How to prove conservativity by means of Kripke models

Tomasz Połacik

Institute of Mathematics University of Silesia Katowice

Prague Seminar on Non-Classical Mathematics

Prague, June 11-13, 2015

ь а <u>Бъ</u>а Б

4 E 6 4 E 6

Classical and intuitionistic theories

Let ${\mathcal L}$ be a first-order language. And let

 $\begin{array}{lll} {\tt T} & {\tt be} & {\tt a \ set \ of \ sentences \ of \ the \ language \ } \mathcal{L}, \\ {\tt T}^{\, c} & := & \{A \in \mathcal{L} : {\tt T} \vdash^c A\}, \\ {\tt T}^{\, i} & := & \{A \in \mathcal{L} : {\tt T} \vdash^i A\}. \end{array}$

• • = • • = •

Classical and intuitionistic theories

- Embeddings of CQC into IQC.
 Negative translations Gödel, Gentzen, Kolmogorov, ...
- Conservativity. T^c is Γ-conservative over Tⁱ iff for all A ∈ Γ, if T^c ⊢ A, then Tⁱ ⊢ A.

Friedman's translation.

Syntactic conditions on theories in intuitionistic logic sufficient for the negative translation and conditions sufficient for the Friedman's translation.

- 3 b - 4 3 b

Classical and intuitionistic theories

- Embeddings of CQC into IQC.
 Negative translations Gödel, Gentzen, Kolmogorov, ...
- Conservativity.

 T^{c} is Γ -conservative over T^{i} iff for all $A \in \Gamma$,

if $T^c \vdash A$, then $T^i \vdash A$.

Friedman's translation.

Syntactic conditions on theories in intuitionistic logic sufficient for the negative translation and conditions sufficient for the Friedman's translation.

→ < Ξ → <</p>

Э

Negative translation

For any formula A:

$$A \mapsto A^-$$

4 3 6 4 3

Properties of negative translation

Theorem If $\Gamma \vdash^{c} A$ then $\Gamma^{-} \vdash^{i} A^{-}$.

Theorem If Γ is closed under negative translation, then $\Gamma \vdash A$ implies $\Gamma \vdash A^-$.

HA is closed under negative translation.

4 3 5 4 3

Properties of negative translation

Theorem If $\Gamma \vdash^{c} A$ then $\Gamma^{-} \vdash^{i} A^{-}$.

Theorem

If Γ is closed under negative translation, then $\Gamma \vdash A$ implies $\Gamma \vdash A^-$.

HA is closed under negative translation.

• • = • • = •

э

The Friedman translation

Let D be a fixed formula. For any formula A (with some restrictions on the variables),

$A \mapsto A^D$

化氯化化

Properties of the Friedman translation

Theorem If $\Gamma \vdash^i A$ then $\Gamma^D \vdash^i A^D$.

Theorem If Γ is closed under the Friedman translation, then $\Gamma \vdash A$ implies $\Gamma \vdash A^D$.

HA is closed under the Friedman translation.

4 3 6 4 3 6

Properties of the Friedman translation

Theorem If $\Gamma \vdash^i A$ then $\Gamma^D \vdash^i A^D$.

Theorem

If Γ is closed under the Friedman translation, then $\Gamma \vdash A$ implies $\Gamma \vdash A^D$.

HA is closed under the Friedman translation.

/□ ▶ ▲ 글 ▶ ▲ 글

э

Π_2 -conservativity

Theorem PA is Π_2 -conservative over HA.

Proof (sketch).

```
PA \vdash \exists xA

HA \vdash (\exists xA)^{-}

HA \vdash ((\exists xA)^{-})^{\exists yA}

HA \vdash \forall x (A(x) \rightarrow \exists yA(y)) \rightarrow \exists yA(y)

HA \vdash \exists xA.
```

• • = • • = •

э

Π_2 -conservativity

Theorem PA is Π_2 -conservative over HA.

Proof (sketch).

```
PA \vdash \exists xA

HA \vdash (\exists xA)^{-}

HA \vdash ((\exists xA)^{-})^{\exists yA}

HA \vdash \forall x (A(x) \rightarrow \exists yA(y)) \rightarrow \exists yA(y)

HA \vdash \exists xA.
```

• • = • • = •

э

Π_2 -conservativity

Theorem PA is Π_2 -conservative over HA.

Proof (sketch).

```
PA \vdash \exists xA

HA \vdash (\exists xA)^{-}

HA \vdash ((\exists xA)^{-})^{\exists yA}

HA \vdash \forall x (A(x) \rightarrow \exists yA(y)) \rightarrow \exists yA(y)

HA \vdash \exists xA.
```

• • • • • • •

э

Π_2 -conservativity

Theorem PA is Π_2 -conservative over HA.

Proof (sketch).

```
PA \vdash \exists xA

HA \vdash (\exists xA)^{-}

HA \vdash ((\exists xA)^{-})^{\exists yA}

HA \vdash \forall x (A(x) \rightarrow \exists yA(y)) \rightarrow \exists yA(y)

HA \vdash \exists xA.
```

.⊒ . ►

Π_2 -conservativity

Theorem

PA is Π_2 -conservative over HA.

