

Fuzzy Sets and Fuzzy Classes in Universes of Sets

Michal Holčapek

National Supercomputing Center IT4Innovations division of the University of Ostrava Institute for Research and Applications of Fuzzy Modeling web: irafm.osu.cz

Prague seminar on Non–Classical Mathematics, June 13, 2015

Outline

Motivation

Diverses of sets over L

Fuzzy sets and fuzzy classes in $\mathfrak U$

- Concept of fuzzy sets in £1
- Basic relations and operations in $\mathfrak{F}(\mathfrak{U})$
- Functions between fuzzy sets
- Fuzzy power set and exponentiation
- Concept of fuzzy class in £1
- Basic graded relations between fuzzy sets
- Functions between fuzzy sets in a certain degree

Graded equipollence of fuzzy sets in $\mathfrak{F}(\mathfrak{U})$

- Graded Cantor's equipollence
- Elementary cardinal theory based on graded Cantor's equipollence

Conclusion

A poor interest about cardinal theory of fuzzy sets

S. Gottwald.

Fuzzy uniqueness of fuzzy mappings. *Fuzzy Sets and Systems*, 3:49–74, 1980.

M. Wygralak.

Vaguely defined objects. Representations, fuzzy sets and nonclassical cardinality theory.

Theory and Decision Library. Series B: Mathematical and Statistical Methods, Kluwer Academic Publisher, 1996.

M. Wygralak.

Cardinalities of Fuzzy Sets.

Kluwer Academic Publisher, Berlin, 2003.

Set and fuzzy set theories

- Zermelo–Fraenkel set theory with the axiom of choice (ZFC) sets are introduced formally, classes are introduced informally;
- von Neumann–Bernays–Gödel axiomatic set theory (NBG) classes are introduced formally, sets are special classes (difference between sets and proper classes is essential)
- type theory
- Gotwald cumulative system of fuzzy sets
- Novak axiomatic fuzzy type theory (FTT)
- Běhounek–Cintula axiomatic fuzzy class theory (FCT)

Set and fuzzy set theories

- Zermelo–Fraenkel set theory with the axiom of choice (ZFC) sets are introduced formally, classes are introduced informally;
- von Neumann–Bernays–Gödel axiomatic set theory (NBG) classes are introduced formally, sets are special classes (difference between sets and proper classes is essential)
- type theory
- Gotwald cumulative system of fuzzy sets
- Novak axiomatic fuzzy type theory (FTT)
- Běhounek–Cintula axiomatic fuzzy class theory (FCT)

Outline

Motivation

Universes of sets over L

Fuzzy sets and fuzzy classes in $\mathfrak U$

- Concept of fuzzy sets in £1
- Basic relations and operations in
 [®](
 ⁽¹⁾)
- Functions between fuzzy sets
- Fuzzy power set and exponentiation
- Concept of fuzzy class in £1
- Basic graded relations between fuzzy sets
- Functions between fuzzy sets in a certain degree

Graded equipollence of fuzzy sets in $\mathfrak{F}(\mathfrak{U})$

- Graded Cantor's equipollence
- Elementary cardinal theory based on graded Cantor's equipollence

Conclusion

Degrees of membership

Definition

A residuated lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee, \rightarrow, \otimes, \bot, \top \rangle$ with four binary operations and two constants such that

- $\langle L, \wedge, \vee, \bot, \top \rangle$ is a bounded lattice,
- 2 $\langle L, \otimes, \top \rangle$ is a commutative monoid and
- the adjointness property is satisfied, i.e.,

$$a \leq b \rightarrow c \quad \text{iff} \quad a \otimes b \leq c$$

holds for each $a, b, c \in L$.

Our prerequisite

In our theory, we assume that each residuated lattice is complete and linearly ordered.

<日</th>

Degrees of membership

Definition

A residuated lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee, \rightarrow, \otimes, \bot, \top \rangle$ with four binary operations and two constants such that

- $\langle L, \wedge, \vee, \bot, \top \rangle$ is a bounded lattice,
- 2 $\langle L, \otimes, \top \rangle$ is a commutative monoid and
- the adjointness property is satisfied, i.e.,

$$a \leq b \rightarrow c \quad \text{iff} \quad a \otimes b \leq c$$

holds for each $a, b, c \in L$.

Our prerequisite

In our theory, we assume that each residuated lattice is complete and linearly ordered.

Example of linearly ordered residuated lattice

Example

Let T be a left continuous t-norm. Then

$$\mathbf{L} = \langle [0,1], \min, \max, T, \rightarrow_T, 0, 1 \rangle,$$

where $\alpha \to_T \beta = \bigvee \{\gamma \in [0, 1] \mid T(\alpha, \gamma) \leq \beta \}$, is a complete linearly ordered residuated lattice.

E.g., Łukasiewicz algebra is determined by

$$T_{\mathrm{L}}(a,b) = \max(0,a+b-1).$$

The residuum is then given by

$$a \rightarrow_{T_{\mathrm{L}}} b = \min(1 - a + b, 1).$$

Universe of sets motivated by Grothendieck

Definition

A universe of sets over L is a non-empty class \mathfrak{U} of sets in ZFC satisfying the following properties:

```
(U1) x \in y and y \in \mathfrak{U}, then x \in \mathfrak{U},
```

```
(U2) x, y \in \mathfrak{U}, then \{x, y\} \in \mathfrak{U},
```

```
(U3) x \in \mathfrak{U}, then P(x) \in \mathfrak{U},
```

```
(U4) x \in \mathfrak{U} and y_i \in \mathfrak{U} for any i \in x, then \bigcup_{i \in x} y_i \in \mathfrak{U},
```

```
(U5) x \in \mathfrak{U} and f : x \to L, then \mathscr{R}(f) \in \mathfrak{U},
```

where L is the support of the residuated lattice L.

Examples

Universes of sets over L

- class of all sets,
- class of all finite sets,
- Grothendieck universes (suitable sets of sets).

In ZFC, we have

- sets (introduced by axioms)
- classes (introduced informally as collections of sets)

Definition

Let \mathfrak{U} be a universe of sets over \mathbf{L} . We say that

- a set x in ZFC is a set in \mathfrak{U} if $x \in \mathfrak{U}$,
- a class x in ZFC is a class in \mathfrak{U} if $x \subseteq \mathfrak{U}$,
- a class x in \mathfrak{U} is a proper class in \mathfrak{U} if $x \notin \mathfrak{U}$.

In ZFC, we have

- sets (introduced by axioms)
- classes (introduced informally as collections of sets)

Definition

Let $\mathfrak U$ be a universe of sets over $\mathbf L.$ We say that

- a set x in ZFC is a set in \mathfrak{U} if $x \in \mathfrak{U}$,
- a class x in ZFC is a class in \mathfrak{U} if $x \subseteq \mathfrak{U}$,
- a class x in \mathfrak{U} is a proper class in \mathfrak{U} if $x \notin \mathfrak{U}$.

In ZFC, we have

- sets (introduced by axioms)
- classes (introduced informally as collections of sets)

Definition

Let $\mathfrak U$ be a universe of sets over $\mathbf L.$ We say that

- a set x in ZFC is a set in \mathfrak{U} if $x \in \mathfrak{U}$,
- a class x in ZFC is a class in \mathfrak{U} if $x \subseteq \mathfrak{U}$,
- a class x in \mathfrak{U} is a proper class in \mathfrak{U} if $x \notin \mathfrak{U}$.

