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Why fuzzy set theory?

@ try to capture a mathematical world: develop fuzzy mathematics
(indicate a direction)

@ study the notion of a set, and rudimentary notions of set theory (some properties
may be available on a limited scale; classically equivalent notions need not be
available in a weak setting)

@ wider set-theoretic universe: recast the classical universe of sets as a subuniverse of
the universe of fuzzy sets

@ Explore the limits of (relative) consistency. (Which logics allow for an
interpretation of classical ZF? Which logics give a consistent system?)
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Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic.
(Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T, governed by L.
The theory T should:

@ generate a cumulative universe of sets

@ be provably distinct from the classical set theory

@ be reasonably strong

be consistent (relative to ZF)
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Programme

Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic.
(Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T, governed by L.
The theory T should:
@ generate a cumulative universe of sets
@ be provably distinct from the classical set theory
@ be reasonably strong

@ be consistent (relative to ZF)

Between classical and non-classical:
classical set-theoretic universe is a sub-universe of the non-classical one
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Plan for talk

@ Logics without the contraction rule
@ tukasiewicz logic

© A set theory can strengthen its logic
@ A-valued universes

@ the theory FST (over t)

O generalizations
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A logic in a language F is a set of formulas closed under substitution and deduction.
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MY, A=x (o) A= x
M, A=x Mo A=x

Mo, e, A=x
Mo A=x

(w) (c)
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A family of substructural logics: FL,, and extensions

Consider propositional language F.
(FLew-language: {-,—,A,V,0,1}.)

A logic in a language F is a set of formulas closed under substitution and deduction.

“Substructural” — absence of some structural rules (of the Gentzen calculus for INT).
In particular, FLew is contraction free.

Structural rules:

Mo, e, A=x

ﬂ%%Aﬁx() A= x
Mo A=x

M, A=x Mo A=x

(w) (c)

Removal of these rules calls for some changes:

o splitting of connectives

@ changes to interpretation of a sequent
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A family of substructural logics: FL,, and extensions

Consider propositional language F.
(FLew-language: {-,—,A,V,0,1}.)

A logic in a language F is a set of formulas closed under substitution and deduction.

“Substructural” — absence of some structural rules (of the Gentzen calculus for INT).
In particular, FLew is contraction free.

Structural rules:

Mo v, A=x
rvawyA:>X

NA=x
Mo A=x

Mo, e, A=x
Mo A=x

(¢)

(w) (c)

Removal of these rules calls for some changes:

o splitting of connectives

@ changes to interpretation of a sequent

NB: FLew is equivalent to Hohle's monoidal logic (ML).
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Algebraic semantics for FLe,

A FLey-algebra is an algebra A = (A, -, —, A, V,0,1) such that:
QO (A /A,V,0,1) is a bounded lattice, 1 is the greatest and 0 the least element
Q@ (A,-,1) is a commutative monoid

Q forall x,y,z€ A, z<(x—y)iff x-z<y

FLew is the logic of FLew-algebras.
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Algebraic semantics for FLe,

A FLey-algebra is an algebra A = (A, -, —, A, V,0,1) such that:
QO (A /A,V,0,1) is a bounded lattice, 1 is the greatest and 0 the least element
Q@ (A,-,1) is a commutative monoid

Q forall x,y,z€ A, z<(x—y)iff x-z<y

FLew is the logic of FLew-algebras.

FLew-algebras form a variety;

the subvarieties correspond to axiomatic extensions of FlLey.
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FLew and some extensions

° j‘,,@uhsm
o cmo.au\,
// I~
arded g ~ mwﬂ- o Luvasiewic,
/ i / e cbmkﬂ
‘En*"{t:‘%*‘dt/ /{\),N\CMQ\ P q DN s
/ = of \‘41
/ |
{ Vo »iadl | o L3N]
2 ~— { |
\ T e ‘
LWy o\ l /c [
e Flew
Figure:

Zuzana Hanikova Models of set theory in tukasiewicz logic



tukasiewicz logic

(More precisely, tukasiewicz's infinite-valued logic, ca. 1920.
Denoted L.)