Proof (sketch).

$$PA \vdash \exists xA$$

$$HA \vdash (\exists xA)^{-}$$

$$HA \vdash ((\exists xA)^{-})^{\exists yA}$$

$$HA \vdash \forall x (A(x) \rightarrow \exists yA(y)) \rightarrow \exists yA(y)$$

$$HA \vdash \exists xA.$$

Π_2 -conservativity

Theorem

PA is Π_2 -conservative over HA.

Proof (sketch).

$$PA \vdash \exists xA$$

$$HA \vdash (\exists xA)^{-}$$

$$HA \vdash ((\exists xA)^{-})^{\exists yA}$$

$$HA \vdash \forall x (A(x) \rightarrow \exists yA(y)) \rightarrow \exists yA(y)$$

$$HA \vdash \exists xA.$$

Π_2 -conservativity

Theorem

PA is Π_2 -conservative over HA.

Proof (sketch).

$$PA \vdash \exists xA$$

$$HA \vdash (\exists xA)^{-}$$

$$HA \vdash ((\exists xA)^{-})^{\exists yA}$$

$$HA \vdash \forall x (A(x) \rightarrow \exists yA(y)) \rightarrow \exists yA(y)$$

$$HA \vdash \exists xA.$$

Π_2 -conservativity: a generalization

Theorem

Let T^i be such a theory that all atomic formulae are decidable in T^i , and let T^i be closed under the Friedman and negative translations. Then T^c is conservative over T^i with respect to the class of formulae of the form

$\forall x \exists y A$,

where A is a quantifier-free formula.

伺下 イヨト イヨト

Classical and intuitionistic theories

The formula A is called spreading if $IQC \vdash A(B_1^{neg}, \dots, B_n^{neg}) \rightarrow A(B_1, \dots, B_n)^{neg}$ wiping if $IQC \vdash A(B_1, \dots, B_n)^{neg} \rightarrow A(B_1^{neg}, \dots, B_n^{neg})$ isolating if $IQC \vdash A(B_1, \dots, B_n)^{neg} \rightarrow \neg \neg A(B_1^{neg}, \dots, B_n^{neg})$

The formula A is called essentially isolating if it is of the form $\forall x (A \rightarrow \forall yB)$, with A spreading and B isolating.

• • = • • = •

Classical and intuitionistic theories

The formula A is called spreading if $IQC \vdash A(B_1^{neg}, \ldots, B_n^{neg}) \rightarrow A(B_1, \ldots, B_n)^{neg}$ wiping if $IQC \vdash A(B_1, \ldots, B_n)^{neg} \rightarrow A(B_1^{neg}, \ldots, B_n^{neg})$ isolating if $IQC \vdash A(B_1, \ldots, B_n)^{neg} \rightarrow \neg \neg A(B_1^{neg}, \ldots, B_n^{neg})$

The formula A is called

essentially isolating if it is of the form $\forall x(A \rightarrow \forall yB)$, with A spreading and B isolating.

Classical and intuitionistic theories: known results

Theorem

Let T is closed under the negative translation and let ${\rm T}\vdash^{c} A.$ Then ${\rm T}\vdash^{i} A,$ provided that

- 1. A is wiping, or
- 2. A is isolating and \perp only occurs positively in T and negatively in A.

Theorem

If A is the negation of a prenex formula, then whenever $CQC \vdash A$ then $IQC \vdash A$.

Classical and intuitionistic theories: a syntactic approach

Syntactic translations *just work*!

The syntactic conditions lead us to 'artificial' classes of formulae.

伺下 イヨト イヨト

Let's try another way...

A Kripke model \mathcal{M} is a tuple $(I, \leqslant, \{\mathcal{M}(w) : w \in I\}, \Vdash)$ such that

• $I \neq \emptyset$ and (I, \leqslant) is a poset,

•
$$\mathcal{M}(u) \subseteq \mathcal{M}(w)$$
 if $u \leqslant w$,

• $w \Vdash A$ iff $\mathcal{M}(w) \models A$, for all atomic formulae A.

The forcing relation is inductively extended to the set of all formulae.

ь а <u>Бъ</u>а Б

Let's try another way: a semantic approach

Use semantics to prove conservativity results.

Exploit the coexistence of classical satisfiability and intuitionistic forcing within a Kripke model.

Exploit the interplay between classical and intuitionistic theories in Kripke models.

ь <u>к</u> Б в к Б

Let's try another way: a semantic approach

Use semantics to prove conservativity results.

Exploit the coexistence of classical satisfiability and intuitionistic forcing within a Kripke model.

Exploit the interplay between classical and intuitionistic theories in Kripke models.

Let's try another way: a semantic approach

Use semantics to prove conservativity results.

Exploit the coexistence of classical satisfiability and intuitionistic forcing within a Kripke model.

Exploit the interplay between classical and intuitionistic theories in Kripke models.

