European Regional Centre for Ecohydrology / UNESCO, Poland

ECOHYDROLOGY Control of hydrological processes as a management tool

Iwona Wagner

International Centre for Ecology, Polish Academy of Sciences

Earth at the beginning of XXI Century

Almost 80% of the surface of the Earth has been modified by Man (NASA);

Freshwater ecosystems situated in the lowest points of the landscape – exposed to cumulative impact due to various forms of catchment exploitation;

 More then 50% of wetlands – the catchments' kidneys - have been lost due to land transformations.

IDENTYFICATION OF ECOLOGICAL PROBLEMS in global, regional and local scale

IMPACT ON BIOSPHERE

Overexploitation of natural resources and pollution emission Degradation of evolutionarily established energy, water and biogeochemical cycles

MECHANISTIC APPROACH

"OVER-ENGINEERING" and progressive degradation of the environment

IDENTYFICATION OF ECOLOGICAL PROBLEMS in global, regional and local scale

IMPACT ON BIOSPHERE

Overexploitation of natural resources and pollution emission Degradation of evolutionarily established energy, water and biogeochemical cycles

Technical approach

Ecological approach and environmental sciences

SUSTAINABLE MANAGEMENT & DEVELOPMENT

XXI Century Science

Research and scientific analyses must become more problem focused and apply an interdisciplinary approach to sustainable development issues in order for science to become more policy relevant.

T.Rosswall ICSU

European Regional Centre for Ecohydrology / UNESCO, Poland

United Nations Educational, Scientific and Cultural organization

ECOHYDROLOGY

INTERNATIONAL HYDROLOGICAL PROGRAMME -V, 1996 - 2001

TRADITIONAL PERCEPTION OF BIOLOGY AND HYDROLOGY IN ENVIRONMENTAL SCIENCE

ECOHYDROLOGY: QUANTIFICATION AND DUAL REGULATION OF E & H

Management of hydrological parameters of an ecosystem/ecosystems to control biological processes

HYDROLOGIA REGULATION BIOLOGIA

Shaping of biological structure of an ecosystem/ecosystems in a catchment, to regulate hydrological processes

ECOHYDROLOGY

The Ecohydrology theory is based upon the assumption that sustainable water resources management can be achieved by:

restoring and maintaining the evolutionarily-established processes of water and nutrient circulation and energy flows at a catchments scale;

Understanding the evolutionary established resilience and resistance of ecosystems to stress and
enhancing the absorbing capacity (robustness) of some ecosystems against human impact for maintenance of services in a catchment scale;

using ecosystem properties as water management tools.

European Regional Centre for Ecohydrology / UNESCO, Poland

United Nations Educational, Scientific and Cultural organization

ECOHYDROLOGY of WETLANDS

for water quality improvement

ECOHYDROLOGY INTEGRATION OF MEASURES IN A CATCHMENT SCALE

European Regional Centre for Ecohydrology UNESCO / Lodz, Poland

Zalewski, 2000

WETLANDS: LAND/WATER INTERFACE

buffering zones, maintaining the natural biogeochemical links between land, water and biota final step in conventional wastewater treatment technologies

General principles

 Understanding wetland ecology and its principles (e.g., hydrology, biogeochemistry, adaptations, succession) is essential to create and restore wetlands successfully as a part of a natural landscape

EHP Maximising efficiency and minimising costs

 Resisting of the ever-present temptation to overengineer wetlands by attempting either to channel natural energies that can not be channeled or introduce species that landscape and climate cannot support

EH!

Simple systems tend to be self-regulating and self-mantiaining

European Regional Centre for Ecohydrology UNESCO / Lodz, Poland

Mitsch & Jorgensen, 2004

Different types of wetlands

Factors determining stability of artificial and modified wetlands

European Regional Centre for Ecohydrology UNESCO / Lodz, Poland

(modified from Lechat, 1991)

Wetlands hydrology

- Hydroperiod and depth
- Seasonal pulses
- Hydraulics
- Hydraulic loading rates
- Detention time

Knight, 1990; Mitsch & Jorgensen, 2004

Hydroperiod and depth

Hydroperiod: the depth/volume of water in the wetland over time

•Constructed for wastewater treatment

Constructed for stormwater treatment (or combined)
Natural (esp., in urban catchments or located upstream)

1. ditch; 2. rushes (Phragmites, Typha, Glyceria); 3. sedimentation ponds (Nuphar, Lemna); 4. Shrubs (Salix)

Hydroperiod and depth

$\frac{\Delta (d \times A)}{\Delta t} = S_{in} + S_{out} + G_{in/out} + P - ET$

- Δ (d x A) change of wetland water volume over time
- d average water depth
- A surface area
- t time
- S_{in} water inflow
- S_{out} surface outflow
- G_{in/out} groundwater exchange
- P precipitation
- ET evapotranspiration

Hydroperiod determinates sedimentation rate, vegetation growth and oxygenation in wetlands

Hydroperiod impact for water quality improvement processes

 Sedimentation, filtration, and sorption of particulate matter within the wetland due to long water retention times and large sediment surface areas;

 Assimilation and retention of dissolved nutrients within the biomass present in the wetland;

 Oxidation and microbial transformation of organic matter in wetland sediments;

•Denitrification of nitrogenous compounds by microbial action within the wetland system.

