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Why fuzzy set theory?

try to capture a mathematical world: develop fuzzy mathematics
(indicate a direction)

study the notion of a set, and rudimentary notions of set theory (some properties
may be available on a limited scale; classically equivalent notions need not be
available in a weak setting)

wider set-theoretic universe: recast the classical universe of sets as a subuniverse of
the universe of fuzzy sets

Explore the limits of (relative) consistency. (Which logics allow for an
interpretation of classical ZF? Which logics give a consistent system?)
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Programme

Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic.
(Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T , governed by L.

The theory T should:

generate a cumulative universe of sets

be provably distinct from the classical set theory

be reasonably strong

be consistent (relative to ZF)

Between classical and non-classical:
classical set-theoretic universe is a sub-universe of the non-classical one
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Plan for talk

1 Logics without the contraction rule

2  Lukasiewicz logic

3 A set theory can strengthen its logic

4 A-valued universes

5 the theory FST (over  L)

6 generalizations
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A family of substructural logics: FLew and extensions

Consider propositional language F .
(FLew-language: {·,→,∧,∨, 0, 1}.)

A logic in a language F is a set of formulas closed under substitution and deduction.

“Substructural” — absence of some structural rules (of the Gentzen calculus for INT).
In particular, FLew is contraction free.

Structural rules:

Γ, ϕ, ψ,∆⇒ χ
(e)

Γ, ψ, ϕ,∆⇒ χ

Γ,∆⇒ χ
(w)

Γ, ϕ,∆⇒ χ

Γ, ϕ, ϕ,∆⇒ χ
(c)

Γ, ϕ,∆⇒ χ

Removal of these rules calls for some changes:

splitting of connectives

changes to interpretation of a sequent

NB: FLew is equivalent to Höhle’s monoidal logic (ML).
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Algebraic semantics for FLew

A FLew-algebra is an algebra A = 〈A, ·,→,∧,∨, 0, 1〉 such that:

1 〈A,∧,∨, 0, 1〉 is a bounded lattice, 1 is the greatest and 0 the least element

2 〈A, ·, 1〉 is a commutative monoid

3 for all x , y , z ∈ A, z ≤ (x → y) iff x · z ≤ y

FLew is the logic of FLew-algebras.

FLew-algebras form a variety;

the subvarieties correspond to axiomatic extensions of FLew.
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Zuzana Haniková Models of set theory in  Lukasiewicz logic



FLew and some extensions

Figure:
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 Lukasiewicz logic

(More precisely,  Lukasiewicz’s infinite-valued logic, ca. 1920.
Denoted  L.)

Usually conceived in a narrower language, such as:

{+,¬}
{→,¬} or {→, 0}
{·,→, 0}
. . .

Propositionally, the logic is given by the algebra

[0, 1] L = 〈[0, 1], · L,→ L,min,max, 0, 1〉

with the natural order of the reals on [0, 1], and
x · L y = max(x + y − 1, 0)
x → L y = min(1, 1− x + y)

NB: all operations of [0, 1] L are continuous.
Hence, no two-valued operator is term-definable.
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 Lukasiewicz logic — propositional axioms, completeness

Axioms:

( L1) ϕ→ (ψ → ϕ)

( L2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

( L3) (¬ϕ→ ¬ψ)→ (ψ → ϕ)

( L4) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

Deduction rule: modus ponens.

General algebraic semantics: MV-algebras.

Propositional  Lukasiewicz logic is

strongly complete w.r.t. MV-algebras

finitely strongly complete w.r.t. [0, 1] L
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 Lukasiewicz logic with the ∆-projection

Semantics of ∆ in a linearly ordered algebra A:

∆(x) = 1 if x = 1

∆(x) = 0 otherwise

Axioms:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ

(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

A deduction rule: ϕ/∆ϕ.
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 Lukasiewicz logic — first-order semantics

Assume the language {∈,=}.

Let A be an MV-chain.

Tarski-style definition of the value ‖ϕ‖AM,v of a formula ϕ in an A-structure M and
evaluation v in M; in particular,

. . .

‖∀xϕ‖AM,v =
V

v≡x v′ ‖ϕ‖AM,v′

‖∃xϕ‖AM,v =
W

v≡x v′ ‖ϕ‖AM,v′

An A-structure M is safe if ‖ϕ‖AM,v is defined for each ϕ and v .