・ 同 ト ・ ヨ ト ・ ヨ ト

The key idea

To prove that $T^{c} \vdash A$ iff $T^{i} \vdash A$ one can show that

▶ if $T^i \nvDash A$ then $T^c \nvDash A$

► assuming that Tⁱ ⊭ A, by the Completeness Theorem, we have a Kripke model M such that

$$\mathcal{M} \Vdash \mathsf{T}^i$$
 and $\mathcal{M} \nvDash A$

▶ we look for a classical counter-model *M* such that

 $M \models T^c$ and $M \not\models A$

・ 同 ト ・ ヨ ト ・ ヨ ト

The key idea

To prove that $T^{c} \vdash A$ iff $T^{i} \vdash A$ one can show that

• if $T^i \nvDash A$ then $T^c \nvDash A$

► assuming that Tⁱ ⊭ A, by the Completeness Theorem, we have a Kripke model M such that

$$\mathcal{M} \Vdash \mathsf{T}^i$$
 and $\mathcal{M} \nvDash A$

▶ we look for a classical counter-model *M* such that

 $M \models T^c$ and $M \not\models A$

周 ト イ ヨ ト イ ヨ ト

The key idea

To prove that $T^{c} \vdash A$ iff $T^{i} \vdash A$ one can show that

- if $T^i \nvDash A$ then $T^c \nvDash A$
- ▶ assuming that $T^i \nvDash A$, by the Completeness Theorem, we have a Kripke model M such that

$$\mathcal{M} \Vdash \mathtt{T}^i$$
 and $\mathcal{M} \nvDash A$

▶ we look for a classical counter-model *M* such that

 $M \models T^c$ and $M \not\models A$

The key idea

To prove that $T^{c} \vdash A$ iff $T^{i} \vdash A$ one can show that

- if $T^i \nvDash A$ then $T^c \nvDash A$
- ▶ assuming that $T^i \nvDash A$, by the Completeness Theorem, we have a Kripke model M such that

$$\mathcal{M} \Vdash \mathsf{T}^i$$
 and $\mathcal{M} \nvDash A$

▶ we look for a classical counter-model *M* such that

$$M \models T^c$$
 and $M \not\models A$

直 ト イヨ ト イヨト

Bad news

The interplay between classical and intuitionistic theories in Kripke models is a complex issue. In particular,

- In the given Kripke model *M* ⊨ Tⁱ there may be no worlds *M* with *M* ⊨ T^c.
- ▶ Even if all the worlds M of a Kripke model \mathcal{M} are such that $M \models T^c$, it is not necessary that $\mathcal{M} \Vdash T^i$.

伺 ト イヨ ト イヨト

Bad news

The interplay between classical and intuitionistic theories in Kripke models is a complex issue. In particular,

- In the given Kripke model *M* ⊢ Tⁱ there may be no worlds *M* with *M* ⊨ T^c.
- ▶ Even if all the worlds M of a Kripke model \mathcal{M} are such that $M \models T^c$, it is not necessary that $\mathcal{M} \Vdash T^i$.

何 ト イ ヨ ト イ ヨ ト

Bad news

The interplay between classical and intuitionistic theories in Kripke models is a complex issue. In particular,

- In the given Kripke model *M* ⊢ Tⁱ there may be no worlds *M* with *M* ⊨ T^c.
- ► Even if all the worlds M of a Kripke model \mathcal{M} are such that $M \models T^c$, it is not necessary that $\mathcal{M} \Vdash T^i$.

Forcing-stable, satisfaction-stable and stable formulae

Definition

We say that a formula A is

- ▶ forcing-stable (f-stable for short) in a theory T^i iff for every Kripke model \mathcal{M} of T^i and every node w in \mathcal{M} we have if $w \Vdash A$ then $\mathcal{M}(w) \models A$
- satisfaction-stable (s-stable for short) in a theory Tⁱ iff for every Kripke model M of Tⁱ and every node w in M we have if M(w) ⊨ A then w ⊩ A,
- ▶ *stable in a theory* T^{*i*} iff A is f-stable and s-stable.

F 4 3 F 4

Forcing-stable, satisfaction-stable and stable formulae

Definition

We say that a formula A is

- ► forcing-stable (f-stable for short) in a theory T^i iff for every Kripke model \mathcal{M} of T^i and every node w in \mathcal{M} we have if $w \Vdash A$ then $\mathcal{M}(w) \models A$
- satisfaction-stable (s-stable for short) in a theory Tⁱ iff for every Kripke model M of Tⁱ and every node w in M we have if M(w) ⊨ A then w ⊩ A,
- ► *stable in a theory* T^{*i*} iff A is f-stable and s-stable.

