Ecohydrological monitoring of water bodies in the context of the Water Framework Directive international aspects

Iwona Wagner International Centre for Ecohydrology u/a UNESCO

Ecohydrology from multi to transdisciplinary stage

European Water Policy from sectorial to holistic approach

Directives adressing specific issues

- Integrated River Basin Management
- International Co-operation
- Regional variability of regions
- Sustainable economy

European Water Framework Directive (EC/2000/60)

The Water Framework Directive is the most substantial piece of water legislation ever produced by the European Commission, and will provide the major driver for achieving sustainable management of water in the Member States for many years to come.

All types of water bodies...

Surface waters Lakes

Rivers

Artificial **or** heavily modified surface water bodies

Transitional waters

Coastal areas

Ground waters

🔮 Ad	obe Reader CE - [download.pdf] 4. Educia - Widek Dekumeet Naraedzia Okres Demos					
					Create der	
<u> </u>	Otwórz 📙 Zapisz kopię 🚍 Drukuj 🤮 Wyślije-mail 🙌 🛛 🖑 🔟 🛄 Zaznacz tekst 💌 🎑 📲 🔍 🔹 📔		4%	• 📀	anyone ca	an open
4	4	· .	두 🔶	Wyszukiw	vanie w PDF	Ukryj
Strony Varstwy V Podpisy 🔰 Zakładki	22.12.200 EN Official journal of the European Communities L 327 I (Acts whose publication is abligatory) DIRECTIVE 2000/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2000 establishing a framework for Community action in the field of water policy DESTINGTION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL DESTINGTION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL	Zakone weti Znalezi 4 Wyniki	iono wysz iono wszust of <u>wetlan</u> wetland	tkie instancje	h recognised t depending on	ukiwanie the imp them, g on th
	ELROPEthe status of aquatic ecosystems and, with regardlessHavingwater needs, terrestrial ecosystems and wetlanHavingdepending on the aquatic ecosystems;	ard nds	to ti dire	neir ctly		
	Having regard to the opinion of the Economic and Social against pollution caused by certain dangerous substances (*), as part of an overall policy on freshwater protection.					
	 Having regard to the opinion of the Committee of the Regions (³), Acting in accordance with the procedure laid down in Article 251 of the Treaty (⁴), and in the light of the joint text approved by the Conciliation Committee on 18 July 2000, Whereas: (4) Waters in the Community are under increasing pressure from the continuous growth in demand for sufficient quantities of good quality water for all purposes. On 10 November 1995, the European Environment Agency in its report Environment in the European Union – 1995' presented an updated state of the environment report, confirming the need for action to protect Community waters in qualitative as well as in quantitative terms. (1) Water is not a commercial product like any other but, (5) On 18 December 1995, the Council adopted 		Sotowe Zaawansow	ane opcje wy	yszukiwania	×
4	▶ 8,28x11,69 cale ▲	- 2	<u>Pomoc dla</u>	<u>i program</u> u	Adobe Reader	<u>r 6.0</u>
	1 z 72					
🏉 Sta	art 🛛 🕝 🥥 🛛 💽 Microsoft PowerPoint - [🛛 🌇 Adobe Reader CE - [d				🌯 🗞 🔋 K	09:45

WFD establishes a framework....

• **prevents further deterioration** and enhances the status of aquatic ecosystems (and terrestrial ecosystems and wetlands directly depending on them);

promotes sustainable water use;

• enhances protection and improvement of the aquatic environment, through specific measures;

• ensures the progressive **reduction of pollution of groundwater** and prevents its further pollution, and

• Contributes to mitigating the effects of **floods and droughts**

The major purpose

Reaching good ecological status or good ecological potential for every surface water body by 2015

A new approach

TRADITIONAL PERCEPTION of biological parameters in WRM

Water quality assessment based on chemical water quality

e.g., EU WFD regulations

Good ecological status

Habitat & biota structure

Monitoring based on such components of aquatic systems, that responds to overall conditions of a whole river ecosystem

Monitoring requirements in WFD

Monitoring requirements

 Article 8 of the Directive establishes the requirements for the monitoring of surface water status, groundwater status and protected areas

"Monitoring programmes are required to establish a coherent and comprehensive overview of water status within each river basin district,,

Monitoring means the gathering of data and information on the status of water, NOT direct measurement of emissions and discharges to water.

