance with
respect to a density function ρ, can be represented as

Φ(ω) = ϕ(YK(ω)), YK(ω) := (Y1(ω), . . . , YK(ω)), (4.1)

where ϕ = ϕ(y) satisfies ϕ ∈ L2
̺(I): here, I = IK , where I is the interval of the real line on

which ρ is defined, and ̺(y) =
∏K
k=1 ρ(yk). Since L2

̺(I) =
⊗K

k=1 L
2
ρ(I), a natural orthonormal

basis {ψν}ν∈NK in this space is provided by the tensor product of a one-dimensional family of
orthonormal functions {ψn}n∈N in L2

ρ(I); we assume that these functions are algebraic polyno-
mials, as it occurs in the most relevant situations.



5 The deterministic formulation of
(
P̂S
)

We go back to the stochastic formulation
(
P̂S
)
. We assume that the boundary Γ (ω) of D(ω)

depends on ω via K mutually independent real random variables Y1(ω), . . . , YK(ω) with zero
mean and unit variance with respect to a density function ρ defined on some interval I ⊆ R.
Let YK(ω) and ̺ be defined as above. Since we assumed in Section 3 that Γ (ω) = γ0(ω)(Γ0),
equation (4.1) easily yields γ0(ω) = γ∗0(YK(ω)), where γ∗0 = γ∗0(y) is a family of C1,p(Γ0)-
mappings defined in I = IK , with inverses γ∗0(y)−1 in C1,p(Γ ∗(y)). Thus, Γ ∗(y) = γ∗0(y)(Γ0) is
a parametrization of the set of the admissible boundaries of the stochastic domains D(ω).

Since û and λ depend on ω only through Γ (ω), the Doob-Dynkin lemma assures that this depen-
dence takes place via YK(ω), i.e., we have û( · , ω) = û∗( · ,YK(ω)) and λ( · , ω) = λ∗( · ,YK(ω)),
where û∗( · ,y)∈ H1

0 (D̂) and λ∗( · ,y)∈ H−1/2(Γ ∗(y)), a.e. in I. Condition û∈ L2(Ω, dP ;H1
0 (D̂))

is then equivalent to û∗ ∈ L2
̺(I;H

1
0 (D̂)); similarly, λ ∈ L2(Ω, dP ;H−1/2(Γ )) is equivalent to

λ∗ ∈ L2
̺(I;H

−1/2(Γ ∗)) (with obvious meaning of the notation).

We now recall the formula E [Φ] =
∫
I
ϕ(y)̺(y) dy which holds for all random variables Φ(ω) =

ϕ(YK(ω)) with ϕ ∈ L1
̺(I). By applying this formula several times, we transform the stochastic

problem
(
P̂S
)

into the following deterministic problem: Find û∗ ∈ L2
̺(I;H

1
0 (D̂)) and λ∗ ∈

L2
̺(I;H

−1/2(Γ ∗)) such that





∫
I

∫
D̂
∇û∗ · ∇v∗ dx ̺(y) dy+

∫
I
〈λ∗, τv∗〉Γ∗(y)̺(y) dy =

∫
I

∫
D̂
fv∗ dx ̺(y) dy,

∀v∗ ∈ L2
̺(I;H

1
0 (D̂)),

∫
I
〈µ∗, τ û∗〉Γ∗(y)̺(y) dy = 0, ∀µ∗ ∈ L2

̺(I;H
−1/2(Γ ∗)).

(
P̂D
)

6 Discretization of the deterministic formulation

Discretization is accomplished by standard mixed finite elements in the physical variables and
a Galerkin projection method with numerical integration (which coincides with a collocation
scheme) in the stochastic variables. Thus instead of solving very large algebraic saddle-point
system resulting from the discretization of

(
P̂D
)
, we will solve n original deterministic problems

for n different configurations of the stochastic domain D(y), where n is the number of Gauss
(collocation) points yq. We can simply parallelize all computations. For more details see [1],
where a stability and convergence analysis of the method have been presented. We showed that,
in any subdomain that does not contain the random boundaries, the convergence is “spectral”
in the polynomial chaos order. Solution of a few problems will be presented during the talk.
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Outline

Introduction

Bunch-Kaufmann factorization

Parlett-Reid reduction

Aasen’s factorization

Numerical stability

Conclusions
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Solution of a symmetric indefinite system

of linear equations

Ax = b

A is symmetric (indefinite)
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Block Bunch-Kaufmann factorization

A is symmetric (definite or indefinite)

L is unit lower triangular

D is symmetric block diagonal with 1x1,2x2 blocks

P is a permutation matrix

4

Bunch-Kaufmann factorization
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Bunch-Kaufmann factorization

Ln−1Pn−1 . . . L2P2L1P1APT
1 LT

1PT
2 LT

2 . . . PT
n−1LT

n−1︸ ︷︷ ︸
D
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Bunch-Kaufmann pivoting strategy

• complete pivoting O(n3) comparisons Bunch, Parlett

• partial pivoting O(n2) comparisons implemented in LINPACK,

LAPACK
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Triangular tridiagonalization

A is symmetric (definite or indefinite)