Forcing-stable, satisfaction-stable and stable formulae

Definition

We say that a formula A is

- ▶ forcing-stable (f-stable for short) in a theory T^i iff for every Kripke model \mathcal{M} of T^i and every node w in \mathcal{M} we have if $w \Vdash A$ then $\mathcal{M}(w) \models A$
- satisfaction-stable (s-stable for short) in a theory Tⁱ iff for every Kripke model M of Tⁱ and every node w in M we have if M(w) ⊨ A then w ⊢ A,
- ► *stable in a theory* T^{*i*} iff A is f-stable and s-stable.
Forcing-stable, satisfaction-stable and stable formulae

Definition

We say that a formula A is

- ▶ forcing-stable (f-stable for short) in a theory T^i iff for every Kripke model \mathcal{M} of T^i and every node w in \mathcal{M} we have if $w \Vdash A$ then $\mathcal{M}(w) \models A$
- satisfaction-stable (s-stable for short) in a theory Tⁱ iff for every Kripke model M of Tⁱ and every node w in M we have if M(w) ⊨ A then w ⊢ A,
- ► stable in a theory T^{*i*} iff A is f-stable and s-stable.

• • = • • = •

Stable formulae

The class of stable formulae in IQC coincides with the set of positive formulae.

Definition Let $\mathcal{P}(T^{i})$ be the smallest class such that

- $\{A : A \text{ is atomic}\} \subseteq \mathcal{P}(\mathbf{T}^i),$
- $\blacktriangleright \{A: \mathtt{T}^i \vdash A \lor \neg A\} \subseteq \mathcal{P}(\mathtt{T}^i),$
- ▶ if $A, B \in \mathcal{P}(\mathbb{T}^i)$ then $A \land B, A \lor B, \exists x A \in \mathcal{P}(\mathbb{T}^i)$.

A B F A B F

Stable formulae

The class of stable formulae in IQC coincides with the set of positive formulae.

Definition Let $\mathcal{P}(\mathbf{T}^{i})$ be the smallest class such that

- $\{A : A \text{ is atomic}\} \subseteq \mathcal{P}(T^{i}),$
- ► { $A : T^i \vdash A \lor \neg A$ } ⊆ $\mathcal{P}(T^i)$,
- if $A, B \in \mathcal{P}(T^{i})$ then $A \wedge B, A \vee B, \exists x A \in \mathcal{P}(T^{i})$.

.

F-stable formulae

The class of f-stable formulae in IQC contains the formulae of the form $\forall xA$ where A is a positive formula.

Definition

Let T^i be an intuitionistic theory. The class $\mathcal{F}(T^i)$ of *generalized semi-positive formulae in* T^i is the least class of formulae such that

- ▶ $\bot \in \mathcal{F}(\mathtt{T}^{i})$,
- $\blacktriangleright \mathcal{P}(\mathtt{T}^{i}) \subseteq \mathcal{F}(\mathtt{T}^{i}),$
- ▶ if $B, C \in \mathcal{F}(T^{i})$ then $B \land C, B \lor C, \exists xB, \forall xB \in \mathcal{F}(T^{i})$,
- if $B \in \mathcal{P}(\mathbb{T}^i)$ and $C \in \mathcal{F}(\mathbb{T}^i)$, then $B \to C \in \mathcal{F}(\mathbb{T}^i)$.

• • = • • = =

F-stable formulae

The class of f-stable formulae in IQC contains the formulae of the form $\forall xA$ where A is a positive formula.

Definition

Let T^i be an intuitionistic theory. The class $\mathcal{F}(T^i)$ of generalized semi-positive formulae in T^i is the least class of formulae such that

- ▶ $\bot \in \mathcal{F}(\mathtt{T}^{i})$,
- ▶ $\mathcal{P}(\mathtt{T}^{i}) \subseteq \mathcal{F}(\mathtt{T}^{i}),$
- ▶ if $B, C \in \mathcal{F}(T^{i})$ then $B \land C, B \lor C, \exists xB, \forall xB \in \mathcal{F}(T^{i})$,
- if $B \in \mathcal{P}(\mathbb{T}^i)$ and $C \in \mathcal{F}(\mathbb{T}^i)$, then $B \to C \in \mathcal{F}(\mathbb{T}^i)$.

ь <u>к</u> Б в к Б

F-stable formulae

A formula A is *semi-positive* if each subformula of A of the form $B \rightarrow C$ has B atomic.

The class of semi-positive formulae is exactly the class of formulae which are preserved under taking submodels of Kripke models resulting in restricting the frame of a given model (A. Visser)

4 E 6 4 E

F-stable formulae

A formula A is *semi-positive* if each subformula of A of the form $B \rightarrow C$ has B atomic.

The class of semi-positive formulae is exactly the class of formulae which are preserved under taking submodels of Kripke models resulting in restricting the frame of a given model (A. Visser)

F-stable formulae

Classically, every first-order formula is equivalent to a semi-positive formula.

The semi-positive formulae are f-stable in any theory T^{i} .

If T^{*i*} is an intuitionistic theory in which all atomic formulae are decidable then every prenex formula is f-stable in T^{*i*}.

The class $\mathcal{F}(\mathbf{T}^{i})$ contains all semi-positive formulae.

.

F-stable formulae

Classically, every first-order formula is equivalent to a semi-positive formula.

The semi-positive formulae are f-stable in any theory T^{i} .

If T^{*i*} is an intuitionistic theory in which all atomic formulae are decidable then every prenex formula is f-stable in T^{*i*}.