The truth value of a formula ϕ of a predicate language L in a safe A-structure M for L
is

‖ϕ‖AM =
^

v an M−evaluation

‖ϕ‖AM,v
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 Lukasiewicz logic — first-order axioms

Axioms for quantifiers ∀, ∃:

(∀1) ∀xϕ(x)→ ϕ(t) (t substitutable for x in ϕ)
(∃1) ϕ(t)→ ∃xϕ(x) (t substitutable for x in ϕ)
(∀2) ∀x(χ→ ϕ)→ (χ→ ∀xϕ) (x not free in χ)
(∃2) ∀x(ϕ→ χ)→ (∃xϕ→ χ) (x not free in χ)
(∀3) ∀x(ϕ ∨ χ)→ (∀xϕ ∨ χ) (x not free in χ)

The rule of generalization: from ϕ entail ∀xϕ.

NB: the two quantifiers are interdefinable in  L.
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 Lukasiewicz logic — equality

Equality axioms for set-theoretic language:

reflexivity

symmetry

transitivity

congruence ∀x , y , z(x = y & z ∈ x → z ∈ y)

congruence ∀x , y , z(x = y & y ∈ z → x ∈ z)

Moreover (for reasons given below), we postulate
the law of the excluded middle for equality:

∀x , y(x = y ∨ ¬(x = y))
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 Lukasiewicz logic

Theorem

Let T ∪ {ϕ} be a set of sentences. Then T ` L ϕ iff for each MV-chain A and each safe
A-model M of T , ϕ holds in M.

NB: for a general language L, the truths of [0, 1] L are not recursively axiomatizable
(in fact, they are Π2-complete).

Analogous completeness for the expansion with ∆.
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Strengthening the logic

Let L be a consistent FLew-extension.
Let T be a theory over L.
If T proves ϕ ∨ ¬ϕ for an arbitrary ϕ, then
T is a theory over classical logic.

In other words,
adding the law of excluded middle (LEM): ϕ ∨ ¬ϕ to FLew yields classical logic.

Example: Grayson’s proof of LEM from axiom of regularity:
Let {∅ � ϕ} stand for {x | x = ∅ ∧ ϕ}.
Consider z = {∅ � ϕ, 1} (where 1 = {∅})
Then z is nonempty, and consequently has a ∈-minimal element.
If ∅ is minimal then ϕ holds,
while if 1 is minimal then ϕ fails.

Thus, from regularity, one proves LEM for any formula.
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Strengthening the logic

Lemma (Hájek ca. 2000)

Let L be such that it proves the propositional formula (p → p & p)→ (p ∨¬p). Then, a
set theory with

separation (for open formulas),

pairing (or singletons),

congruence axiom for ∈
proves ∀xy(x = y ∨ ¬(x = y)) over L .

Proof: take x , y .
Let z = {u ∈ {x} | u = x}, whence u ∈ z ≡ (u = x)2.
Since (x = x)2, we have x ∈ z .
If y = x then y ∈ z by congruence. Then (y = x)2.
We proved y = x → (y = x)2, thus (by assumption on the logic) x = y ∨ ¬(x = y).
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Strengthening the logic

Lemma (Grishin 1999)

In a theory with

extensionality,

successors,

congruence,

LEM for = implies LEM for ∈.
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Axioms of FST

(ext.) ∀xy(x = y ≡ (∆(x ⊆ y)&∆(y ⊆ x)))

(empty) ∃x∆∀y¬(y ∈ x)

(pair) ∀x∀y∃z∆∀u(u ∈ z ≡ (u = x ∨ u = y))

(union) ∀x∃z∆∀u(u ∈ z ≡ ∃y(u ∈ y & y ∈ x))

(weak power) ∀x∃z∆∀u(u ∈ z ≡ ∆(u ⊆ x))

(inf.) ∃z∆(∅ ∈ z &∀x ∈ z(x ∪ {x} ∈ z))

(sep.) ∀x∃z∆∀u(u ∈ z ≡ (u ∈ x&ϕ(u, x)))
for any ϕ not containing free z

(coll.) ∀x∃z∆[∀u ∈ x∃v ϕ(u, v)→ ∀u ∈ x∃v ∈ zϕ(u, v)]
for any ϕ not containing free z

(∈-ind.) ∆∀x(∆∀y(y ∈ x → ϕ(y))→ ϕ(x))→ ∆∀xϕ(x)
for any ϕ

(support) ∀x∃z(Crisp(z)&∆(x ⊆ z)))
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An A-valued universe

Work in classical ZFC.
Assume A is a complete (MV-)algebra.

Define V A by ordinal induction.
A+ = A \ {0A}.

V A
0 = {∅}

V A
α+1 = {f : Fnc(f ) & Dom(f ) ⊆ V A

α & Rng(f ) ⊆ A+} for any ordinal α

V A
λ =

S
α<λ V A

α for limit ordinals λ

V A =
S
α∈Ord V A

α

Define two binary functions from V A into L, assigning to any u, v ∈ V A the values
‖u ∈ v‖ and ‖u = v‖

‖u ∈ v‖ = v(u) if u ∈ D(v), otherwise 0

‖u = v‖ = 1 if u = v , otherwise 0

By induction on the complexity of formulas, define for any ϕ(x1, . . . , xn)
an n-ary function from (V A)n into L, assigning to an n-tuple u1, . . . , un the value
‖ϕ(u1, . . . , un)‖.
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Zuzana Haniková Models of set theory in  Lukasiewicz logic



An A-valued universe

Work in classical ZFC.
Assume A is a complete (MV-)algebra.