European Regional Centre for Ecohydrology / UNESCO, Poland

United Nations Educational, Scientific and Cultural organization

Seasonal pulses Pilica River case study

EUTROPHICATION AND TOXIC ALGAL BLOOMS

Drinking water reservoir (Sulejow, Poland) photo. M. Tarczynska

CHROMOSOMAL ABERRATION INDUC CYANOBACTERI in in vitral

in *in vitro* hum A - chromatid breaks, B - chromatid exchan

status

ric fragment.

RC

•

Cooperation with:

- prof. R. Osiecka, Department of Cytogenetics and Molecular Biology of Plant, University of Lodz, Poland

EFFECT OF FLOOD ON PHYTOPLANKTON BIOMASS

QUESTION?

Can we use flood pulses for regulation of nutrient transport dynamics?

1. What are the relationships between hydrological parameters of tributaries and transport of phosphorus to a reservoir?

2. How can we enhance absorbing capacity of floodplain wetlands against phosphorus loads?

<u>Relationships between hydrological processes</u> and nutrients transport

PHOSPHORUS (TP) AND MATTER (TSM) TRANSPORT
during low (Q_N) and high (Q_w) dischargeTHE PILICA RIVER
SSQ (1996-1999) = 28,3 m³ s⁻¹THE LUCIĄŻA RIVER
SSQ (1996-1999) = 2,69 m³ s⁻¹

Traditional methods of water quality improvement should be extended with ecosystem biotechnologies, which reduce non-point pollution sources.

Pilica River above the Sulejow Reservoir

HIERARCHY OF FACTORS determining concentrations of phosphorus

HIERARCHY OF PROCESSES determining concentrations of phosphorus

IMPORTANT ROLE OF BIOTIC STRUCTURE OF CATCHMENT AND RIVER BED IN NUTRIENT RETENTION

WINTER

WINTER PHYSICAL PROCESSES OF PHOSPHORUS TRANSPORT FROM A CATCHMENT

Fot. I. Wagner-Łotkowska

SUMMER

SUMMER

RETENTRION OF PHOSOHORUS IN BIOTIC STRUCTURE OF A RIVER BED

SPRING FLOOD, III 1996 relationship between discharge and TP concentration

CONTROL OF FLOOD PULSES IN WETLANDS MAY BE A TOOL FOR REDUCTION OF TP CONCENTRATION IN RIVERS

Fot. K. Krauze

Seasonal pulses

•The highest nutrient concentrations and loads are observed during the rising hydrograph limb (nutrient-condensing stage);

•Before river discharge reaches its maximum, nutrient concentrations and loads start to decrease and continue to decrease during falilng hydrograph limb (nutrient-dilution stage);

•During high/moderate floods of short duration but with an high amplitude, the nutrients loads transported are greater than during lower amplitude and longer duration events;

•Flash floods may result with dilution of concentrations of the transported contaminants, however the loads are still high due to high hydraulic load. This may periodically lower the efficiency of wetlands in water quality improvement.

Seasonal pulses determine nutrient supply, regulate oxygenation and may rejuvenate system for nutrient retention

The enhancement of river self-purification potential by control of hydrological and biotic processes

European Regional Centre for Ecohydrology UNESC

No.

as line

z Polant

1

USE OF FLOODPLAIN CHARACTERISTICS AS A TOOL HYDROLOGICAL MANAGEMENT Digital Terrain Model of a floodplain

European Regional Centre for Ecohydrology UNESCO / Lodz, Poland

Maguszewski, Majewski, Wagner 2001

FLOODPLAIN HYDRAULICS AS SEDIMENTATION DETERMINANT

SEDIMENTATION ENHANCES WITH

- Morphological diversity
- Vegetation presence
- Low flows and latitudes
- OM deposition at high latitudes

IDENTIFICATION OF TIMING FOR IMPROVEMENT OF FLOOD WATERS MANAGEMENT

PLANT COMMUNITIES ON THE FLOODPLAIN AND THEIR ABILITY TO PHOSPHORUS ASSIMILATION

TOTAL PHOSPHORUS CONCENTRATION IN 6 SPECIES OF SALIX

> foliage branches roots

ENHANCEMENT OF ABSORBING CAPACITY OF FLOODPLAIN for nutrients trapping

European Regional Centre for Ecohydrology UNESCO / Lodz, Poland

Koch, Wagner, 2001

Conversion of nutrients into biomass and bioegenrgy for regional sustainability

WATER QUALITY AND FLOOD CONTROL BY WETLANDS in the context of hydrological pattern due to global changes

European Regional Centre for Ecohydrology UNESCO / Lodz, Poland

Wagner Zalewski, 2001

European Regional Centre for Ecohydrology / UNESCO, Poland

United Nations Educational, Scientific and Cultural organization