Zuzana Hanikovd Models of set theory in tukasiewicz logic



tukasiewicz logic

(More precisely, tukasiewicz's infinite-valued logic, ca. 1920.
Denoted L.)

Usually conceived in a narrower language, such as:
° {"_,_‘}
° {—>, —|} or {—>,O}

{'7 ) 0}

Zuzana Hanikovd Models of set theory in tukasiewicz logic



tukasiewicz logic

(More precisely, tukasiewicz's infinite-valued logic, ca. 1920.
Denoted L.)

Usually conceived in a narrower language, such as:
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Propositionally, the logic is given by the algebra
[0,1]r. = ([0, 1], L., —&, min, max, 0, 1)

with the natural order of the reals on [0, 1], and
x-Ly =max(x +y—1,0)
x—py=min(l,1—x+y)
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tukasiewicz logic

(More precisely, tukasiewicz's infinite-valued logic, ca. 1920.
Denoted L.)

Usually conceived in a narrower language, such as:
° {+7_‘}
° {—>7 —|} or {—>,O}
° {'7 e 0}

Propositionally, the logic is given by the algebra
[0,1]r. = ([0, 1], L., —&, min, max, 0, 1)

with the natural order of the reals on [0, 1], and
x-Ly =max(x +y—1,0)
x—py=min(l,1—x+y)

NB: all operations of [0, 1]s, are continuous.
Hence, no two-valued operator is term-definable.
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tukasiewicz logic — propositional axioms, completeness

Axioms:

o (L1) o — (v — ¢)

o (£2) (¢ —=v) = ((¥v = x) — (¢ = X))
(t3) (mp — ) = (¥ — )

o (t4) (¢ =) =) = (¥ — ¢) = ¢)

Deduction rule: modus ponens.
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tukasiewicz logic — propositional axioms, completeness

Axioms:

o (L1) o — (v — ¢)

o (£2) (¢ —=v) = ((¥v = x) — (¢ = X))
(t3) (mp — ) = (¥ — )

o (t4) (¢ =) =) = (¥ — ¢) = ¢)

Deduction rule: modus ponens.

General algebraic semantics: MV-algebras.

Propositional tukasiewicz logic is
@ strongly complete w.r.t. MV-algebras

o finitely strongly complete w.r.t. [0, 1]%
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tukasiewicz logic with the A-projection

Semantics of A in a linearly ordered algebra A:
e A(x)=1ifx=1
o A(x) = 0 otherwise
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tukasiewicz logic with the A-projection

Semantics of A in a linearly ordered algebra A:
e A(x)=1ifx=1
o A(x) = 0 otherwise

Axioms:

o (Al) ApV -Ap

o (A2) A(p V1) — (Ap Vv AY)

° (A3) Ap— ¢

o (A4) Ap — AAyp

o (A5) Ay — ¥) — (Ap — AY)
A deduction rule: ¢/Ap.
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Assume the language {€,=}.
Let A be an MV-chain.

Tarski-style definition of the value ||¢||m., of a formula ¢ in an A-structure M and
evaluation v in M; in particular,

o ...
o [[¥xpllw,y = Auz, lollim

o [I3xelm, = Vo=, el
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tukasiewicz logic — first-order semantics

Assume the language {€,=}.
Let A be an MV-chain.

Tarski-style definition of the value ||¢||m., of a formula ¢ in an A-structure M and
evaluation v in M; in particular,

o ...
° ”vx‘p'lll\\ll,v = /\vzxv’ ”90“:\‘4,\/’
o [3x¢lmy = Ve, el

An A-structure M is safe if ||¢||m., is defined for each ¢ and v.