In ZFC, we have

- sets (introduced by axioms)
- classes (introduced informally as collections of sets)

Definition

Let $\mathfrak U$ be a universe of sets over $\mathbf L.$ We say that

- a set x in ZFC is a set in \mathfrak{U} if $x \in \mathfrak{U}$,
- a class x in ZFC is a class in \mathfrak{U} if $x \subseteq \mathfrak{U}$,
- a class x in \mathfrak{U} is a proper class in \mathfrak{U} if $x \notin \mathfrak{U}$.

Basic properties

Theorem

Let $x, y \in \mathfrak{U}$ and $y_i \in \mathfrak{U}$ for any $i \in x$. Then we have

- \emptyset and $\{x\}$ belong to \mathfrak{U} ,
- 2 $x \times y, x \sqcup y, x \cap y$ and y^x belong to \mathfrak{U} ,
- If $z \in \mathfrak{U} \cup \{L\}$ and $f : x \to z$, then f and $\mathscr{R}(f)$ belong to \mathfrak{U} ,
- if $z \subseteq \mathfrak{U}$ and $|z| \leq |x|$, then z belongs to \mathfrak{U} ,
- $\prod_{i \in x} y_i$, $\bigsqcup_{i \in x} y_i$ and $\bigcap_{i \in x} y_i$ belong to \mathfrak{U} .

Basic properties

Theorem

Let $x, y \in \mathfrak{U}$ and $y_i \in \mathfrak{U}$ for any $i \in x$. Then we have

- \emptyset and $\{x\}$ belong to \mathfrak{U} ,
- 2 $x \times y, x \sqcup y, x \cap y$ and y^x belong to \mathfrak{U} ,
- ◎ if $z \in \mathfrak{U} \cup \{L\}$ and $f : x \to z$, then f and $\mathscr{R}(f)$ belong to \mathfrak{U} ,
- if $z \subseteq \mathfrak{U}$ and $|z| \leq |x|$, then z belongs to \mathfrak{U} ,
- $\prod_{i \in x} y_i$, $\bigsqcup_{i \in x} y_i$ and $\bigcap_{i \in x} y_i$ belong to \mathfrak{U} .

Theorem (Extensibility of sets in L)

Let $x \in \mathfrak{U}$. Then there exists $y \in \mathfrak{U}$ such that $|x| \leq |y \setminus x|$.

Outline

Motivation

2 Universes of sets over L

Fuzzy sets and fuzzy classes in $\mathfrak U$

- Concept of fuzzy sets in £1
- Basic relations and operations in
 ³
 ⁽¹⁾
 ⁽¹⁾
- Functions between fuzzy sets
- Fuzzy power set and exponentiation
- Concept of fuzzy class in £1
- Basic graded relations between fuzzy sets
- Functions between fuzzy sets in a certain degree

Graded equipollence of fuzzy sets in $\mathfrak{F}(\mathfrak{U})$

- Graded Cantor's equipollence
- Elementary cardinal theory based on graded Cantor's equipollence

Conclusion

Fuzzy sets in \mathfrak{U}

Definition

Let \mathfrak{U} be a universe of sets over L. A function $A : x \to L$ (in ZFC) is called a fuzzy set in \mathfrak{U} if x is a set in \mathfrak{U} , i.e., $x \in \mathfrak{U}$.

Fuzzy sets in ${\mathfrak U}$

Definition

Let \mathfrak{U} be a universe of sets over L. A function $A : x \to L$ (in ZFC) is called a fuzzy set in \mathfrak{U} if x is a set in \mathfrak{U} , i.e., $x \in \mathfrak{U}$.

Denotation

- The domain $\mathscr{D}(A)$ is called a universe of discourse of A,
- $\mathcal{F}(\mathfrak{U})$ denotes the class of all fuzzy sets in \mathfrak{U} , clearly, $\mathcal{F}(\mathfrak{U})$ is a proper class in \mathfrak{U} ,
- The set $\text{Supp}(A) = \{x \in \mathscr{D}(A) \mid A(x) > \bot\}$ is called the support of A,

Fuzzy sets in ${\mathfrak U}$

Definition

Let \mathfrak{U} be a universe of sets over L. A function $A : x \to L$ (in ZFC) is called a fuzzy set in \mathfrak{U} if x is a set in \mathfrak{U} , i.e., $x \in \mathfrak{U}$.

Denotation

- The domain $\mathscr{D}(A)$ is called a universe of discourse of A,
- \$\mathcal{F}(\omega\$)\$ denotes the class of all fuzzy sets in \$\omega\$, clearly, \$\mathcal{F}(\omega\$)\$ is a proper class in \$\omega\$,
- The set $\text{Supp}(A) = \{x \in \mathscr{D}(A) \mid A(x) > \bot\}$ is called the support of A,

Fuzzy sets in ${\mathfrak U}$

Definition

Let \mathfrak{U} be a universe of sets over L. A function $A : x \to L$ (in ZFC) is called a fuzzy set in \mathfrak{U} if x is a set in \mathfrak{U} , i.e., $x \in \mathfrak{U}$.

Denotation

- The domain $\mathscr{D}(A)$ is called a universe of discourse of A,
- $\mathcal{F}(\mathfrak{U})$ denotes the class of all fuzzy sets in \mathfrak{U} , clearly, $\mathcal{F}(\mathfrak{U})$ is a proper class in \mathfrak{U} ,
- The set $\text{Supp}(A) = \{x \in \mathscr{D}(A) \mid A(x) > \bot\}$ is called the support of *A*,

Empty fuzzy set and singletons

Definition

- The empty function $\emptyset : \emptyset \longrightarrow L$ is called the empty fuzzy set.
- A fuzzy set A is called a singleton if $\mathscr{D}(A)$ contains only one element.

Empty fuzzy set and singletons

Definition

- The empty function $\emptyset : \emptyset \longrightarrow L$ is called the empty fuzzy set.
- A fuzzy set A is called a singleton if $\mathscr{D}(A)$ contains only one element.

Fuzzy equivalence and fuzzy preordering relation

Definition

A fuzzy relation $R: z \times z \longrightarrow L$ is called the fuzzy equivalence provided that the following axioms hold for any $a, b, c \in z$:

(FE1) $R(a, a) = \top$, (FE2) R(a, b) = R(b, a), (FE3) $R(a, b) \otimes R(b, c) \le R(a, c)$.

Definition (Bodenhofer)

Let *R* be a fuzzy equivalence on *z*. A fuzzy relation $S : z \times z \rightarrow L$ is called the *R*-fuzzy partial ordering provided that the following axioms hold for any $a, b, c \in z$:

(FPO1) $S(a, a) = \top$, (FPO2) $S(a, b) \otimes S(b, a) \leq R(a, b)$, (FPO3) $S(a, b) \otimes S(b, c) \leq S(a, c)$.

Fuzzy equivalence and fuzzy preordering relation

Definition

A fuzzy relation $R: z \times z \longrightarrow L$ is called the fuzzy equivalence provided that the following axioms hold for any $a, b, c \in z$:

(FE1) $R(a, a) = \top$, (FE2) R(a, b) = R(b, a), (FE3) $R(a, b) \otimes R(b, c) \le R(a, c)$.

Definition (Bodenhofer)

Let *R* be a fuzzy equivalence on *z*. A fuzzy relation $S : z \times z \rightarrow L$ is called the *R*-fuzzy partial ordering provided that the following axioms hold for any $a, b, c \in z$: (FPO1) $S(a, a) = \top$, (FPO2) $S(a, b) \otimes S(b, a) \leq R(a, b)$, (FPO3) $S(a, b) \otimes S(b, c) \leq S(a, c)$.

Image: A matrix

Basic relations between fuzzy sets (equality relation)

Definition

We say that fuzzy sets *A* and *B* are identical (symbolically, A = B) provided that $\mathscr{D}(A) = \mathscr{D}(B)$ and A(x) = B(x) for any $x \in \mathscr{D}(A)$.

