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A residuated frame is a structure W = (W,W ′, N, ◦,,�) subject to
the condition: for all x, y ∈W and w ∈W ′

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)
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the condition: for all x, y ∈W and w ∈W ′

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

W,W ′ are sets, N ⊆W ×W ′ is a relation,
◦ ⊆W 3  ⊆W ×W ′ ×W ′ � ⊆W ′ ×W ×W ′
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A residuated frame is a structure W = (W,W ′, N, ◦,,�) subject to
the condition: for all x, y ∈W and w ∈W ′

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

W,W ′ are sets, N ⊆W ×W ′ is a relation,
◦ ⊆W 3  ⊆W ×W ′ ×W ′ � ⊆W ′ ×W ×W ′

Notation:

x ◦ y = {z ∈W ′ : ◦(x, y, z)}
x  z = {s ∈W ′ : (x, z, s)}
z � y = {s ∈W ′ : �(z, x, s)}

XNY means xNy, for all x ∈ X and y ∈ Y .
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We can also add constants and other relations (see below), as well as
properties such as associativity, commutativity, etc.
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A residuated frame is a structure W = (W,W ′, N, ◦,,�) subject to
the condition: for all x, y ∈W and w ∈W ′

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

W,W ′ are sets, N ⊆W ×W ′ is a relation,
◦ ⊆W 3  ⊆W ×W ′ ×W ′ � ⊆W ′ ×W ×W ′

Notation:

x ◦ y = {z ∈W ′ : ◦(x, y, z)}
x  z = {s ∈W ′ : (x, z, s)}
z � y = {s ∈W ′ : �(z, x, s)}

XNY means xNy, for all x ∈ X and y ∈ Y .

We can also add constants and other relations (see below), as well as
properties such as associativity, commutativity, etc. We will be
sloppy about assuming such constants of conditions.
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The intuition comes from algebra (residuated lattices), proof-theory
(sequent calculus), and duality theory/relational semantics (Kripke
frames).
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The intuition comes from algebra (residuated lattices), proof-theory
(sequent calculus), and duality theory/relational semantics (Kripke
frames).

Algebra: The sets W and W ′ are both the underlying set, N is the
order relation and ◦ is multiplication.

If L is a RL, WL = (L,L,≤, ·, {1}, \, /) is a residuated frame.
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The intuition comes from algebra (residuated lattices), proof-theory
(sequent calculus), and duality theory/relational semantics (Kripke
frames).

Algebra: The sets W and W ′ are both the underlying set, N is the
order relation and ◦ is multiplication.

If L is a RL, WL = (L,L,≤, ·, {1}, \, /) is a residuated frame.

Proof theory (single conclusion sequents): W plays the role of the
LHS of sequents, W ′ the role of RHS of sequents and N the relation
of provability of the sequent formed. In sequents, ◦ is the comma on
the LHS.
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The intuition comes from algebra (residuated lattices), proof-theory
(sequent calculus), and duality theory/relational semantics (Kripke
frames).

Algebra: The sets W and W ′ are both the underlying set, N is the
order relation and ◦ is multiplication.

If L is a RL, WL = (L,L,≤, ·, {1}, \, /) is a residuated frame.

Proof theory (single conclusion sequents): W plays the role of the
LHS of sequents, W ′ the role of RHS of sequents and N the relation
of provability of the sequent formed. In sequents, ◦ is the comma on
the LHS.

Kripke semantics: In a finite lattice we need the join-irreducibles W
and the meet-irreducibles W ′ to describe the lattice, as well as the
restriction N of the order relation between W and W ′. In residuated
lattices, ◦ reflects the monoid structure.
(To view Kripke frames as residuated frames we take W ′ =W ,
N = 6≥, while ◦ is partial meet.)
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Consider the a sequent caculus L (single conclusion sequents).

We define the frame WL, where
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Consider the a sequent caculus L (single conclusion sequents).

We define the frame WL, where

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
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Consider the a sequent caculus L (single conclusion sequents).

We define the frame WL, where

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = SW × Fm, where SW is the set of all unary linear
polynomials u[x] = y◦x◦z of W , and
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Consider the a sequent caculus L (single conclusion sequents).

We define the frame WL, where

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = SW × Fm, where SW is the set of all unary linear
polynomials u[x] = y◦x◦z of W , and
■ x N (u, a) iff ⊢L u[x] ⇒ a.
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Consider the a sequent caculus L (single conclusion sequents).