L is unit lower triangular

T is symmetric tridiagonal

P is a permutation matrix
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Parlett - Reid reduction
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Parlett - Reid reduction
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Parlett - Reid reduction

• The reduced matrix remains symmetric during reduction, the

updates are performed on a half of the matrix

• Complexity: at each step two rank-one updates on half a ma-

trix 2(n − 1)2; O(n) other operations; total 2/3n3 + O(n2)

→ Aasen’s factorization
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Parlett - Reid reduction

Aasen’s factorization
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Notation
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Parlett - Reid reduction

works on L[22]T [22](L[22])T

Aasen’s factorization

* for k > 1 L[22]T [22](L[22])T 6= H[22](L[22])T

* update of A[22]

compute (k + 1)-th column L and k-th column of T and H

* pivoting strategy

14

Aasen’s factorization – Phase 1

Compute i-th column of H[21] from i-th column of A[21] and

previous columns of H[21] and L[11]
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Aasen’s factorization – Phase 2

Second phase – extract the first column of L[22]T [22]

u ← H
[22]
1,1:last − L1:last,k−1Tk,k−1
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Aasen’s factorization – Phase 3

Third phase – extract T
[22]
1,1

T
[22]
1,1 = u1
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Aasen’s factorization – Phase 4

Fourth phase – extract T
[22]
1,2 and L

[22]
2:last,2
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Aasen’s factorization – pivoting strategy

Fourth phase – extract T
[22]
1,2 and L

[22]
2:last,2
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Partitioned factorization

20

Partitioned factorization
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Numerical stability – main result

22

Basic assumptions on BLAS

X ∈ R
m,k , Y ∈ R

k,n , Z = XY ∈ R
m,n , Z = fl(XY )

conventional BLAS:

|Z − Z| ≤ c1(k)u|X| |Y | c1(k) =
k

1 − ku

Strassen:

‖Z − Z‖ ≤ c3(m, n, k, p)u‖X‖ ‖Y ‖

23

Numerical stability – Proof 1

A[11] + ∆A[11] = L
[11]

T
[11]

(
L

[11]
)T

∣∣∣∆A[11]
∣∣∣ ≤ c3(k,1)u

∣∣∣∣L
[11]

∣∣∣∣
∣∣∣∣T

[11]
∣∣∣∣

∣∣∣∣L
[11]

∣∣∣∣
T

A[21] + ∆A[21] = H
[21]

(
L

[11]
)T

∣∣∣∆A[21]
∣∣∣ ≤ c1(k)u

∣∣∣∣H
[21]

∣∣∣∣
∣∣∣∣L

[11]
∣∣∣∣
T

H
[21]

+ ∆H[21] = L
[21]

T
[11]

+ L
[22]
:,1 T

[21]
1,k

∣∣∣∆H[21]
∣∣∣ ≤ c1(3)

(∣∣∣∣L
[21]

∣∣∣∣
∣∣∣∣T

[11]
∣∣∣∣ +

∣∣∣∣L
[22]
:,1

∣∣∣∣
∣∣∣∣T

[21]
1,k

∣∣∣∣
)
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Numerical stability – Proof 2
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Solution of a linear system

Assuming c4(n)uk∞
(
T

)
< 1

(
A + ∆̂A

)
x = b + ∆̂b

∥∥∥∆̂A
∥∥∥∞ ≤ c5(n, k)u

∥∥∥T
∥∥∥∞ ,

∥∥∥∆̂b
∥∥∥∞ ≤ c5(n, k)u

∥∥∥T
∥∥∥∞ ‖x‖∞

growth factor ρn =
maxi,j

∣∣∣T i,j

∣∣∣

maxi,j

∣∣∣Ai,j

∣∣∣

max





∥∥∥∆̂A
∥∥∥∞

‖A‖∞
,

∥∥∥∆̂b
∥∥∥∞

‖A‖∞ ‖x‖∞





≤ c5(n, k)nuρn
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Bunch Kaufmann factorization –

numerical stability
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Solution of a linear systems

Assuming that c7(n)uk
(
D

)
< 1

(
A + ∆̂A

)
x = b

∣∣∣∆̂A
∣∣∣ ≤ c6(n)u

(
|A| +

∣∣∣L
∣∣∣

∣∣∣D
∣∣∣

∣∣∣L
∣∣∣
T

)

growth factor ρn =
maxi,j,k |a

(k)
ij |

maxi,j |aij|
∥∥∥∆̂A

∥∥∥∞
‖A‖∞

≤ c6(n)nuρn
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Parallel implementation

LAPACK uses blocked Bunch-Kaufmann factorization

(Dongarra, Anderson)

Cache-efficient partitioned triangular tridiagonalization

(Shklarski, Toledo – submitted to ACM TOMS)

29

Numerical examples

30



Numerical examples
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Numerical examples
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Numerical examples
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Numerical examples

34

Conclusions
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THANK YOU FOR

YOUR ATTENTION

R, G. Shklarski, S. Toledo: Partitioned triangular tridiagonali-

zation, submitted to ACM Transactions on Mathematical Soft-

ware

C and Matlab Codes at

http://www.tcu.ac.il/∼stoledo/research.html
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