Definition

We say that fuzzy sets *A* and *B* are identical up to negligibility (symbolically, $A \equiv B$) provided that Supp(A) = Supp(B) and A(x) = B(x) for any $x \in \text{Supp}(A)$. We use cls(A) to denote the set of all fuzzy sets that are identical to *A* up to negligibility.

Example

Obviously $\emptyset \equiv \{0/a, 0/b\}$ or $\{0.9/a\} \equiv \{0.9/a, 0/b\}$ and $\{0/a, 0/b\} \in cls(\emptyset)$.

(D) (A) (A) (A)

Basic relations between fuzzy sets (equality relation)

Definition

We say that fuzzy sets *A* and *B* are identical (symbolically, A = B) provided that $\mathscr{D}(A) = \mathscr{D}(B)$ and A(x) = B(x) for any $x \in \mathscr{D}(A)$.

Definition

We say that fuzzy sets *A* and *B* are identical up to negligibility (symbolically, $A \equiv B$) provided that Supp(A) = Supp(B) and A(x) = B(x) for any $x \in \text{Supp}(A)$. We use cls(A) to denote the set of all fuzzy sets that are identical to *A* up to negligibility.

Example

Obviously $\emptyset \equiv \{0/a, 0/b\}$ or $\{0.9/a\} \equiv \{0.9/a, 0/b\}$ and $\{0/a, 0/b\} \in cls(\emptyset)$.

Basic relations between fuzzy sets (equality relation)

Definition

We say that fuzzy sets *A* and *B* are identical (symbolically, A = B) provided that $\mathscr{D}(A) = \mathscr{D}(B)$ and A(x) = B(x) for any $x \in \mathscr{D}(A)$.

Definition

We say that fuzzy sets *A* and *B* are identical up to negligibility (symbolically, $A \equiv B$) provided that Supp(A) = Supp(B) and A(x) = B(x) for any $x \in \text{Supp}(A)$. We use cls(A) to denote the set of all fuzzy sets that are identical to *A* up to negligibility.

Example

Obviously $\emptyset \equiv \{0/a, 0/b\}$ or $\{0.9/a\} \equiv \{0.9/a, 0/b\}$ and $\{0/a, 0/b\} \in cls(\emptyset)$.

Basic relations between fuzzy sets (ordering relation)

Definition

We say that a fuzzy set *A* is a fuzzy subset of a fuzzy set *B* (symbolically, $A \subseteq B$) provided that $\mathscr{D}(A) \subseteq \mathscr{D}(B)$ and $A(x) \leq B(x)$ for any $x \in \mathscr{D}(A)$.

Definition

We say that a fuzzy set *A* is a fuzzy subset of a fuzzy set *B* up to negligibility (symbolically $A \subseteq B$) provided that $\text{Supp}(A) \subseteq \text{Supp}(B)$ and $A(x) \leq B(x)$ for any $x \in \text{Supp}(A)$.

Lemma

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. Then, (i) A = B if and only if $A \subseteq B$ and $B \subseteq A$, (ii) $A \equiv B$ if and only if $A \subseteq B$ and $B \subseteq A$.

Basic relations between fuzzy sets (ordering relation)

Definition

We say that a fuzzy set *A* is a fuzzy subset of a fuzzy set *B* (symbolically, $A \subseteq B$) provided that $\mathscr{D}(A) \subseteq \mathscr{D}(B)$ and $A(x) \leq B(x)$ for any $x \in \mathscr{D}(A)$.

Definition

We say that a fuzzy set *A* is a fuzzy subset of a fuzzy set *B* up to negligibility (symbolically $A \subseteq B$) provided that $\text{Supp}(A) \subseteq \text{Supp}(B)$ and $A(x) \leq B(x)$ for any $x \in \text{Supp}(A)$.

Lemma

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. Then, (i) A = B if and only if $A \subseteq B$ and $B \subseteq A$, (ii) $A \equiv B$ if and only if $A \subseteq B$ and $B \subseteq A$.

Basic relations between fuzzy sets (ordering relation)

Definition

We say that a fuzzy set *A* is a fuzzy subset of a fuzzy set *B* (symbolically, $A \subseteq B$) provided that $\mathscr{D}(A) \subseteq \mathscr{D}(B)$ and $A(x) \leq B(x)$ for any $x \in \mathscr{D}(A)$.

Definition

We say that a fuzzy set *A* is a fuzzy subset of a fuzzy set *B* up to negligibility (symbolically $A \subseteq B$) provided that $\text{Supp}(A) \subseteq \text{Supp}(B)$ and $A(x) \leq B(x)$ for any $x \in \text{Supp}(A)$.

Lemma

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. Then, (i) A = B if and only if $A \subseteq B$ and $B \subseteq A$, (ii) $A \equiv B$ if and only if $A \subseteq B$ and $B \subseteq A$.

Definition

Let $A, B \in \mathcal{F}(\mathfrak{U}), x = \mathscr{D}(A) \cup \mathscr{D}(B)$ and $A' \in \operatorname{cls}(A), B' \in \operatorname{cls}(B)$ such that $\mathscr{D}(A') = \mathscr{D}(B') = x$. Then

• the union of A and B is a mapping $A \cup B : x \to L$ defined by

 $(A \cup B)(a) = A'(a) \vee B'(a),$

• the intersection of A and B is a mapping $A \cap B : x \to L$ defined by

$$(A \cap B)(a) = A'(a) \wedge B'(a),$$

• the difference of A and B is a mapping $A \setminus B : x \to L$ defined by

$$(A \setminus B)(a) = A'(a) \otimes (B'(a) \to \bot).$$

Definition

Let $A, B \in \mathcal{F}(\mathfrak{U}), x = \mathscr{D}(A) \cup \mathscr{D}(B)$ and $A' \in \operatorname{cls}(A), B' \in \operatorname{cls}(B)$ such that $\mathscr{D}(A') = \mathscr{D}(B') = x$. Then

• the union of A and B is a mapping $A \cup B : x \to L$ defined by

$$(A \cup B)(a) = A'(a) \vee B'(a),$$

• the intersection of A and B is a mapping $A \cap B : x \to L$ defined by

 $(A \cap B)(a) = A'(a) \wedge B'(a),$

• the difference of A and B is a mapping $A \setminus B : x \to L$ defined by

$$(A \setminus B)(a) = A'(a) \otimes (B'(a) \to \bot).$$

Definition

Let $A, B \in \mathcal{F}(\mathfrak{U}), x = \mathscr{D}(A) \cup \mathscr{D}(B)$ and $A' \in \operatorname{cls}(A), B' \in \operatorname{cls}(B)$ such that $\mathscr{D}(A') = \mathscr{D}(B') = x$. Then

• the union of A and B is a mapping $A \cup B : x \to L$ defined by

$$(A \cup B)(a) = A'(a) \vee B'(a),$$

• the intersection of A and B is a mapping $A \cap B : x \to L$ defined by

$$(A \cap B)(a) = A'(a) \wedge B'(a),$$

• the difference of A and B is a mapping $A \setminus B : x \to L$ defined by

 $(A \setminus B)(a) = A'(a) \otimes (B'(a) \to \bot).$

Definition

Let $A, B \in \mathcal{F}(\mathfrak{U})$, $x = \mathscr{D}(A) \times \mathscr{D}(B)$ and $y = \mathscr{D}(A) \sqcup \mathscr{D}(B)$ (the disjoint union). Then