We define the frame WL, where

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = SW × Fm, where SW is the set of all unary linear
polynomials u[x] = y◦x◦z of W , and
■ x N (u, a) iff ⊢L u[x] ⇒ a.

For

(u, a) � x = {(u[ ◦ x], a)} and x  (u, a) = {(u[x ◦ ], a)},

we have

x ◦ yN(u, a) iff ⊢L u[x ◦ y] ⇒ a
iff ⊢L u[x◦y] ⇒ a
iff xN(u[ ◦ y], a)
iff yN(u[x ◦ ], a).
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Theorem. (Lattice frames and lattices) Let L a perfect lattice and
W = (J,M,N). Then L = W

+ iff J∞(L) ⊆ J and M∞(L) ⊆M ,
where j N m ⇔ f(j) ≤ g(m) for some f : J → L, g :M → L.

Here J∞(L) and M∞(L) denote the completely join irreducible
elements of L, namely elements j such that j =

∨
X iff j ∈ X, and

the completely meet irreducible elements. L is a perfect if every
element is a join of completely join irreducible elements of L and a
meet of completely meet irreducible elements.
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Theorem. (Lattice frames and lattices) Let L a perfect lattice and
W = (J,M,N). Then L = W

+ iff J∞(L) ⊆ J and M∞(L) ⊆M ,
where j N m ⇔ f(j) ≤ g(m) for some f : J → L, g :M → L.

Here J∞(L) and M∞(L) denote the completely join irreducible
elements of L, namely elements j such that j =

∨
X iff j ∈ X, and

the completely meet irreducible elements. L is a perfect if every
element is a join of completely join irreducible elements of L and a
meet of completely meet irreducible elements.

If L is a perfect residuated lattice, then
W

∞
L

= (J∞(L),M∞(L),≤, ·) is a residuated frame for w′ � w2 the
set of all meet irreducibles above w′/w2, and likewise for w1  w′.
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element is a join of completely join irreducible elements of L and a
meet of completely meet irreducible elements.

If L is a perfect residuated lattice, then
W

∞
L

= (J∞(L),M∞(L),≤, ·) is a residuated frame for w′ � w2 the
set of all meet irreducibles above w′/w2, and likewise for w1  w′.
Then L ∼= (W∞

L
)+.
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Theorem. (Lattice frames and lattices) Let L a perfect lattice and
W = (J,M,N). Then L = W

+ iff J∞(L) ⊆ J and M∞(L) ⊆M ,
where j N m ⇔ f(j) ≤ g(m) for some f : J → L, g :M → L.

Here J∞(L) and M∞(L) denote the completely join irreducible
elements of L, namely elements j such that j =

∨
X iff j ∈ X, and

the completely meet irreducible elements. L is a perfect if every
element is a join of completely join irreducible elements of L and a
meet of completely meet irreducible elements.

If L is a perfect residuated lattice, then
W

∞
L

= (J∞(L),M∞(L),≤, ·) is a residuated frame for w′ � w2 the
set of all meet irreducibles above w′/w2, and likewise for w1  w′.
Then L ∼= (W∞

L
)+.

We can also form residuated frames by taking prime ideals,
((completely) prime) ideals, and relation non-empty intersection.



Ex: filters and ideals
Residuated frames

Residuated frames

Intuition

Ex: sequent calculi

Ex: filters and ideals

Contexts/polarities

Dedekind-McNeille

The dual algebra

GN

Gentzen frames

FL

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 6 / 62

Theorem. (Lattice frames and lattices) Let L a perfect lattice and
W = (J,M,N). Then L = W

+ iff J∞(L) ⊆ J and M∞(L) ⊆M ,
where j N m ⇔ f(j) ≤ g(m) for some f : J → L, g :M → L.

Here J∞(L) and M∞(L) denote the completely join irreducible
elements of L, namely elements j such that j =

∨
X iff j ∈ X, and

the completely meet irreducible elements. L is a perfect if every
element is a join of completely join irreducible elements of L and a
meet of completely meet irreducible elements.

If L is a perfect residuated lattice, then
W

∞
L

= (J∞(L),M∞(L),≤, ·) is a residuated frame for w′ � w2 the
set of all meet irreducibles above w′/w2, and likewise for w1  w′.
Then L ∼= (W∞

L
)+.

We can also form residuated frames by taking prime ideals,
((completely) prime) ideals, and relation non-empty intersection.