The truth value of a formula ¢ of a predicate language £ in a safe A-structure M for £

IS
lelm = A llls,

v an M—evaluation
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tukasiewicz logic — first-order axioms

Axioms for quantifiers V, 3:

(V1) Vxep(x) — ¢(t) (t substitutable for x in )
(31) ©(t) — Ixp(x) (t substitutable for x in )
(V2) Vx(x — ¢) — (x — Vxp) (x not free in x)
(32) Vx(p — x) — (3x¢ — x) (x not free in x)
(V3) Vx(p V x) — (Yx¢ V x) (x not free in x)

The rule of generalization: from ¢ entail Vx.

NB: the two quantifiers are interdefinable in L.
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tukasiewicz logic — equality

Equality axioms for set-theoretic language:

o reflexivity

@ symmetry
@ transitivity
@ congruence Vx,y,z(x =y &z € x — z € y)
@ congruence Vx,y,z(x =y &y € z— x € z)

Moreover (for reasons given below), we postulate
the law of the excluded middle for equality:

o Vx,y(x =y V-(x=y))
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tukasiewicz logic

Let TU{p} be a set of sentences. Then T Fy, ¢ iff for each MV-chain A and each safe
A-model M of T, ¢ holds in M.
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tukasiewicz logic

Let TU{p} be a set of sentences. Then T Fy, ¢ iff for each MV-chain A and each safe
A-model M of T, ¢ holds in M.

NB: for a general language L, the truths of [0, 1]r, are not recursively axiomatizable
(in fact, they are My-complete).
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tukasiewicz logic

Let TU{p} be a set of sentences. Then T Fy, ¢ iff for each MV-chain A and each safe
A-model M of T, ¢ holds in M.

NB: for a general language L, the truths of [0, 1]r, are not recursively axiomatizable
(in fact, they are My-complete).

Analogous completeness for the expansion with A.
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Strengthening the logic

Let L be a consistent FLey-extension.

Let T be a theory over L.

If T proves ¢ V - for an arbitrary ¢, then
T is a theory over classical logic.
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Let T be a theory over L.

If T proves ¢ V - for an arbitrary ¢, then
T is a theory over classical logic.

In other words,
adding the law of excluded middle (LEM): ¢ VV = to FLew yields classical logic.

Zuzana Hanikovd Models of set theory in tukasiewicz logic



Strengthening the logic

Let L be a consistent FLy-extension.

Let T be a theory over L.

If T proves ¢V —p for an arbitrary ¢, then
T is a theory over classical logic.

In other words,
adding the law of excluded middle (LEM): ¢ VV = to FLew yields classical logic.

Example: Grayson's proof of LEM from axiom of regularity:

Let {0 | ¢} stand for {x | x =D A p}.

Consider z = {0 | ¢, 1} (where 1 = {0})

Then z is nonempty, and consequently has a €-minimal element.
If @ is minimal then ¢ holds,

while if 1 is minimal then ¢ fails.

Thus, from regularity, one proves LEM for any formula.
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Strengthening the logic

Lemma (H&jek ca. 2000)

Let L be such that it proves the propositional formula (p — p& p) — (pV —p). Then, a
set theory with

@ separation (for open formulas),
@ pairing (or singletons),

@ congruence axiom for €

proves Vxy(x =y V =(x = y)) over L .

Proof: take x, y.

Let z={u € {x} | u = x}, whence u € z = (u = x)%.

Since (x = x)?, we have x € z.

If y = x then y € z by congruence. Then (y = x).

