Dr. Vladimir Lotoreichik

Department of Theoretical Physics

Nuclear Physics Institute

Academy of Sciences of the Czech Republic


Refereed publications

  1. Michal Jex and Vladimir Lotoreichik
    On absence of bound states for weakly attractive δ′-interactions supported on non-closed curves in ℝ²
    submitted. arXiv.

  2. Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder
    Quasi boundary triples and semibounded self-adjoint extensions
    submitted. arXiv.

  3. Jussi Behrndt, Gerd Grubb, Matthias Langer, and Vladimir Lotoreichik
    Spectral asymptotics for resolvent differences of elliptic operators with δ and δ′-interactions on hypersurfaces
    to appear in J. Spectr. Theory. arXiv.

  4. Vladimir Lotoreichik and Jonathan Rohlelder
    An eigenvalue inequality for Schrödinger operators with δ and δ′-interactions supported on hypersurfaces
    to appear in Oper. Theory Adv. Appl. arXiv.

  5. Vladimir Lotoreichik, Hagen Neidhardt, and Igor Yu. Popov
    Point contacts and boundary triples
    to appear in the proceedings of QMath12. arXiv.

  6. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Schrödinger operators with δ-interactions supported on conical surfaces
    J. Phys. A: Math. Theor. 47 (2014), 355202 (16pp). arXiv. (Open Access).

  7. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Schrödinger operators with δ and δ′-interactions on Lipschitz surfaces and chromatic numbers of associated partitions
    Rev. Math. Phys. 26 (2014), 1450015 (43pp). arXiv.

  8. Vladimir Lotoreichik
    Lower bounds on the norms of extension operators for Lipschitz domains
    Operators and Matrices 8 (2014), 573–592. arXiv.

  9. Sylwia Kondej and Vladimir Lotoreichik
    Weakly coupled bound state of 2-D Schrödinger operator with potential-measure
    J. Math. Anal. Appl. 420 (2014), 1416–1438. arXiv. (Open Access).

  10. Vladimir Lotoreichik and Sergey Simonov
    Spectral analysis of the half-line Kronig-Penney model with Wigner-von Neumann perturbations
    Rep. Math. Phys. 74 (2014), 45–72. arXiv.

  11. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Trace formulae and singular values of resolvent power differences of self-adjoint elliptic operators
    J. London. Math. Soc. (2) 88 (2013), 319–337. arXiv.

  12. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Spectral estimates for resolvent differences of self-adjoint elliptic operators
    Integral Equations and Operator Theory 77 (2013), 1–37. arXiv.

  13. Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
    Schrödinger operators with δ and δ′-potentials supported on hypersurfaces
    Ann. Henri Poincaré. 14 (2013), 385–423. arXiv.

  14. Vladimir Lotoreichik and Jonathan Rohleder
    Schatten-von Neumann estimates for resolvent differences of Robin Laplacians on a half-space
    Oper. Theory Adv. Appl. 221 (2012), 471–486. arXiv.

  15. Vladimir Lotoreichik
    Singular continuous spectrum of half-line Schrödinger operators with point interactions on a sparse set
    Opuscula Math. 31 (2011), 615–628. (Open Access).

  16. Jussi Behrndt, Matthias Langer, Igor Lobanov, Vladimir Lotoreichik and Igor Yu. Popov
    A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains
    J. Math. Anal. Appl. 371 (2010), 750–758. arXiv.

  17. Igor Lobanov, Vladimir Lotoreichik, and Igor Yu. Popov
    Lower bound on the spectrum of the two-dimensional Schrödinger operator with a delta-perturbation on a curve
    Theor. Math. Phys. 162 (2010), 332–340.

Theses

Other publications

  1. Jussi Behrndt, Markus Holzmann, and Vladimir Lotoreichik
    Convergence of 2D-Schrödinger operators with local scaled short-range interactions to a Hamiltonian with infinitely many delta-point interactions
    Proc. Appl. Math. Mech. 14 (2014), 1005-1006. (Open Access).

  2. Vladimir Lotoreichik
    Note on 2D Schrödinger operators with δ-interactions on angles and crossing lines
    Nanosystems: Phys. Chem. Math. 4 (2013), 1–7. arXiv. (Open Access).

  3. Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
    Essential spectrum of Schrödinger operators with δ-interactions on the union of compact Lipschitz hypersurfaces
    Proc. Appl. Math. Mech. (2013), 523–524. (Open Access).