The programmes have to be operational at the latest by 22 December 2006, and must be in accordance with the requirements of Annex V.

Why to monitor?

- Monitoring should permit the classification of all surface water bodies and groundwater into the respective classes reflecting their status.
- Where monitoring data indicate that the objectives set under Article 4 for the water body are unlikely to be achieved, the Member State shall undertake appropriate actions

What to monitor?

The 'water body'

- a coherent sub-unit in the river basin (district) to which the environmental objectives of the Directive must apply.
- the main purpose of identifying 'water bodies' is to enable the status to be accurately described and compared to environmental objectives.

The 'water body'

Defining typology

Type-specific reference conditions

Ecological Quality Ratio (EQR):

Observed biological value

Reference biological value

Peter Pollard

Quality elements for the classification of ecological status

1.1.2. Lakes

Biological elements

- Composition, abundance and biomass of phytoplankton
- Composition and abundance of other aquatic flora
- Composition and abundance of benthic invertebrate fauna
- Composition, abundance and age structure of fish fauna

Hydromorphological elements supporting the biological elements

- Hydrological regime
 - quantity and dynamics of water flow
 - residence time
 - connection to the groundwater body
- Morphological conditions
 - lake depth variation
 - quantity, structure and substrate of the lake bed
 - structure of the lake shore

Quality elements for the classification of ecological status

1.1.2. L a k e s.... cont

- Chemical and physico-chemical elements supporting the biological elements
- General
 - Transparency
 - Thermal conditions
 - Oxygenation conditions
 - Salinity
 - Acidification status
 - Nutrient conditions
- Specific pollutants
 - Pollution by all priority substances identified as being discharged into the body of water
 - Pollution by other substances identified as being discharged in significant quantities into the body of water

Variety of monitoring systems in the member countries

- There are a number of existing classification systems already in use throughout the EU;
- Iocal natural variations in biological communities, hydromorphological conditions and physicochemical variables;
- need for different indicators depending on their sensitivity to natural variation in habitat conditions;
- existing international, European and national standards for a number of the required quality elements.

Standarisation of methods

Common Implementation Strategy (CIS)

The three steps in the biological monitoring systems for the harmonisation task

Lake biological methods employed in different EU countries

Biological	Pressure	Country	Sampling	Metric	Assessment	
element						
Phytoplankton	Eutrophication	AT, EE, FIN, IE, IT, LV, LT, NO, PT, SE, SL, SP, UK	Interests differ Lake areas, frequencies, qualitative or quantitative samples. Using national Std or published methods	Chl as biomass, taxonomic composition, abundance and biovolume	Ref. Cond not considered or only for limited No of lakes. None WFD compatible	
Aquatic plants	Eutrophication	EE, DE, IE, FIN, LV, LT, SE, SL, UK	Different strategies, influence on plants in transect from shore to deep water	ID to species, abundance as % coverage	One considers ref cond. but for limited No of lakes, mostly used to monitor changes. Not WFD compatible	
Benthic Macro- invertebrates	Eutrophication,, acidification	IE, SE, NO UK,	Different sampling according to lake area of interest International or National Std	Species abundance, presence or absence of sensitive species	Species Applicable to different areas (littoral or profundal) ref. cond. or need to develop type specific ref. cond., 5 quality classes. 2 WFD compatible	
		CY, LV,	Hand net or beaker,	Family, genus,	Applicable to	