For L a residuated lattice, WFI
L

= (F(L), I(L), NNEI , ◦,,�), the
intermediate structure, aka the cannonical frame A+ of A. Then
(A+)

+ = (WFI
L

)+ is the canonical extension of L.
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c′ b′ a′

a b c

c′ b′ a′

a b c

≤ a′ b′ c′

a × ×
b × ×
c × ×

1

a b c

0

a b c

a b c

≤ a′ b′ c′

a ×
b ×
c ×
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d c

a b

a d c

a b c

For every distributive lattice M(L) is isomorphic to J(L). Note
↑ a∪ ↓ c = ↑ b∪ ↓ a = ↑ c∪ ↓ d = L. Splitting pairs:
(a, c), (b, a), (c, d).

d c

a b

c

ba

d

ca
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For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }
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For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }

The map γN : P(W )→ P(W ), γN (X) = X⊲⊳, is a closure
operator.
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For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }

The map γN : P(W )→ P(W ), γN (X) = X⊲⊳, is a closure
operator.

Lemma. If W is a residuated frame then the dual algebra
W

+ = (γ[P(W )],∩,∪γ, ◦γ , \, /) is a complete residuated lattice.

X ∪γ Y = γ(X ∪ Y )
X ◦γ Y = γ(X ◦ Y )
X ◦Y = {z ∈W : ◦(X,Y, z)} = {z ∈W : ◦(x, y, z), ∀x ∈ X, y ∈ Y }
X\Y = {z ∈W : X ◦ {z} ⊆ Y }
Y/X = {z ∈W : {z} ◦X ⊆ Y }.
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For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }

The map γN : P(W )→ P(W ), γN (X) = X⊲⊳, is a closure
operator.

Lemma. If W is a residuated frame then the dual algebra
W

+ = (γ[P(W )],∩,∪γ, ◦γ , \, /) is a complete residuated lattice.

X ∪γ Y = γ(X ∪ Y )
X ◦γ Y = γ(X ◦ Y )
X ◦Y = {z ∈W : ◦(X,Y, z)} = {z ∈W : ◦(x, y, z), ∀x ∈ X, y ∈ Y }
X\Y = {z ∈W : X ◦ {z} ⊆ Y }
Y/X = {z ∈W : {z} ◦X ⊆ Y }.

Theorem If W satisfies (m)p (pointwise), then it also satisfies (m)s

(setwise) namely W
+ satisfies x · x ≤ x (xy ≤ x ∨ y). (N2 eq.)

xNz yNz

x ◦ yNz
(m)

p XNz Y Nz
X ◦ Y Nz

(m)
s
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If we have a common subset B of W and W ′ that supports a
(partial) algebra B = (B,∧,∨, ·, \, /, 1), then these are natural
conditions inspired by the frame WL, for a, b, c ∈ B, x, y ∈W ,
z ∈W ′. Often B generates (W, ◦, 1) (and W ′ by actions from W );
we call (W,B) a Gentzen frame.
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The following properties hold for WL, WFL and WA,B:

1. W is a residuated frame

2. B is a (partial) algebra of the same type, (B = L,Fm,B)

3. B generates (W, ◦, ε) (as a monoid)

4. W ′ contains a copy of B (b↔ (id, b))

5. N satisfies GN, for all a, b ∈ B, x, y ∈W , z ∈W ′.
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The following properties hold for WL, WFL and WA,B:

1. W is a residuated frame

2. B is a (partial) algebra of the same type, (B = L,Fm,B)

3. B generates (W, ◦, ε) (as a monoid)

4. W ′ contains a copy of B (b↔ (id, b))

5. N satisfies GN, for all a, b ∈ B, x, y ∈W , z ∈W ′.

We call such pairs (W,B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the (CUT)-rule.
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The following properties hold for WL, WFL and WA,B:

1. W is a residuated frame

2. B is a (partial) algebra of the same type, (B = L,Fm,B)

3. B generates (W, ◦, ε) (as a monoid)

4. W ′ contains a copy of B (b↔ (id, b))

5. N satisfies GN, for all a, b ∈ B, x, y ∈W , z ∈W ′.

We call such pairs (W,B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the (CUT)-rule.

Theorem. Given a Gentzen frame (W,B), the map
{}⊳ : B→W

+, b 7→ {b}⊳ is a (partial) homomorphism.
(Namely, if a, b ∈ B and a • b ∈ B (• is a connective) then
{a •B b}⊳ = {a}⊳ •W+ {b}⊳).
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The following properties hold for WL, WFL and WA,B:

1. W is a residuated frame

2. B is a (partial) algebra of the same type, (B = L,Fm,B)

3. B generates (W, ◦, ε) (as a monoid)

4. W ′ contains a copy of B (b↔ (id, b))

5. N satisfies GN, for all a, b ∈ B, x, y ∈W , z ∈W ′.

We call such pairs (W,B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the (CUT)-rule.