The class $\mathcal{F}(\mathtt{T}^{i})$ contains all semi-positive formulae.

.

F-stable formulae

Classically, every first-order formula is equivalent to a semi-positive formula.

The semi-positive formulae are f-stable in any theory T^{i} .

If T^{i} is an intuitionistic theory in which all atomic formulae are decidable then every prenex formula is f-stable in T^{i} .

The class $\mathcal{F}(\mathtt{T}^i)$ contains all semi-positive formulae.

F-stable formulae

Classically, every first-order formula is equivalent to a semi-positive formula.

The semi-positive formulae are f-stable in any theory T^{i} .

If T^{i} is an intuitionistic theory in which all atomic formulae are decidable then every prenex formula is f-stable in T^{i} .

The class $\mathcal{F}(T^{i})$ contains all semi-positive formulae.

.

F-stable formulae

Theorem

For every intuitionistic theory T^i , every generalized semi-positive formula in T^i is forcing-stable in T^i .

A Kripke model \mathcal{M} is called T^{c} -normal if for every $w \in W$, we have $\mathcal{M}(w) \models T^{c}$.

Corollary

If T is a set of semi-positive sentences, then every Kripke model of T^{i} is T^{c} -normal. In particular, T^{i} is complete with respect to a class of T^{c} -normal Kripke models.

• • = = • • = =

F-stable formulae

Theorem

For every intuitionistic theory T^i , every generalized semi-positive formula in T^i is forcing-stable in T^i .

A Kripke model \mathcal{M} is called T^{*c*}-normal if for every $w \in W$, we have $\mathcal{M}(w) \models T^{c}$.

Corollary

If T is a set of semi-positive sentences, then every Kripke model of T^i is T^c -normal. In particular, T^i is complete with respect to a class of T^c -normal Kripke models.

F-stable formulae

Theorem

For every intuitionistic theory T^i , every generalized semi-positive formula in T^i is forcing-stable in T^i .

A Kripke model \mathcal{M} is called T^{*c*}-normal if for every $w \in W$, we have $\mathcal{M}(w) \models T^{c}$.

Corollary

If T is a set of semi-positive sentences, then every Kripke model of T^i is T^c -normal. In particular, T^i is complete with respect to a class of T^c -normal Kripke models.

ь а <u>Бъ</u>а Б

S-stable formulae

Theorem

The class of s-stable formulae in T^i contains the class $\mathcal{P}(T^i)$. Moreover, for any formula A such that there is a s-stable formula $B \in \mathcal{P}(T^i)$ such that $CQC \vdash A \leftrightarrow B$ and $IQC \vdash B \rightarrow A$.

ь « Эь « Эь

Conservatitvity via T^c-normal models

Definition

For a given theory T^i we define a class $\mathcal{A}(T^i)$ of formulae of the form

$$\forall x (C \to \forall y D)$$

where C is f-stable and D is s-stable in T^{i} .

Theorem

Assume that T^{i} is complete with respect to a class of T^{i} -normal Kripke models. Then T^{c} is conservative over T^{i} with respect to the class $\mathcal{A}(T^{i})$.

Conservatitvity via T^c-normal models

Definition

For a given theory T i we define a class $\mathcal{A}(T^i)$ of formulae of the form

 $\forall x (C \rightarrow \forall yD)$

where C is f-stable and D is s-stable in T^{i} .

Theorem

Assume that T^{i} is complete with respect to a class of T^{i} -normal Kripke models. Then T^{c} is conservative over T^{i} with respect to the class $\mathcal{A}(T^{i})$.

Sketch of proof.

Assume that

$$\mathsf{T}^{i} \not\vdash \forall x (C(x) \to \forall y D(x, y)),$$

where C is f-stable and D is s-stable over T^{i} .

By completeness, there is a T^c-normal Kripke model $\mathcal{M} \Vdash T^i$ and a world u of \mathcal{M} such that for some $a, b \in \mathcal{M}(u)$,

$$u \Vdash C(a) \tag{1}$$
$$u \nvDash D(a,b) \tag{2}$$

.

Sketch of proof.

Assume that

$$\mathsf{T}^{i} \not\vdash \forall x (C(x) \to \forall y D(x, y)),$$

where C is f-stable and D is s-stable over T^{i} .

By completeness, there is a T^c-normal Kripke model $\mathcal{M} \Vdash T^i$ and a world u of \mathcal{M} such that for some $a, b \in \mathcal{M}(u)$,

$$u \Vdash C(a) \tag{1}$$

$$u \nvDash D(a, b) \tag{2}$$

< 同 ト < 三 ト < 三 ト

-

Sketch of proof continued. From (1) and f-stability of C we get $\mathcal{M}(u) \models C$.

From (2) we get $\mathcal{M}(u) \not\models D(a, b)$, since D is s-stable.

Hence $\mathcal{M}(u) \not\models C(a) \rightarrow \forall y D(a, y).$

Since \mathcal{M} is T-normal, $\mathcal{M}(u) \models T^{c}$. Hence

 $\mathsf{T}^{c} \not\vdash \forall x (C \to \forall y D)$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Sketch of proof continued. From (1) and f-stability of C we get $\mathcal{M}(u) \models C$.