Key features for Quality Elements (QE) for Rivers

Guidance Document No. 7 Monitoring under the Water Framework Directive

Table 3.1 Key features of each biological quality element (QE) for rivers

Aspect/fea	ture Benth	ic invertebrates	Macrophytes	Benthic	Algae	Fish	Phytoplankton
Measured pa ndicative of	Guidance Document Monitoring under the	No. 7 Water Framework D	irective				
upportive/in arameters n ampled at ti	Table 3.2 Key	features of each hy	dromorphological q	uality elements for r	ivers		
ressures to sponds	Aspect/feature	Quantity and dynamics of water flow	Connection to groundwater bodies	River Continuity	River depth and width variation	Structure and substrate of the river bed	Structure of the riparian zone
obility of Q	Measured parameters indicative of QE	Historical flows, modelled flows, real-time flow, current velocity	Water table height, surface water discharge	No and type of barrier and associated provision for fish passage	River cross section, flow	Cross section, particle size, presence and location of CWD	Length, width, species present, continuity, ground cover
vel and so riability of	Pressures to which QE responds	Used to detect impact of water storage, abstraction and discharge on biota, hydropower regulation	Provides information on surface-groundwater relationship	Used to detect impact on upstream migration of fish	Used to detect impact on biota from changing flows and habitat availability	Determines impact on biota from changing habitat availability	Influences structure of banks, provides habitat and shading for biota, filters diffuse runoff
esence in I	Level and sources of variability of QE	Highly variable depending on geographical and climatic conditions. Variations reduced as response to barriers	Moderate variability	Low variability. Based on presence/modification of infrastructure	Moderate variability. Influenced by hydropower regulation	Variable depending on particle size and flow (e.g. gravel/sand scour/sedimentation prevalent following high flows)	Variable. Possibility of physical clearing, accessibility from livestock, erosion etc
mpling me	Sampling methodology	ISO standard for current velocity. No common methodology for dynamics	No common methodology	No common methodology	No common methodology	No common methodology	No common methodology
vical same	Typical sampling frequency	In-situ, real time	6 monthly, depending on climatology and geology	Every 5-6 years	Annual	Annual	Annual
ne of year	Time of year of sampling	All year	Winter and summer	varied	varied	varied	varied
pical samp	Typical "sample" size or survey area	Common standard for No of monitoring points in cross sections developed	Not defined	Entire reach	No common agreement	No common agreement	50m in headwaters 100m in middle and lower reaches
se of sam	Ease of sampling /measurements	Simple using in-situ flow gauging stations in small rivers. Greater effort required for large rivers.	Simple. Measurement of groundwater height (boreholes) and river flow	Simple. Survey to determine location and type of structures and abstraction sites/volumes	Can be simple using observation and measurement or detailed using laser survey equipment	Simple following minimal training	Simple following minimal training. Collection and laboratory identification of species may be required
aboratory o easuremen	Basis of any comparison of results/quality/stations e.g. reference	No	No	No	No	No	No

Other methods of survey to be standarised

Table 2. CEN/TC 230/WG 2 formal work programme (July 2005).

CEN Reference	Work item	Comment
CEN230217	Water Quality - Guidance standard for the surveying of	NWIP approved
prENXXX	macrophytes in lakes	
CEN 230175	Water Quality – Guidance standard on the routine	Original WI deleted but
	sampling of benthic algae in fast flowing, shallow	NWIP will be requested to
	waters to include laboratory procedures	include expanded scope
CEN 230171	Water Quality – Guidance on the scope and selection of	
PrEN14962	fish sampling methods.	
CEN 230169	Water Quality – Guidelines for quantitative	ISO lead but proposed for
prEN/ISO16665	investigations of marine soft-bottom benthic fauna in	parallel adoption
	the marine environment	
CEN 230216	Water Quality – Guidance on marine biological surveys	CEN lead
prEN/ISO 19493	of littoral and sublittoral hard bottom	
CEN 230207	Water Quality – Guidance standard for routine analysis	
prEN15204	of phytoplankton abundance and composition using	
	inverted microscopy (Utermöhl technique)	
CEN230209	Water Quality – Guidance on assuring the quality of	
prEN 14996	biological and ecological assessments in the aquatic	
	environment	
CEN 230208	Water Quality – Guidance standard for the routine	

key criteria for the programmes of measures

- An assessment on the deviation of observed conditions to those that would normally be found under reference conditions;
- Provides for natural and artificial physical habitat variation;
- Accounts for the range of natural variability and variability arising from anthropogenic activities of all quality elements in all water-body types;
- Accounts for interactions between surface and groundwaters; and,
- Provides for detection of the full range of potential impacts to enable a robust classification of ecological status.

Ecohydrology and WFD

First step

- assessment of the quality of aquatic habitats and ecosystems

 integrative analysis of the hydrological and ecological dynamics of the catchment,

Monitoring of threats

Application of molecular methods for risk assessment and an early warning system

Blue-green algae blooms due to reservoir eutrophication

Molecular monitoring as an early warning system againist toxic blue-green algae blooms

Demaged DNA in human limphocyts

(Zalewski 1999: Mankiewicz et al., 2005)

Underground runoff

Surface runoff

Biocenosis spatial distribution in river basin.