• the product of A, B is a mapping $A \times B : x \to L$ defined by

 $(A \times B)(a,b) = A(a) \wedge B(b),$

• the strong product of A, B is a mapping $A \times B : x \to L$ defined by

 $(A \otimes B)(a,b) = A(a) \otimes B(b),$

● the disjoint union of A, B is a mapping A ⊔ B : y → L defined by

$$(A \sqcup B)(a, i) = \begin{cases} A(a, i), & \text{if } i = 1, \\ B(a, i), & \text{if } i = 2. \end{cases}$$

Definition

Let $A, B \in \mathcal{F}(\mathfrak{U}), x = \mathscr{D}(A) \times \mathscr{D}(B)$ and $y = \mathscr{D}(A) \sqcup \mathscr{D}(B)$ (the disjoint union). Then

• the product of A, B is a mapping $A \times B : x \to L$ defined by

$$(A \times B)(a,b) = A(a) \wedge B(b),$$

the strong product of A, B is a mapping A × B : x → L defined by

 $(A \otimes B)(a,b) = A(a) \otimes B(b),$

• the disjoint union of A, B is a mapping $A \sqcup B : y \to L$ defined by

$$(A \sqcup B)(a, i) = \begin{cases} A(a, i), & \text{if } i = 1, \\ B(a, i), & \text{if } i = 2. \end{cases}$$

Definition

Let $A, B \in \mathcal{F}(\mathfrak{U})$, $x = \mathscr{D}(A) \times \mathscr{D}(B)$ and $y = \mathscr{D}(A) \sqcup \mathscr{D}(B)$ (the disjoint union). Then

• the product of A, B is a mapping $A \times B : x \to L$ defined by

$$(A \times B)(a,b) = A(a) \wedge B(b),$$

the strong product of A, B is a mapping A × B : x → L defined by

$$(A \otimes B)(a,b) = A(a) \otimes B(b),$$

• the disjoint union of A, B is a mapping $A \sqcup B : y \to L$ defined by

$$(A \sqcup B)(a, i) = \begin{cases} A(a, i), & \text{if } i = 1, \\ B(a, i), & \text{if } i = 2. \end{cases}$$

Definition

Let $A \in \mathcal{F}(\mathfrak{U})$ and $A : x \to L$. Then, the complement of A is a mapping $\overline{A} : x \to L$ defined by

$$\overline{A}(a) = A(a) \to \bot \quad (or \,\overline{A} = \chi_x \setminus A)$$

for any $a \in x$.

Theorem

Let $A, B, C, D \in \mathcal{F}(\mathfrak{U})$, and let $\circledast \in \{\cap, \cup, \setminus, \times, \otimes, \cup\}$. If $A \equiv C$ and $B \equiv D$, then

 $A \circledast B \equiv C \circledast D,$

i.e., \equiv *is a congruence w.r.t.* \circledast .

Definition

Let $A \in \mathcal{F}(\mathfrak{U})$ and $A : x \to L$. Then, the complement of A is a mapping $\overline{A} : x \to L$ defined by

$$\overline{A}(a) = A(a) \to \bot \quad (or \,\overline{A} = \chi_x \setminus A)$$

for any $a \in x$.

Theorem

Let $A, B, C, D \in \mathcal{F}(\mathfrak{U})$, and let $\circledast \in \{\cap, \cup, \setminus, \times, \otimes, \sqcup\}$. If $A \equiv C$ and $B \equiv D$, then

$$A \circledast B \equiv C \circledast D,$$

i.e., \equiv *is a congruence w.r.t.* \circledast .

A (B) < (B) < (B)</p>

Example of operations on fuzzy sets

Example

Consider the Łukasiewicz algebra L. For

$$A = \{1/a, 0.4/b\}$$
 and $B = \{0.6/a, 0.2/c\}$

we have

$$\begin{split} A \cup B &= \{1/a, 0.4/b, 0.2/c\}, \\ A \cap B &= \{0.6/a, 0/b, 0/c\}, \\ A \setminus B &= \{0.4/a, 0.4/b, 0/c\}, \\ A \times B &= \{0.6/(a, a), 0.2/(a, c), 0.4/(b, a), 0.2/(b, c)\}, \\ A \otimes B &= \{0.6/(a, a), 0.2/(a, c), 0/(b, a), 0/(b, c)\}, \\ A \sqcup B &= \{1/(a, 1), 0.4/(b, 1), 0.6/(a, 2), 0.2/(c, 2)\}, \\ \overline{A} &= \{0/a, 0.6/b\}. \end{split}$$

Function between fuzzy sets

- \mathfrak{Func} denotes the class of all function in ZFC that belong to \mathfrak{U}
- Func(x, y) denotes the set of all functions of a set x to a set y

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$, and let $f \in \mathfrak{Func}$. We say that f is a function of A to B (symbolically $f : A \longrightarrow B$) provided that $f \in \mathfrak{Func}(\mathscr{D}(A), \mathscr{D}(B))$ and

$$A(a) \leq B(f(a))$$
 (or equivalently $A(a) \rightarrow B(f(a)) = \top$)

for any $a \in \mathscr{D}(A)$.

1-1 correspondence between fuzzy sets

Definition

We say that $f : A \longrightarrow B$ is a 1-1 correspondence (symbolically $f : A \xrightarrow{1-1}_{corr} B$) provided that there exists $f^{-1} : B \longrightarrow A$ such that $f^{-1} \circ f = 1_{\mathscr{D}(A)}$ and $f \circ f^{-1} = 1_{\mathscr{D}(B)}$.

Theorem

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. Then, $f : A \xrightarrow[corr]{i-1} corr} B$ if and only if $f : \mathscr{D}(A) \xrightarrow[corr]{i-1} \mathscr{D}(B)$ and A(a) = B(f(a)) for any $a \in \mathscr{D}(A)$.

1-1 correspondence between fuzzy sets

Definition

We say that $f: A \longrightarrow B$ is a 1-1 correspondence (symbolically $f: A \xrightarrow{1-1}{\operatorname{corr}} B$) provided that there exists $f^{-1}: B \longrightarrow A$ such that $f^{-1} \circ f = 1_{\mathscr{D}(A)}$ and $f \circ f^{-1} = 1_{\mathscr{D}(B)}$.

Theorem

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. Then, $f : A \xrightarrow[corr]{corr} B$ if and only if $f : \mathscr{D}(A) \xrightarrow[corr]{l} \mathscr{D}(B)$ and A(a) = B(f(a)) for any $a \in \mathscr{D}(A)$.

Generalization of power set

Definition

Let $A \in \mathfrak{F}(\mathfrak{U})$, and let $x = \{y \mid y \subseteq \mathscr{D}(A)\}$. Then, the fuzzy set $\mathbf{P}(A) : x \longrightarrow L$ defined by

$$\mathbf{P}(A)(y) = \bigwedge_{z \in \mathscr{D}(A)} (\chi_y(z) \to A(z))$$

is called the fuzzy power set of *A*, where χ_y is the characteristic function of *y* on $\mathscr{D}(A)$.

Theorem

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. Then,

•
$$\mathbf{P}(A) \in \mathfrak{F}(\mathfrak{U});$$

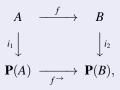
2 if
$$A \equiv B$$
, then $\mathbf{P}(A) \equiv \mathbf{P}(B)$.

< (17) > < (17) > <

Fuzzy power set and image function

Theorem

Let $A, B \in \mathfrak{F}(\mathfrak{U})$, and let $f : A \longrightarrow B$ be a function between fuzzy sets. Then, the following diagram commutes



where i_1, i_2 are the inclusion functions, i.e., $i_1(a) = \{a\}$ for any $a \in \mathscr{D}(A)$ and similarly i_2 , and f^{\rightarrow} is the image function of sets.