From (2) we get $\mathcal{M}(u) \not\models D(a, b)$, since D is s-stable.

Hence $\mathcal{M}(u) \not\models C(a) \rightarrow \forall y D(a, y)$.

Since \mathcal{M} is T-normal, $\mathcal{M}(u) \models T^{c}$. Hence

 $\mathsf{T}^{c} \not\vdash \forall x (C \to \forall y D)$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Sketch of proof continued.

From (1) and f-stability of C we get $\mathcal{M}(u) \models C$.

From (2) we get $\mathcal{M}(u) \not\models D(a, b)$, since D is s-stable.

Hence $\mathcal{M}(u) \not\models C(a) \rightarrow \forall y D(a, y)$.

Since \mathcal{M} is T-normal, $\mathcal{M}(u) \models T^{c}$. Hence

 $\mathsf{T}^{c} \not\vdash \forall x (C \to \forall y D)$

(日本)(日本)(日本)

Sketch of proof continued.

From (1) and f-stability of C we get $\mathcal{M}(u) \models C$.

From (2) we get $\mathcal{M}(u) \not\models D(a, b)$, since D is s-stable.

Hence $\mathcal{M}(u) \not\models C(a) \rightarrow \forall y D(a, y)$.

Since \mathcal{M} is T-normal, $\mathcal{M}(u) \models T^{c}$. Hence

 $T^{c} \not\vdash \forall x (C \rightarrow \forall y D)$

Conservatitvity via T^c-normal models

Corollary (Π_2 -completeness)

Let the theory T^i be complete with respect to a class of T^c -normal Kripke models. Then T^c is conservative over T^i with respect to the class $\{\forall xA : A \in \mathcal{P}(T^i)\}$.

NB If all atomic formulae are decidable in T^{i} , then for any formula $A \in \mathcal{P}(T^{i})$, the formula $\forall xA$ is in Π_{2} .

Conservatitvity via T^c-normal models

Corollary (Negations of prenex formulae)

Let the theory T^i be complete with respect to a class of T^c -normal Kripke models. Then T^c is conservative over T^i with respect to the class $\{\neg A : A \in \mathcal{F}(T^i)\}$.

NB The class $\mathcal{F}(T^{i})$ contains the class of generalized semi-positive formulae and the class of prenex formulae.

Conservatitvity via pruning

Definition (van Dalen, Mulder, Krabbe, Visser)

Let $\mathcal{M} = (W, \leq, {\mathcal{M}(w) : w \in W}, \Vdash)$ be a Kripke model and let $w \in W$. Assume that F is a sentence, possible with parameters from M_w , such that $(\mathcal{M}, w) \nvDash F$. We define the Kripke model

$$\mathcal{M}^{F} = (W^{F}, \leqslant^{F}, \{\mathcal{M}(v) : v \in W^{F}\}, \Vdash^{F})$$

such that $W^F = \{v \in W : v \ge w \text{ and } (\mathcal{M}, v) \nvDash F\}$ and \leqslant^F is the restriction of \leqslant to the set W^F . The forcing relation of the model \mathcal{M}^F is denoted by \Vdash^F .

★ ∃ ► < ∃ ►</p>

Conservatitvity via pruning

First Pruning Lemma (van Dalen, Mulder, Krabbe, Visser)

Let \mathcal{M} be a Kripke model and w be a node of \mathcal{M} such that $(\mathcal{M}, w) \nvDash F$ for some sentence F with parameters from M_w . Then

$$(\mathcal{M}, w) \Vdash A^F$$
 iff $(\mathcal{M}^F, w) \Vdash^F A$,

for every A.

Conservatitvity via pruning

Theorem

Consider a theory T^{i} . Let a formula A be positive or decidable in T^{i} . Then

$$\mathsf{T}^i \vdash \exists x A^{\exists x A} \to \exists x A.$$

Moreover, if additionally the theory T^{i} satisfies the formula

$$\mathsf{CD} = \forall x (C(x) \lor D) \to (\forall x C(x) \lor D),$$

where the variable x is not free in D, then for any sequence of quantifiers Q_i

$$\mathsf{T}^i \vdash Q_1 x_1 \dots Q_n x_n A^{Q_1 x_1 \dots Q_n x_n A} \rightarrow Q_1 x_1 \dots Q_n x_n A.$$

Conservatitvity via pruning

Theorem

Assume that the theory T^i is closed under the Friedman translation with respect to the class of $\mathcal{P}(T^i)$ and complete with respect to a class of conversely well-founded Kripke models. Then T^c is conservative over T^i with respect to the class of formulae of the form $\forall x \exists y A$ where A belongs to $\mathcal{P}(T^i)$.

Sketch of proof. Let $T^i \not\vdash \forall x \exists y A$.