Define V A by ordinal induction.
A+ = A \ {0A}.

V A
0 = {∅}

V A
α+1 = {f : Fnc(f ) & Dom(f ) ⊆ V A

α & Rng(f ) ⊆ A+} for any ordinal α

V A
λ =

S
α<λ V A

α for limit ordinals λ

V A =
S
α∈Ord V A

α

Define two binary functions from V A into L, assigning to any u, v ∈ V A the values
‖u ∈ v‖ and ‖u = v‖

‖u ∈ v‖ = v(u) if u ∈ D(v), otherwise 0

‖u = v‖ = 1 if u = v , otherwise 0

By induction on the complexity of formulas, define for any ϕ(x1, . . . , xn)
an n-ary function from (V A)n into L, assigning to an n-tuple u1, . . . , un the value
‖ϕ(u1, . . . , un)‖.
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An A-valued universe

Theorem

Let ϕ be a closed formula provable in FST. Then ϕ is valid in V A, i. e., ZF proves
‖ϕ‖ = 1.

We have obtained an interpretation of FST in ZFC.
FST is distinct from ZFC unless A is a Boolean algebra.
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An Inner Model of ZF in FST

Definition

(i) In a theory T , we say that a formula ϕ(x1, . . . , xn) in the language of T is crisp iff
T ` ∀x1, . . . , xn ./ ϕ(x1, . . . , xn).
(ii) In a (set) theory with language containing ∈ we define Crisp(x) ≡ ∀u ./ (u ∈ x).

(Hereditarily crisp transitive set)

HCT (x) ≡ Crisp(x)&∀u ∈ x(Crisp(u)&u ⊆ x)

(Hereditarily crisp set)

H(x) ≡ Crisp(x) & ∃x ′ ∈ HCT(x ⊆ x ′)

Lemma

The class H is both crisp and transitive in FST:

FST ` ∀x(x ∈ H ∨ ¬(x ∈ H))

FST ` ∀x , y(y ∈ x & x ∈ H → y ∈ H)
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An Inner Model of ZF in FST

For ϕ a formula in the language of ZF, define ϕH inductively:
ϕH = ϕ for ϕ atomic;
ϕH = ϕ for ϕ = 0;
ϕH = ψH&χH for ϕ = ψ&χ;
ϕH = ψH → χH for ϕ = ψ → χ;
ϕH = (∀x ∈ H)ψH for ϕ = (∀x)ψ.

Theorem

Let ϕ be a theorem of ZF. Then FST ` ϕH.

So H is an inner model of ZF in FST and ZF is consistent relative to FST.

Moreover, the interpretation is faithful: if FST ` ϕH, then ZF ` ϕH, but then ZF ` ϕ.
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Ordinals and rank in FST

Let Ord0(x) define ordinal numbers in classical ZFC.

The inner model H provides a suitable notion of ordinal numbers in FST:
if x ∈ H, then

Ord0(x) ≡ OrdH
0 (x),

Ord0(x) is crisp.

Define ordinal numbers in FST:

Ord(x) ≡ x ∈ H & Ord0(x)

Define:

V0 = ∅
Vα+1 = WP(Vα) for α ∈ Ord

Vα =
[
β∈α

Vβ for a limit α ∈ Ord

V =
[
α∈Ord

Vα

Then ∀x∃α(x ∈ Vα).

Zuzana Haniková Models of set theory in  Lukasiewicz logic



Ordinals and rank in FST

Let Ord0(x) define ordinal numbers in classical ZFC.

The inner model H provides a suitable notion of ordinal numbers in FST:
if x ∈ H, then

Ord0(x) ≡ OrdH
0 (x),

Ord0(x) is crisp.

Define ordinal numbers in FST:

Ord(x) ≡ x ∈ H & Ord0(x)

Define:

V0 = ∅
Vα+1 = WP(Vα) for α ∈ Ord

Vα =
[
β∈α

Vβ for a limit α ∈ Ord

V =
[
α∈Ord

Vα

Then ∀x∃α(x ∈ Vα).
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Extensions and further work

Work with an arbitrary MV-algebra (Chang’s algebra).
Can one get “nearly classical”?

Lemma. Let A be an algebra, and let M be a model over A.
Let ∼ be a congruence on A. Then M is a model over A/∼.

Work without ∆.

A completeness theorem?
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