Example of fuzzy power set

It is easy to verify that

$$\mathbf{P}(A)(y) = \bigwedge_{z \in y} A(z),$$

Example

Let L be the Łukasiewicz algebra and $A = \{1/a, 0.4/b\}$. Then,

 $\mathbf{P}(A) = \{1/\emptyset, 1/\{a\}, 0.4/\{b\}, 0.4/\{a, b\}\}.$

Fuzzy power set and cardinality of its support

Example

Let L be an arbitrary residuated lattice on [0, 1], let the set of all natural numbers \mathbb{N} belongs to \mathfrak{U} , and let $A : \mathbb{N} \longrightarrow L$ be defined by

$$A(n) = \frac{1}{n}, \quad n \in \mathbb{N}.$$

Then, it holds $|\text{Supp}(A)| = |\text{Supp}(\mathbf{P}(A))|$.

Exponentiation for fuzzy sets

Motivation:

- If $f \in B^A$, then $x \in A$ implies $f(x) \in B$, which is naturally in the degree $A(x) \rightarrow B(f(x))$.
- 2 It can be proved $hom(A \otimes B, C) \cong hom(A, C^B)$.

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$, and let $x = \mathscr{D}(A)$ and $y = \mathscr{D}(B)$. Then, the fuzzy set $B^A : y^x \longrightarrow L$ defined by

$$B^{A}(f) = \bigwedge_{z \in x} (A(z) \to B(f(z)))$$

is called the exponentiation of A to B.

Remark

If $A \equiv B$ and $C \equiv D$, then it is not true $A^C \equiv B^D$.

Exponentiation for fuzzy sets

Motivation:

- If $f \in B^A$, then $x \in A$ implies $f(x) \in B$, which is naturally in the degree $A(x) \rightarrow B(f(x))$.
- 2 It can be proved $hom(A \otimes B, C) \cong hom(A, C^B)$.

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$, and let $x = \mathscr{D}(A)$ and $y = \mathscr{D}(B)$. Then, the fuzzy set $B^A : y^x \longrightarrow L$ defined by

$$B^{A}(f) = \bigwedge_{z \in x} (A(z) \to B(f(z)))$$

is called the exponentiation of A to B.

Remark

If $A \equiv B$ and $C \equiv D$, then it is not true $A^C \equiv B^D$.

Definition of fuzzy classes

Definition

Let \mathfrak{U} be a universe of sets over L. A class function $\mathcal{A} : \mathfrak{X} \longrightarrow L$ (in ZFC) is called the fuzzy class in \mathfrak{U} if \mathfrak{X} is a class in \mathfrak{U} , i.e., $\mathfrak{X} \subseteq \mathfrak{U}$.

Remark

Since each set is a class in \mathfrak{U} , we obtain that each fuzzy set is a fuzzy class.

Definition

We say that a fuzzy class \mathcal{A} in \mathfrak{U} is a fuzzy set if there exists a fuzzy set A in \mathfrak{U} such that $A \in cls(\mathcal{A})$. Otherwise, we say that it is proper.

Definition of fuzzy classes

Definition

Let \mathfrak{U} be a universe of sets over L. A class function $\mathcal{A} : \mathfrak{X} \longrightarrow L$ (in ZFC) is called the fuzzy class in \mathfrak{U} if \mathfrak{X} is a class in \mathfrak{U} , i.e., $\mathfrak{X} \subseteq \mathfrak{U}$.

Remark

Since each set is a class in \mathfrak{U} , we obtain that each fuzzy set is a fuzzy class.

Definition

We say that a fuzzy class \mathcal{A} in \mathfrak{U} is a fuzzy set if there exists a fuzzy set A in \mathfrak{U} such that $A \in cls(\mathcal{A})$. Otherwise, we say that it is proper.

Definition of fuzzy classes

Definition

Let \mathfrak{U} be a universe of sets over L. A class function $\mathcal{A} : \mathfrak{X} \longrightarrow L$ (in ZFC) is called the fuzzy class in \mathfrak{U} if \mathfrak{X} is a class in \mathfrak{U} , i.e., $\mathfrak{X} \subseteq \mathfrak{U}$.

Remark

Since each set is a class in \mathfrak{U} , we obtain that each fuzzy set is a fuzzy class.

Definition

We say that a fuzzy class A in \mathfrak{U} is a fuzzy set if there exists a fuzzy set A in \mathfrak{U} such that $A \in cls(A)$. Otherwise, we say that it is proper.

Generalization of "to be identical up to negligibility"

Remark

Fuzzy class equivalence and fuzzy class class partial ordering is defined in the same way as for fuzzy sets.

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. We say that fuzzy sets A and B are approximately identical up to negligibility in the degree α (symbolically, $[A \equiv B] = \alpha$) if

$$\alpha = \bigwedge_{a \in \mathscr{D}(A) \cup \mathscr{D}(B)} A'(a) \leftrightarrow B'(a),$$

where $A' \in cls(A), B' \in cls(B)$ such that $\mathscr{D}(A') = \mathscr{D}(B') = \mathscr{D}(A) \cup \mathscr{D}(B)$.

Properties of fuzzy class relation \equiv

Theorem

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$. Then,

- (i) $[A \equiv B] = \top$ if and only if $A \equiv B$;
- (ii) if $A \equiv C$ and $B \equiv D$, then

$$[A \equiv B] = [C \equiv D];$$

(iii) the fuzzy class relation \equiv is a fuzzy equivalence.

Generalization of "to be a fuzzy subset"

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. We say that A is approximately a fuzzy subset of B in the degree α (symbolically, $[A \subseteq B] = \alpha$) if

$$\alpha = \bigwedge_{a \in \mathscr{D}(A) \cup \mathscr{D}(B)} (A'(a) \to B'(a)),$$

where $A' \in \operatorname{cls}(A)$, $B' \in \operatorname{cls}(B)$ such that $\mathscr{D}(A') = \mathscr{D}(B') = \mathscr{D}(A) \cup \mathscr{D}(B)$.

Properties of fuzzy class relation \subseteq

Theorem

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. Then,

- (i) $[A \subseteq B] = [A' \subseteq B']$ for any $A' \in cls(A)$ and $B' \in cls(B)$;
- (ii) $[A \subseteq B] \land [B \subseteq A] = [B \equiv A];$
- (iii) the fuzzy class relation \subseteq is a \equiv -fuzzy partial ordering;

(iv) the fuzzy power set $\mathbf{P}(A)$ is a fuzzy class in \mathfrak{U} , which is defined by

$$\mathbf{P}(A)(x) := [\chi_x \subset A].$$

for any $x \in \mathfrak{U}$.

Properties of fuzzy class relation \subseteq

Theorem

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. Then,

- (i) $[A \subseteq B] = [A' \subseteq B']$ for any $A' \in cls(A)$ and $B' \in cls(B)$;
- (ii) $[A \subseteq B] \land [B \subseteq A] = [B \equiv A];$
- (iii) the fuzzy class relation \subseteq is a \equiv -fuzzy partial ordering;

(iv) the fuzzy power set $\mathbf{P}(A)$ is a fuzzy class in \mathfrak{U} , which is defined by

$$\mathbf{P}(A)(x) := [\chi_x \subset A].$$

for any $x \in \mathfrak{U}$.