Agricultural lands

Grazing lands

Floodplains

Urbanized area **River channel**

Small ponds

Woodlands

Main reservoir

Small impoundments

Second step

integrative analysis of the dynamics of hydrological and biological processes

Identification of the potential areas for the enhancement of ecosystem absorbing capacity

RETENTION IN THE CATCHMENT by enhancement of landscape diversity

Hot spots

TRAPPING
- in plant biomass
(seasonally removed)
- storage in the unavailable
pool in bottom sediments

SEDIMENTATION - pondage - at the floodplain TRANSFORMATION into biomass in land water ecotones

DENITRIFICATION in anaerobic conditions of wetlands

SELFPURIFICATION
- mineralisation of organic matter
- reduction of spiralling transport rate

RECIRCULATION reduction of resuspension - phosphatase – enzymatic release - zooplankton excretion

BIOFILTRATION - reduction of algae biomass by biota

0

HYDROLOGICAL CONTROL hydrological control of biotic feed back towards water quality improvement in reservoirs

Elaboration of methods

Optimization of the biological structure of the Pilica River floodplain for the enhancement of self-purification

0.352

0.000

Distribution of water velocities on the floodplain during floods and high discharges

<u>Legend:</u>

- Mown meadows
- Scirpetum silvatici
- Caricetum gracilis Phragmitetum australis
- Riverine bush with Salix sp. Mixed wood

Distribution of wetland vegetation corresponding to the sequence of floodplain inundation

(Magnuszewski et al.. 2005; Kiedrzyńska et al., in press)

Ecohydrology and WFD

Third step

Implementation plans in the river basin distrcicts (catchment)

EU – WATER FRAMEWORK DIRECTIVE

Article 13: River basin management plans

River basin management plan is to be produced for each river basin.

More detailed programmes and management plans may be produced: - for sub-basin, sector, issue, or water type, -to deal with particular aspects of water management.

Ecohydrology

Contribution to achievement of good ecological status

ECOHYDROLOGY Minimising threats and maximising opportunities Opportunities

Threats

Application of Ecohydrology as a factor maximising opportunities in the successful strategic scenario of sustainable freshwater management

Zalewski, 1997

<15 15-50 15-100 >100 (30) (30) (31) (19) Population density [km⁻²] (number of rivers)

Annual mean total phosphorus levels in four European regions

Lotal phosphorus [wd and supervised for the second second

0

Relationship between annual mean TP concentration and population density in the river catchments

700

600

500

400

300

200

100

 dm^{-3}

Nordic Western EasternSouthern (61) (264) (116) (102) Region (number of rivers)

ECOHYDROLOGY

Use of ecosystem properties as management tool

AVALIABLE OPTIONS

,Business as usual": Mechanistic approach = high cost, low efficiency; declining water resources and ecosystem services

→ Appreciating biota as an indicative system: Hydrology – elimination of floods and droughts; some restoration efforts for flood reduction, biodiversity and aesthetic values (e.g EU directive "good ecological status")

→ Ecohydrology: Interdiscilpinary system approach for regulation processes towards reversing water and ecosystem degradation by conversion of environmental threats in to socioeconomic opportunities

→ e.g. Eutrophication factor – conversion of phosphorus excess into bio-energy.

→ Additional benefits: increased biodiversity, reduction CO₂ emission; and providing employment opportunities, low cost technologies.

ECOHYDROLOGY general framework for implementation

PROBLEM

scarcity of water of good quality of and related ecosystem services

ECOHYDROLOGY

Integrative analysis of DYNAMICS OF HYDROLOGICAL AND BIOLOGICAL PROCESSES

Identification of **REGULATORY FEEDBACS**

between hydrology and biota for potential application

INTEGRATION AND HARMONISATION

all range of regulatory feedbacks (E-H) and hydrotechnical facilities in basin scale for restoration and enhancement of carrying capacity considering socio-economic and climatic scenarios

ADAPTATIVE IMPLEMENTATION

The use of ecosystem properties as an complementary tool to hydrotechnical solutions: - Consultation with authorithies, stakeholders - Adaptative assessment and management

> **GOAL** MDG, good ecological status

(Zalewski 2004)

http://ec.europa.eu/environment/water

List of published CIS Guidance Documents http://circa.europa.eu/