We proved y = x — (y = x)?, thus (by assumption on the logic) x = y V —(x = y).
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Strengthening the logic

Lemma (Grishin 1999)

In a theory with
@ extensionality,
@ successors,
@ congruence,
LEM for = implies LEM for €.
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Axioms of FST

o (ext.) Vxy(x =y = (A(x C y)&A(y C x)))
(empty) IxAVy—(y € x)

(pair) VxVy3zAVu(u e z=(u=xVu=y))
(union) Vx3zAVu(u € z=3y(u € y & y € x))
(weak power) Vx3zAVu(u € z = A(u C x))
(inf.) 3zA(D € z& Vx € z(x U {x} € 2))

(

sep.) Vx3zAVu(u € z = (u € x&p(u, x)))
for any ¢ not containing free z
o (coll.) Vx3zA[Vu € x3v p(u,v) — Vu € x3v € zp(u, v)]
for any ¢ not containing free z
o (€-ind.) AVx(AVy(y € x — ¢(y)) — ¢(x)) — AVxyp(x)
for any ¢
o (support) Vx3z(Crisp(z)&A(x C z)))
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An A-valued universe
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An A-valued universe

Work in classical ZFC.
Assume A is a complete (MV-)algebra.
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An A-valued universe

Work in classical ZFC.
Assume A is a complete (MV-)algebra.

Define V2 by ordinal induction.
AT = A\ {0*}.

° V¢ = {0}
o VA, ={f:Fnc(f)&Dom(f) C V& &Rng(f) C A"} for any ordinal
o V& =, V& for limit ordinals A

VA = UaEOrd VD?
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An A-valued universe

Work in classical ZFC.
Assume A is a complete (MV-)algebra.

Define V2 by ordinal induction.
AT = A\ {0*}.

° V¢ = {0}
o VA, ={f:Fnc(f)&Dom(f) C V& &Rng(f) C A"} for any ordinal
o V& =, V& for limit ordinals A

VA = UaEOrd VD?

Define two binary functions from V* into L, assigning to any u,v € V* the values
Jue v and [lu=v]|

lu€ v|| = v(u) if ue D(v), otherwise O

|lu=v||=1if u=v, otherwise 0
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An A-valued universe

Work in classical ZFC.
Assume A is a complete (MV-)algebra.

Define V2 by ordinal induction.
AT = A\ {0*}.

° V¢ = {0}
o VA, ={f:Fnc(f)&Dom(f) C V& &Rng(f) C A"} for any ordinal
o V& =, V& for limit ordinals A

VA = UaEOrd Voe

Define two binary functions from V* into L, assigning to any u,v € V* the values

||lu € v] and [ju=v|

lu€ v|| = v(u) if ue D(v), otherwise O

|lu=v||=1if u=v, otherwise 0

By induction on the complexity of formulas, define for any ¢(xi, ..., xn)
an n-ary function from (VA)” into L, assigning to an n-tuple ui, ..., u, the value
lo(u, - s un)ll.
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An A-valued universe

Let ¢ be a closed formula provable in FST. Then ¢ is valid in V?, i. e., ZF proves
lloll = 1.
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An A-valued universe

Let ¢ be a closed formula provable in FST. Then ¢ is valid in V?, i. e., ZF proves
lloll = 1.

We have obtained an interpretation of FST in ZFC.
FST is distinct from ZFC unless A is a Boolean algebra.
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An Inner Model of ZF in FST
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An Inner Model of ZF in FST

Definition

(i) In a theory T, we say that a formula ¢(x1,...,x,) in the language of T is crisp iff
T EVx1, ..y Xn DX @(Xty .oy Xn).
(ii) In a (set) theory with language containing € we define Crisp(x) = Vu < (u € x).
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An Inner Model of ZF in FST

Definition

(i) In a theory T, we say that a formula ¢(x1,...,x,) in the language of T is crisp iff
T EVx1, ..y Xn DX @(Xty .oy Xn).
(ii) In a (set) theory with language containing € we define Crisp(x) = Vu < (u € x).