Function between fuzzy sets in a certain degree

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$, and let $f \in \mathfrak{Func}$. We say that f is approximately a function of A to B in the degree α (symbolically, $[f : A \longrightarrow B] = \alpha$) if

$$\alpha = [f \in \mathfrak{Func}(\mathscr{D}(A), \mathscr{D}(B))] \otimes \bigwedge_{a \in \mathscr{D}(A)} (A(a) \to B(f(a)).$$

34/54

1-1 correspondence between fuzzy sets in a certain degree

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$, and let $f \in \mathfrak{Func}$. We say that f is approximately a 1-1 correspondence between A to B in the degree α (symbolically, $[f : A \xrightarrow[]{\text{corr}} B] = \alpha$) if

$$\alpha = [f \in \mathfrak{Func}_{\scriptscriptstyle \operatorname{corr}}^{\scriptscriptstyle 1\text{-}1}(\mathscr{D}(A), \mathscr{D}(B))] \otimes \bigwedge_{a \in \mathscr{D}(A)} (A(a) \leftrightarrow B(f(a)).$$

Properties of 1-1 correspondence between fuzzy sets in a certain degree

Definition

Let
$$A, B, C \in \mathfrak{F}(\mathfrak{U})$$
 and $f, g \in \mathfrak{Func}$.
(i) $[\emptyset : \emptyset \xrightarrow{1-1}_{\operatorname{corr}} \emptyset] = \top$.
(ii) $[1_{\mathscr{D}(A)} : A \xrightarrow{1-1}_{\operatorname{corr}} A] = \top$.
(iii) If $g \circ f = 1_{\mathscr{D}(A)}$ and $f \circ g = 1_{\mathscr{D}(B)}$, then
 $[f : A \xrightarrow{1-1}_{\operatorname{corr}} B] = [g : B \xrightarrow{1-1}_{\operatorname{corr}} A]$.
(iv) If $g \circ f \in \mathfrak{Func}$, then

$$[f:A\xrightarrow[]{\text{ corr}}B]\otimes [g:B\xrightarrow[]{\text{ corr}}C]\leq [g\circ f:A\xrightarrow[]{\text{ corr}}B].$$

< A

Bandler-Kohout (BK) fuzzy power set

Definition

Let $A \in \mathcal{F}(\mathfrak{U})$. Then a fuzzy class $\mathbf{F}(A) : \mathcal{F}(\mathfrak{U}) \to L$ defined by

$$\mathbf{F}(A)(B) = \left\{ \begin{array}{ll} [B \subseteq A], & \text{if } \mathscr{D}(B) = \mathscr{D}(A), \\ \bot, & \text{otherwise,} \end{array} \right.$$

is called a Bandler-Kohout (BK) fuzzy power class of A in \mathfrak{U} .

Lemma

• A fuzzy class $\mathbb{F}(A)$ is a fuzzy set for any $A \in \mathfrak{F}(\mathfrak{U})$ if and only if $L \in \mathfrak{U}$.

• If $A \neq \emptyset$, then there is $B \in cls(A)$ such that $\mathbf{F}(B) \not\equiv \mathbf{F}(A)$.

Definition

We say that $\mathbf{F}(A)$ is a Bandler-Kohout (BK) fuzzy power set of A in \mathfrak{U} if $\mathbf{F}(A)$ is a fuzzy set in \mathfrak{U} .

Bandler-Kohout (BK) fuzzy power set

Definition

Let $A \in \mathcal{F}(\mathfrak{U})$. Then a fuzzy class $\mathbf{F}(A) : \mathcal{F}(\mathfrak{U}) \to L$ defined by

$$\mathbf{F}(A)(B) = \left\{ \begin{array}{ll} [B \subseteq A], & \text{if } \mathscr{D}(B) = \mathscr{D}(A), \\ \bot, & \text{otherwise,} \end{array} \right.$$

is called a Bandler-Kohout (BK) fuzzy power class of A in \mathfrak{U} .

Lemma

- A fuzzy class $\mathbf{F}(A)$ is a fuzzy set for any $A \in \mathfrak{F}(\mathfrak{U})$ if and only if $L \in \mathfrak{U}$.
- If $A \neq \emptyset$, then there is $B \in cls(A)$ such that $\mathbf{F}(B) \not\equiv \mathbf{F}(A)$.

Definition

We say that $\mathbf{F}(A)$ is a Bandler-Kohout (BK) fuzzy power set of A in \mathfrak{U} if $\mathbf{F}(A)$ is a fuzzy set in \mathfrak{U} .

Bandler-Kohout (BK) fuzzy power set

Definition

Let $A \in \mathcal{F}(\mathfrak{U})$. Then a fuzzy class $\mathbf{F}(A) : \mathcal{F}(\mathfrak{U}) \to L$ defined by

$$\mathbf{F}(A)(B) = \left\{ \begin{array}{ll} [B \subseteq A], & \text{if } \mathscr{D}(B) = \mathscr{D}(A), \\ \bot, & \text{otherwise,} \end{array} \right.$$

is called a Bandler-Kohout (BK) fuzzy power class of A in \mathfrak{U} .

Lemma

- A fuzzy class $\mathbf{F}(A)$ is a fuzzy set for any $A \in \mathfrak{F}(\mathfrak{U})$ if and only if $L \in \mathfrak{U}$.
- If $A \neq \emptyset$, then there is $B \in cls(A)$ such that $\mathbf{F}(B) \not\equiv \mathbf{F}(A)$.

Definition

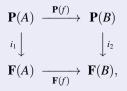
We say that $\mathbf{F}(A)$ is a Bandler-Kohout (BK) fuzzy power set of A in \mathfrak{U} if $\mathbf{F}(A)$ is a fuzzy set in \mathfrak{U} .

< 47 ▶

F operator as a natural extension of P operator

Theorem

Let $A, B \in \mathfrak{F}(\mathfrak{U})$, and let $f : A \longrightarrow B$ be a function. Let $\mathbf{F}(A)$ and $\mathbf{F}(B)$ be BK fuzzy power sets. Then, the following diagram commutes



where $\mathbf{P}(f)$ and $\mathbf{F}(f)$ are the image function for sets and fuzzy sets, resp., and i_1 and i_2 are the inclusion mappings.

Outline

Motivation

Universes of sets over L

Fuzzy sets and fuzzy classes in $\mathfrak U$

- Concept of fuzzy sets in $\mathfrak U$
- Basic relations and operations in $\mathfrak{F}(\mathfrak{U})$
- Functions between fuzzy sets
- Fuzzy power set and exponentiation
- Concept of fuzzy class in £1
- Basic graded relations between fuzzy sets
- Functions between fuzzy sets in a certain degree

Graded equipollence of fuzzy sets in $\mathfrak{F}(\mathfrak{U})$

- Graded Cantor's equipollence
- Elementary cardinal theory based on graded Cantor's equipollence

Conclusion

Satisfactorily large fuzzy sets

Lemma

- Let $A, B \in \mathfrak{F}(\mathfrak{U})$ such that
 - (i) $|\mathscr{D}(A)| = |\mathscr{D}(B)|$,

(ii) $|\text{Supp}(A)| \le |\mathscr{D}(B) \setminus \text{Supp}(B)|$ and $|\text{Supp}(B)| \le |\mathscr{D}(A) \setminus \text{Supp}(A)|$, and let

$$\alpha := \bigvee_{f \in \mathfrak{Func}(\mathscr{D}(A), \mathscr{D}(B))} [f : A \xrightarrow{I \cdot I} B].$$

 $\textit{Then, } [f: C \xrightarrow[corr]{l-l}{corr} D] \leq \alpha \textit{ for any } C \in cls(A), D \in cls(B), \textit{ and } f \in \mathfrak{Func}.$

Definition

We say that fuzzy sets A and B form a pair of satisfactorily large fuzzy sets if they satisfies (i) and (ii) of the previous lemma.