Theorem. Given a Gentzen frame (W,B), the map
{}⊳ : B→W

+, b 7→ {b}⊳ is a (partial) homomorphism.
(Namely, if a, b ∈ B and a • b ∈ B (• is a connective) then
{a •B b}⊳ = {a}⊳ •W+ {b}⊳).

For cut-free Genzten frames, we get only a quasihomomorphism.
a •B b ∈ {a}⊳ •W+ {b}⊳ ⊆ {a •B b}⊳.
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x⇒ a y◦a◦z⇒ c
y◦x◦z⇒ c (cut) a⇒ a (Id)

y◦a◦z⇒ c

y◦a ∧ b◦z⇒ c
(∧Lℓ)

y◦b◦z⇒ c

y◦a ∧ b◦z⇒ c
(∧Lr) x⇒ a x⇒ b

x⇒ a ∧ b
(∧R)

y◦a◦z⇒ c y◦b◦z⇒ c

y◦a ∨ b◦z⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨Rℓ) x⇒ b

x⇒ a ∨ b
(∨Rr)

x⇒ a y◦b◦z⇒ c

y◦x ◦ (a\b)◦z⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a y◦b◦z⇒ c

y◦(b/a) ◦ x◦z⇒ c
(/L) x ◦ a⇒ b

x⇒ b/a
(/R)

y◦a ◦ b◦z⇒ c

y◦a · b◦z⇒ c
(·L)

x⇒ a y⇒ b

x ◦ y⇒ a · b
(·R)

y ◦ z⇒ a

y◦1◦z⇒ a
(1L)

ε⇒ 1
(1R)

where a, b, c ∈ Fm, x, y, z ∈ Fm∗.
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In a residuated frame we can replace the relation N by a subset D of
W ′ in an interdefinable way by: (in the spirit of AAL, the positive
cone of a residuated lattice, hyperframes D = ⊢)
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In a residuated frame we can replace the relation N by a subset D of
W ′ in an interdefinable way by: (in the spirit of AAL, the positive
cone of a residuated lattice, hyperframes D = ⊢)

DN = {ε}⊲ and x ND z ⇔ x  z ⊆ D.
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In a residuated frame we can replace the relation N by a subset D of
W ′ in an interdefinable way by: (in the spirit of AAL, the positive
cone of a residuated lattice, hyperframes D = ⊢)

DN = {ε}⊲ and x ND z ⇔ x  z ⊆ D.

The nuclearity contition for N becomes
y  (x  z) ⊆ D iff (x ◦ y)  z ⊆ D.
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In a residuated frame we can replace the relation N by a subset D of
W ′ in an interdefinable way by: (in the spirit of AAL, the positive
cone of a residuated lattice, hyperframes D = ⊢)

DN = {ε}⊲ and x ND z ⇔ x  z ⊆ D.

The nuclearity contition for N becomes
y  (x  z) ⊆ D iff (x ◦ y)  z ⊆ D.

In all residuated frames we have (y  (x  z))⊳ = ((x ◦ y)  z)⊳, but
often we actually have y  (x z) = (x ◦ y)  z. For those residuated
frames the condition for D is automatically satified.
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In a residuated frame we can replace the relation N by a subset D of
W ′ in an interdefinable way by: (in the spirit of AAL, the positive
cone of a residuated lattice, hyperframes D = ⊢)

DN = {ε}⊲ and x ND z ⇔ x  z ⊆ D.

The nuclearity contition for N becomes
y  (x  z) ⊆ D iff (x ◦ y)  z ⊆ D.

In all residuated frames we have (y  (x  z))⊳ = ((x ◦ y)  z)⊳, but
often we actually have y  (x z) = (x ◦ y)  z. For those residuated
frames the condition for D is automatically satified.

If x ◦ y, x z and z � x are singletons (instead of sets), as it happens
with most applications, then ⊆ D above can be replaced by ∈ D.
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In a residuated frame we can replace the relation N by a subset D of
W ′ in an interdefinable way by: (in the spirit of AAL, the positive
cone of a residuated lattice, hyperframes D = ⊢)

DN = {ε}⊲ and x ND z ⇔ x  z ⊆ D.