We find a conversely well-founded Kripke model $\mathcal{M} \Vdash \mathtt{T}^i$ such that

 $\mathcal{M} \nvDash \forall x \exists y A.$

There is w and $a \in \mathcal{M}(w)$ such that

 $(\mathcal{M}, w) \nvDash \exists y A(a, y).$

$$(\mathcal{M}, w) \nvDash \exists y A(a, y)^{\exists y A(a, y)}.$$

• • = • • = •

э

Sketch of proof. Let $T^i \not\vdash \forall x \exists y A$.

We find a conversely well-founded Kripke model $\mathcal{M} \Vdash \mathtt{T}^i$ such that

 $\mathcal{M} \nvDash \forall x \exists y A.$

There is w and $a \in \mathcal{M}(w)$ such that

 $(\mathcal{M}, w) \nvDash \exists y A(a, y).$

$$(\mathcal{M}, w) \nvDash \exists y A(a, y)^{\exists y A(a, y)}.$$

4 E 6 4 E 6

э

Sketch of proof. Let $T^i \not\vdash \forall x \exists y A$.

We find a conversely well-founded Kripke model $\mathcal{M} \Vdash \mathtt{T}^i$ such that

 $\mathcal{M} \nvDash \forall x \exists y A.$

There is w and $a \in \mathcal{M}(w)$ such that

 $(\mathcal{M}, w) \nvDash \exists y A(a, y).$

$$(\mathcal{M}, w) \nvDash \exists y A(a, y)^{\exists y A(a, y)}.$$

4 E 6 4 E 6

э

Sketch of proof. Let $T^i \not\vdash \forall x \exists y A$.

We find a conversely well-founded Kripke model $\mathcal{M} \Vdash \mathtt{T}^i$ such that

 $\mathcal{M} \nvDash \forall x \exists y A.$

There is w and $a \in \mathcal{M}(w)$ such that

 $(\mathcal{M}, w) \nvDash \exists y A(a, y).$

$$(\mathcal{M}, w) \nvDash \exists y A(a, y)^{\exists y A(a, y)}.$$

Sketch of proof continued.

Prune \mathcal{M} with respect to the formula $F := \exists y A(a, y)$.

By the Pruning Lemma, $(\mathcal{M}^F, w) \not\Vdash^F \exists y A(a, y)$.

For some terminal world $v \ge w$ in \mathcal{M}^F ,

 $(\mathcal{M}^F, v) \nvDash^F \exists y A(a, y) \text{ and } (\mathcal{M}^F, v) \Vdash^F T^i T.$

・吊 ・ ・ ラ ト ・ ラ ト ・ ラ

Sketch of proof continued.

Prune \mathcal{M} with respect to the formula $F := \exists y A(a, y)$.

By the Pruning Lemma, $(\mathcal{M}^F, w) \nvDash^F \exists y A(a, y)$.

For some terminal world $v \ge w$ in \mathcal{M}^F ,

 $(\mathcal{M}^F, v) \nvDash^F \exists y A(a, y) \text{ and } (\mathcal{M}^F, v) \Vdash^F T^i T.$

(b) a (B) b (a (B) b)

-

Sketch of proof continued.

Prune \mathcal{M} with respect to the formula $F := \exists y A(a, y)$.

By the Pruning Lemma, $(\mathcal{M}^F, w) \nvDash^F \exists y A(a, y)$.

For some terminal world $v \ge w$ in \mathcal{M}^F ,

$$(\mathcal{M}^F, v) \nvDash^F \exists y A(a, y) \text{ and } (\mathcal{M}^F, v) \Vdash^F T^i T.$$
• • = • • = •

э

Sketch of proof continued.

Since v is a terminal node in \mathcal{M}^F ,

$$\mathcal{M}(v) \not\models \forall x \exists y A(x, y) \text{ and } \mathcal{M}(v) \models T^{c}$$

and hence, we get a desired counter-model.

In particular,

 $T^{c} \not\vdash \forall x \exists y A(x, y),$

as required.

Sketch of proof continued.

Since v is a terminal node in \mathcal{M}^F ,

$$\mathcal{M}(v) \not\models \forall x \exists y A(x, y) \text{ and } \mathcal{M}(v) \models T^{c}$$

and hence, we get a desired counter-model.

In particular,

 $T^{c} \not\vdash \forall x \exists y A(x, y),$

as required.

Conservatitvity via pruning

Theorem

Assume that the theory T^i is closed under the Friedman translation and complete with respect to the class of conversely well-founded Kripke models with constant domains. Then T^c is conservative over T^i with respect to the class of prenex formulae with a positive formula as the matrix.

• • = • • = •

Characterization of T-normal Kripke models

Let T be a set of sentences. We define

 $\mathcal{H}T = \{(\neg B)^A : A \text{ is arbitrary, } B \text{ is semipositive, and } T^c \vdash \neg B\}.$

Theorem (S. Buss) $(\mathcal{H}T)^i \vdash A$ iff A is true in the class of all T-normal Kripke models.

Corollary If $T^i \vdash (\mathcal{H}T)^i$ then T^i is complete with respect to T-normal Kripke models.