(Hereditarily crisp transitive set)
HCT (x) = Crisp(x)&Vu € x(Crisp(u)&u C x)
(Hereditarily crisp set)

H(x) = Crisp(x) & 3x" € HCT(x C x)

The class H is both crisp and transitive in FST:
® FST FVx(x € HV =(x € H))
@ FSTHVx,y(y Ex&x e H— y e H)
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An Inner Model of ZF in FST

For ¢ a formula in the language of ZF, define ¢ inductively:

o = ¢ for o atomic;

oM = for p = 0;
wzzwz&x”ﬁorw:w&x;

@' =" = x" for o =19 —x;
oM = (¥x € H)yp" for o = (Vx)v.
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An Inner Model of ZF in FST

For ¢ a formula in the language of ZF, define ¢ inductively:

o = ¢ for o atomic;

oM = for p = 0;
wzzwz&x”ﬁorw:w&x;

el =97 =) forp =9 —x;
o' = (Vx € H)Y! for p = (Vx).

Let © be a theorem of ZF. Then FST F !, \
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An Inner Model of ZF in FST

For ¢ a formula in the language of ZF, define ¢ inductively:
o = ¢ for o atomic;

oM = for p = 0;

sOZ = d):&XH for o = Y&x;

el =P = xfor o =1 — x;

o = (Vx € H)p" for ¢ = (Vx)¥.

Let © be a theorem of ZF. Then FST F !, \

So H is an inner model of ZF in FST and ZF is consistent relative to FST.

Zuzana Hanikovd Models of set theory in tukasiewicz logic



An Inner Model of ZF in FST

For ¢ a formula in the language of ZF, define ¢ inductively:
o = ¢ for o atomic;

oM = for p = 0;

sOZ = d):&XH for o = Y&x;

el =P = xfor o =1 — x;

o = (Vx € H)p" for ¢ = (Vx)¥.

Let © be a theorem of ZF. Then FST F !, \

So H is an inner model of ZF in FST and ZF is consistent relative to FST.

Moreover, the interpretation is faithful: if FST - ¢!, then ZF - ¢, but then ZF I ¢.
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Ordinals and rank in FST

Let Ordo(x) define ordinal numbers in classical ZFC.

The inner model H provides a suitable notion of ordinal numbers in FST:
if x € H, then

e Ordo(x) = Ord(x),
@ Ordo(x) is crisp.
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Ordinals and rank in FST

Let Ordo(x) define ordinal numbers in classical ZFC.

The inner model H provides a suitable notion of ordinal numbers in FST:
if x € H, then

e Ordo(x) = Ord(x),
@ Ordo(x) is crisp.

Define ordinal numbers in FST:

Ord(x) = x € H& Ordg(x)
Define:
Vo=190
Vay1 = WP(V,) for a € Ord

Va = J Vg for a limit a € Ord
BEa

V:UVa

a€Ord
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Ordinals and rank in FST

Let Ordo(x) define ordinal numbers in classical ZFC.

The inner model H provides a suitable notion of ordinal numbers in FST:
if x € H, then

e Ordo(x) = Ord(x),
@ Ordo(x) is crisp.

Define ordinal numbers in FST:

Ord(x) = x € H& Ordg(x)
Define:
Vo=190
Vay1 = WP(V,) for a € Ord

Va = J Vg for a limit a € Ord
BEa

V:UVa

a€O0rd
Then Vx3Ja(x € Vo).
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Extensions and further work
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Extensions and further work

@ Work with an arbitrary MV-algebra (Chang's algebra).
Can one get "nearly classical”?
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Extensions and further work
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Can one get "nearly classical”?

Lemma. Let A be an algebra, and let M be a model over A.
Let ~ be a congruence on A. Then M is a model over A/..

Zuzana Hanikovd Models of set theory in tukasiewicz logic



Extensions and further work

@ Work with an arbitrary MV-algebra (Chang's algebra).
Can one get "nearly classical”?

Lemma. Let A be an algebra, and let M be a model over A.
Let ~ be a congruence on A. Then M is a model over A/..

o Work without A.
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Extensions and further work

@ Work with an arbitrary MV-algebra (Chang's algebra).
Can one get "nearly classical”?

Lemma. Let A be an algebra, and let M be a model over A.
Let ~ be a congruence on A. Then M is a model over A/..

o Work without A.

@ A completeness theorem?
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