Satisfactorily large fuzzy sets

Lemma

Let $A, B \in \mathfrak{F}(\mathfrak{U})$ such that

(i) $|\mathscr{D}(A)| = |\mathscr{D}(B)|$,

(ii) $|\text{Supp}(A)| \le |\mathscr{D}(B) \setminus \text{Supp}(B)|$ and $|\text{Supp}(B)| \le |\mathscr{D}(A) \setminus \text{Supp}(A)|$, and let

$$\alpha := \bigvee_{f \in \mathfrak{Func}(\mathscr{D}(A), \mathscr{D}(B))} [f : A \xrightarrow{l \cdot l} B].$$

 $\textit{Then, } [f: C \xrightarrow[corr]{l-l}{corr} D] \leq \alpha \textit{ for any } C \in cls(A), D \in cls(B), \textit{ and } f \in \mathfrak{Func}.$

Definition

We say that fuzzy sets A and B form a pair of satisfactorily large fuzzy sets if they satisfies (i) and (ii) of the previous lemma.

Satisfactorily large fuzzy sets

Lemma

Let $A, B \in \mathfrak{F}(\mathfrak{U})$ such that

(i)
$$|\mathscr{D}(A)| = |\mathscr{D}(B)|$$
,

(ii) $|\text{Supp}(A)| \le |\mathscr{D}(B) \setminus \text{Supp}(B)|$ and $|\text{Supp}(B)| \le |\mathscr{D}(A) \setminus \text{Supp}(A)|$, and let

$$\alpha := \bigvee_{f \in \mathfrak{Func}(\mathscr{D}(A), \mathscr{D}(B))} [f : A \xrightarrow{l \cdot l}{corr} B].$$

Then, $[f : C \xrightarrow{l \cdot l}{corr} D] \leq \alpha$ for any $C \in cls(A)$, $D \in cls(B)$, and $f \in \mathfrak{Func}$.

Definition

We say that fuzzy sets *A* and *B* form a pair of satisfactorily large fuzzy sets if they satisfies (i) and (ii) of the previous lemma.

・ロト ・同ト ・ヨト ・ヨト

Graded Cantor's equipollence

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. We say that A is approximately equipollent with B in the degree α (symbolically, $[A \overset{\circ}{\approx} B] = \alpha$) provided that there exists $A' \in \operatorname{cls}(A)$ and $B' \in \operatorname{cls}(B)$ such that

$$\alpha = \bigvee_{f \in \mathfrak{Func}(\mathscr{D}(A'), \mathscr{D}(B'))} [f : A' \xrightarrow[]{\text{corr}} B']$$

and $[g: C \xrightarrow[corr]{i-1} D] \leq \alpha$ for any $C \in cls(A), D \in cls(B)$, and $g \in \mathfrak{Func}$.

Theorem

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ such that $A \equiv C$ and $B \equiv D$. Then $[A \stackrel{\circ}{\approx} B] = [C \stackrel{\circ}{\approx} D]$.

Graded Cantor's equipollence

Definition

Let $A, B \in \mathfrak{F}(\mathfrak{U})$. We say that A is approximately equipollent with B in the degree α (symbolically, $[A \stackrel{\circ}{\approx} B] = \alpha$) provided that there exists $A' \in \operatorname{cls}(A)$ and $B' \in \operatorname{cls}(B)$ such that

$$\alpha = \bigvee_{f \in \mathfrak{Func}(\mathscr{D}(A'), \mathscr{D}(B'))} [f : A' \xrightarrow[]{\text{t-1}} B']$$

and $[g: C \xrightarrow[corr]{i-1}{corr} D] \leq \alpha$ for any $C \in cls(A)$, $D \in cls(B)$, and $g \in \mathfrak{Func}$. The fuzzy class relation $\stackrel{\circ}{\approx}$ is called the graded equipollence.

Theorem

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ such that $A \equiv C$ and $B \equiv D$. Then $[A \stackrel{\circ}{\approx} B] = [C \stackrel{\circ}{\approx} D]$.

Theorem

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ such that $A \equiv C$ and $B \equiv D$. Then $[A \stackrel{\circ}{\approx} B] = [C \stackrel{\circ}{\approx} D]$.

Graded equipollence of two finite fuzzy sets

Example

Let $A, B \in \mathfrak{F}(\mathfrak{U})$ be fuzzy sets given by

$$A(x) = \begin{cases} 0.9, & \text{if } x = a, \\ 0.5, & \text{if } x = b, \\ 0, & \text{if } x = c, \end{cases} \quad \text{and} \quad B(x) = \begin{cases} 0.5, & \text{if } x = 1, \\ 1, & \text{if } x = 2, \\ 0.2, & \text{if } x = 3, \\ 0, & \text{if } x = 4. \end{cases}$$

Let us put $z = \{a, b, c, 1, 2, 3, 4\}$ and consider $C \equiv A$ and $D \equiv B$ such that $\mathscr{D}(C) = \mathscr{D}(D) = z$. It is easy to see that *C* and *D* form a pair of satisfactorily large fuzzy sets. By Lemma, we find that

$$[A \stackrel{c}{\approx} B] = \bigvee_{f \in \mathfrak{Func}(z,z)} [f : C \xrightarrow[]{\text{corr}} D] = [f_0 : C \xrightarrow[]{\text{corr}} D] = 0.8,$$

where $f_0: z \longrightarrow z$ is defined by $f_0(a) = 2$, $f_0(b) = 1$, $f_0(c) = 3$, $f_0(1) = 4$, $f_0(2) = a$, $f_0(3) = b$, and $f_0(4) = c$.

Image: A math a math

Fuzzy class equivalence on $\mathcal{F}(\mathfrak{U})$

Theorem

The fuzzy class relation $\stackrel{\circ}{\approx}$ is a fuzzy class equivalence on $\mathfrak{F}(\mathfrak{U})$, i.e.,

(i) $[A \stackrel{c}{\approx} A] = \top$, (ii) $[A \stackrel{c}{\approx} B] = [B \stackrel{c}{\approx} A],$ (iii) $[A \stackrel{c}{\approx} B] \otimes [B \stackrel{c}{\approx} C] \leq [A \stackrel{c}{\approx} C]$ hold for arbitrary fuzzy sets $A, B, C \in \mathfrak{F}(\mathfrak{U})$.

Relations for perations with fuzzy sets

Let a, b, c, d be sets such that $a \sim c$ and $b \sim d$. Then, it is well-known that

 $a \cup b \sim c \cup d$, whenever $a \cap b = \emptyset$ and $c \cap d = \emptyset$, $a \times b \sim c \times d$, $a \sqcup b \sim c \sqcup d$.

Theorem Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$. Then, it holds (i) $[A \stackrel{\circ}{\approx} C] \otimes [B \stackrel{\circ}{\approx} D] \leq [A \otimes B \stackrel{\circ}{\approx} C \otimes D]$, (ii) $[A \stackrel{\circ}{\approx} C] \otimes [B \stackrel{\circ}{\approx} D] \leq [A \times B \stackrel{\circ}{\approx} D \times D]$, (iii) if $\operatorname{Supp}(A \cap B) = \operatorname{Supp}(C \cap D) = \emptyset$, then $[A \stackrel{\circ}{\approx} C] \otimes [B \stackrel{\circ}{\approx} D] \leq [A \cup B \stackrel{\circ}{\approx} C \cup D]$, (iv) $[A \stackrel{\circ}{\approx} C] \otimes [B \stackrel{\circ}{\approx} D] \leq [A \sqcup B \stackrel{\circ}{\approx} C \sqcup D]$.

Relations for fuzzy power sets

It is known in set theory that

 $\begin{array}{l} a \stackrel{\circ}{\approx} b \text{ implies } \mathbf{P}(a) \stackrel{\circ}{\approx} \mathbf{P}(b) \\ a \not\sim \mathbf{P}(a) \end{array}$

ls $[A \approx \mathbf{P}(A)] = \bot$ true?