• • = • • = •

Characterization of T-normal Kripke models

Let T be a set of sentences. We define

 $\mathcal{H}T = \{(\neg B)^A : A \text{ is arbitrary, } B \text{ is semipositive, and } T^c \vdash \neg B\}.$

Theorem (S. Buss) $(\mathcal{H}T)^i \vdash A$ iff A is true in the class of all T-normal Kripke models.

Corollary

If $T^i \vdash (\mathcal{H}T)^i$ then T^i is complete with respect to T-normal Kripke models.

伺 ト イ ヨ ト イ ヨ

Completeness theorems for arithmetic

Theorem (S. Buss, K. Wehmeier) $HA \vdash HPA$.

Corollary

HA is complete with respect to the class of PA-normal Kripke models.

However, HA is *not* sound with respect to the class of PA-normal Kripke models.

• • = = • • = =

Completeness theorems for arithmetic

Theorem (S. Buss, K. Wehmeier) $HA \vdash \mathcal{H}PA$.

Corollary

HA is complete with respect to the class of PA-normal Kripke models.

However, HA is *not* sound with respect to the class of PA-normal Kripke models.

.

Completeness theorems for arithmetic

Theorem (S. Buss, K. Wehmeier) $HA \vdash \mathcal{H}PA$.

Corollary

HA is complete with respect to the class of PA-normal Kripke models.

However, HA is *not* sound with respect to the class of PA-normal Kripke models.

Completeness theorems for arithmetic

Theorem (S. Buss, K. Wehmeier) $HA \vdash \mathcal{H}PA$.

Corollary

HA is complete with respect to the class of PA-normal Kripke models.

However, HA is *not* sound with respect to the class of PA-normal Kripke models.

直 ト イヨ ト イヨト

Stable formulae in HA

For every Δ_0 -formula of the language of arithmetic,

$$i\Delta_0 \vdash \forall x (A(x) \lor \neg A(x)).$$

In particular,

•
$$\mathcal{P}(i\Delta_0) = \mathcal{P}(HA) = \Sigma_1$$
,

•
$$\mathcal{A}(\mathtt{i}\Delta_0) = \mathcal{A}(\mathtt{HA}) \supseteq \Pi_2$$
,

▶ $\mathcal{A}(i\Delta_0) = \mathcal{A}(HA) \supseteq \{\neg A : A \text{ is a prenex formula}\},\$

▶ $\mathcal{A}(i\Delta_0) = \mathcal{A}(HA) \supseteq \{\neg A : A \text{ is a semi-positive formula}\}.$

(b) a (B) b (a (B) b)

Stable formulae in HA

For every $\Delta_0\text{-}\text{formula}$ of the language of arithmetic,

$$i\Delta_0 \vdash \forall x (A(x) \lor \neg A(x)).$$

In particular,

•
$$\mathcal{P}(i\Delta_0) = \mathcal{P}(HA) = \Sigma_1$$
,

$$\blacktriangleright \ \mathcal{A}(\mathtt{i} \Delta_0) = \mathcal{A}(\mathtt{HA}) \supseteq \mathsf{\Pi}_2,$$

- $\mathcal{A}(i\Delta_0) = \mathcal{A}(HA) \supseteq \{\neg A : A \text{ is a prenex formula}\},\$
- $\mathcal{A}(i\Delta_0) = \mathcal{A}(HA) \supseteq \{\neg A : A \text{ is a semi-positive formula}\}.$

Conservativity of arithmetic

Theorem

The theories $I\Delta_0$ and PA are conservative over $i\Delta_0$ and HA respectively, with respect to the class $\mathcal{A}(HA)$ which includes, in particular,

- ► Π₂,
- negations of prenex formulae,
- negations of semi-positive formulae.

• • = • • =

Conclusion

- Our results apply to wide classes of theories.
- We can replace the assumption that the theory in question is closed under the negative translation by semantic conditions.

→ < Ξ → <</p>

Conclusion

- Our results apply to wide classes of theories.
- We can replace the assumption that the theory in question is closed under the negative translation by semantic conditions.

4 3 5 4

Conclusion

- Our results apply to wide classes of theories.
- We can replace the assumption that the theory in question is closed under the negative translation by semantic conditions.

F 4 3 F 4

- S. Buss, *Intuitionistic validity in T-normal Kripke structures*, Annals of Pure and Applied Logic, 59:159–173, 1993.
- D. van Dalen, H. Mulder, E.C.W. Krabbe, A. Visser, *Finite Kripke models of* HA *are locally* PA, Notre Dame Journal of Formal Logic, 27:528–532, 1986.
- H. Friedman, Classically and Intuitionistically Provably Recursive Functions. In: D.S. Scott and G.H. Muller, editors, Higher Set Theory, Volume 699 of Lecture Notes in Mathematics, Springer Verlag 1978, pp. 21–28.
- T. Połacik, A Semantic Approach to Conservativity, submitted.
- A.S. Troelstra, D. van Dalen, *Constructivism in mathematics*, North-Holland, 1988.
- A. Visser, *Submodels of Kripke models*, Archive for Mathematical Logic 40: 277–295, 2001.

Thank you for your attention.

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Thank you for your attention.

< 同 > < 国 > < 国 >

æ