Example

Let $A = \{1/a, 0.4/b\}$. Then,

 $\mathbf{P}(A) = \{1/\emptyset, 1/\{a\}, 0.4/\{b\}, 0.4/\{a, b\}\}.$

Consider $C = \{1/a, 0.4/b, 0/c, 0/d\}$. Then

$$[A \stackrel{\circ}{\approx} \mathbf{P}(A)] = [C \approx \mathbf{P}(A)] = (1 \leftrightarrow 1) \land (1 \leftrightarrow 0.4) \land (0.4 \leftrightarrow 0) \land (0.4 \leftrightarrow 0) = 1 \land 0.4 \land 0.6 \land 0.6 = 0.4.$$

Hence, we obtain $0 < [A \approx \mathbf{P}(A)] < 1$.

Relations for Bandler-Kohout fuzzy power sets

Theorem

Let $A, B \in \mathfrak{F}(\mathfrak{U})$, and let us assume that $\mathbf{F}(A), \mathbf{F}(B) \in \mathfrak{F}(\mathfrak{U})$.

If A, B form satisfactorily large pair of fuzzy sets, then

 $[A \stackrel{c}{\approx} B] \leq [\mathbf{F}(A) \stackrel{c}{\approx} \mathbf{F}(B)],$

2 $[A \stackrel{c}{\approx} \mathbf{F}(A)] = \bot.$

Relation for exponentiation of fuzzy sets

Theorem

 $\textit{Let} A, B, C, D \in \mathfrak{F}(\mathfrak{U}) \textit{ such that } |\mathscr{D}(A)| = |\mathscr{D}(C)| \textit{ and } |\mathscr{D}(B)| = |\mathscr{D}(D)|. \textit{ Then,}$

 $[A \stackrel{\circ}{\approx} C] \otimes [B \stackrel{\circ}{\approx} D] \leq [B^A \stackrel{\circ}{\approx} C^D].$

Theorem

Let $A, B, C \in \mathcal{F}(\mathfrak{U})$. Then,

$$[C^{A\otimes B} \stackrel{c}{\approx} (C^B)^A] = \top.$$

Remark

Note that an analogous relation to $P(a) \stackrel{\circ}{\approx} 2^a$ cannot be proved for fuzzy sets.

Relation for exponentiation of fuzzy sets

Theorem

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ such that $|\mathscr{D}(A)| = |\mathscr{D}(C)|$ and $|\mathscr{D}(B)| = |\mathscr{D}(D)|$. Then,

 $[A \stackrel{\circ}{\approx} C] \otimes [B \stackrel{\circ}{\approx} D] \leq [B^A \stackrel{\circ}{\approx} C^D].$

Theorem

Let $A, B, C \in \mathcal{F}(\mathfrak{U})$. Then,

$$[C^{A\otimes B} \stackrel{\circ}{\approx} (C^B)^A] = \top.$$

Remark

Note that an analogous relation to $P(a) \stackrel{\circ}{\approx} 2^a$ cannot be proved for fuzzy sets.

Relation for exponentiation of fuzzy sets

Theorem

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ such that $|\mathscr{D}(A)| = |\mathscr{D}(C)|$ and $|\mathscr{D}(B)| = |\mathscr{D}(D)|$. Then,

 $[A \stackrel{\circ}{\approx} C] \otimes [B \stackrel{\circ}{\approx} D] \leq [B^A \stackrel{\circ}{\approx} C^D].$

Theorem

Let $A, B, C \in \mathcal{F}(\mathfrak{U})$. Then,

$$[C^{A\otimes B} \stackrel{\circ}{\approx} (C^B)^A] = \top.$$

Remark

Note that an analogous relation to $P(a) \stackrel{\circ}{\approx} 2^a$ cannot be proved for fuzzy sets.

ホット キャー・ キロマ

Cantor-Bernstein theorem for fuzzy sets

One of tipe forms of Cantor-Bernstein theorem states that if a, b, c, d are sets such that $b \subseteq a$ and $d \subseteq c$ and $a \sim d$ and $b \sim c$, then $a \sim c$.

Theorem

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ be fuzzy sets with finite supports such that $B \subseteq A$ and $D \subseteq C$. Then, we have

 $[A \stackrel{\circ}{\approx} D] \wedge [C \stackrel{\circ}{\approx} B] \leq [A \stackrel{\circ}{\approx} C].$

Corollary (Cantor-Bernstein theorem)

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ be fuzzy sets with finite supports such that $A \subseteq B \subseteq C$. Then,

 $[A \stackrel{\scriptscriptstyle c}{\approx} C] \leq [A \stackrel{\scriptscriptstyle c}{\approx} B] \wedge [B \stackrel{\scriptscriptstyle c}{\approx} C].$

Cantor-Bernstein theorem for fuzzy sets

One of tipe forms of Cantor-Bernstein theorem states that if a, b, c, d are sets such that $b \subseteq a$ and $d \subseteq c$ and $a \sim d$ and $b \sim c$, then $a \sim c$.

Theorem

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ be fuzzy sets with finite supports such that $B \subseteq A$ and $D \subseteq C$. Then, we have

$$[A \stackrel{\scriptscriptstyle c}{\approx} D] \wedge [C \stackrel{\scriptscriptstyle c}{\approx} B] \leq [A \stackrel{\scriptscriptstyle c}{\approx} C].$$

Corollary (Cantor-Bernstein theorem)

Let $A, B, C, D \in \mathfrak{F}(\mathfrak{U})$ be fuzzy sets with finite supports such that $A \subseteq B \subseteq C$. Then,

$$[A \stackrel{\circ}{\approx} C] \leq [A \stackrel{\circ}{\approx} B] \wedge [B \stackrel{\circ}{\approx} C].$$

Graded Cantor-Bernstein's equipollence

Remark

It can be demonstrated that Cantor-Bernstein theorem is not true for infinite fuzzy sets, and we need a stronger concept of graded equipollence – graded Cantor-Bernstein's equipollence, which is defined using a graded Cantor's dominance

$$[A \stackrel{\circ}{\preccurlyeq} B] := \bigvee_{C \subseteq B} [A \stackrel{\circ}{\approx} C].$$

Thus, the graded Cantor-Bernstein's equipollence is given by

$$[A \stackrel{\scriptscriptstyle{\mathrm{ob}}}{\approx} B] := [A \stackrel{\scriptscriptstyle{\mathrm{o}}}{\preccurlyeq} B] \wedge [B \stackrel{\scriptscriptstyle{\mathrm{o}}}{\preccurlyeq} A].$$

Outline

Motivation

2) Universes of sets over L

Fuzzy sets and fuzzy classes in $\mathfrak U$

- Concept of fuzzy sets in £1
- Basic relations and operations in $\mathfrak{F}(\mathfrak{U})$
- Functions between fuzzy sets
- Fuzzy power set and exponentiation
- Concept of fuzzy class in £1
- Basic graded relations between fuzzy sets
- Functions between fuzzy sets in a certain degree

Graded equipollence of fuzzy sets in $\mathfrak{F}(\mathfrak{U})$

- Graded Cantor's equipollence
- Elementary cardinal theory based on graded Cantor's equipollence

Conclusion

A future work

- To build theory of fuzzy sets and fuzzy classes in the universe of sets.
- To define finiteness and infiniteness of fuzzy sets.
- To introduce ordinal and cardinal numbers (it is not so easy, if we want to follow the standard approach).
- To investigate relations between functional approach (based on graded Cantor's and Cantor-Bernstein's equipollences) to cardinality of fuzzy sets and the cardinality describe by cardinal or ordinal numbers (some results are done for fuzzy sets with finite universes).

Thank you for your attention.