The nuclearity contition for N becomes
y  (x  z) ⊆ D iff (x ◦ y)  z ⊆ D.

In all residuated frames we have (y  (x  z))⊳ = ((x ◦ y)  z)⊳, but
often we actually have y  (x z) = (x ◦ y)  z. For those residuated
frames the condition for D is automatically satified.

If x ◦ y, x z and z � x are singletons (instead of sets), as it happens
with most applications, then ⊆ D above can be replaced by ∈ D.

We call residuated frames for which these two simplifications apply
action residuated frames.
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Recall that given a monoid W = (W, ·, 1) and a set W ′, a map
∗ :W ×W ′ →W ′ is called an action if it sarisfies:
1 ∗ z = x and (x · y) ∗ z = x ∗ (y ∗ z).
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Recall that given a monoid W = (W, ·, 1) and a set W ′, a map
∗ :W ×W ′ →W ′ is called an action if it sarisfies:
1 ∗ z = x and (x · y) ∗ z = x ∗ (y ∗ z).

Then we say that (W ′, ∗) is an W-set.
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Recall that given a monoid W = (W, ·, 1) and a set W ′, a map
∗ :W ×W ′ →W ′ is called an action if it sarisfies:
1 ∗ z = x and (x · y) ∗ z = x ∗ (y ∗ z).

Then we say that (W ′, ∗) is an W-set.

If we also have another map ⋆ :W ′ ×W →W ′ such that
z ⋆ 1 = z, (z ⋆ y) ⋆ x = z ⋆ (yx) and x ∗ (z ⋆ y) = (x ∗ z) ⋆ y,
then we say that (W ′, ∗, ⋆) is an bi-W-set.
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Recall that given a monoid W = (W, ·, 1) and a set W ′, a map
∗ :W ×W ′ →W ′ is called an action if it sarisfies:
1 ∗ z = x and (x · y) ∗ z = x ∗ (y ∗ z).

Then we say that (W ′, ∗) is an W-set.

If we also have another map ⋆ :W ′ ×W →W ′ such that
z ⋆ 1 = z, (z ⋆ y) ⋆ x = z ⋆ (yx) and x ∗ (z ⋆ y) = (x ∗ z) ⋆ y,
then we say that (W ′, ∗, ⋆) is an bi-W-set.

This allows us to link W-sets and action residuated frames, as then
an action residuated frame is equivalent to a bi-W-set (W ′,�,)
together with an arbitratry subset D of W ′ of designated elements.
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Let’s assume that P = N is the underlying set of a residuated lattice.
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Let’s assume that P = N is the underlying set of a residuated lattice.

■ x · 1 = x = 1 · x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx
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Let’s assume that P = N is the underlying set of a residuated lattice.

■ x · 1 = x = 1 · x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, (P,∨, ·, 1) is a semiring. [In the complete case, a quantale.]
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Let’s assume that P = N is the underlying set of a residuated lattice.

■ x · 1 = x = 1 · x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, (P,∨, ·, 1) is a semiring. [In the complete case, a quantale.]

■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z
■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)
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Let’s assume that P = N is the underlying set of a residuated lattice.

■ x · 1 = x = 1 · x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, (P,∨, ·, 1) is a semiring. [In the complete case, a quantale.]

■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z
■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)

So, (P,∨, ·, 1) acts on both sides on (N,∧) by p ⋆ n = n/p and
n ⋆ p = p\n. Thus, ((N,∧), ⋆) becomes a (P,∨, ·, 1)-bimodule.
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Let’s assume that P = N is the underlying set of a residuated lattice.

■ x · 1 = x = 1 · x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, (P,∨, ·, 1) is a semiring. [In the complete case, a quantale.]

■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z
■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)

So, (P,∨, ·, 1) acts on both sides on (N,∧) by p ⋆ n = n/p and
n ⋆ p = p\n. Thus, ((N,∧), ⋆) becomes a (P,∨, ·, 1)-bimodule. This
split matches the notion of polarity.
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So, (P,∨, ·, 1) acts on both sides on (N,∧) by p ⋆ n = n/p and
n ⋆ p = p\n. Thus, ((N,∧), ⋆) becomes a (P,∨, ·, 1)-bimodule. This
split matches the notion of polarity. It also extends to

∨
,
∧
.
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So, (P,∨, ·, 1) is a semiring. [In the complete case, a quantale.]
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■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
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■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)

So, (P,∨, ·, 1) acts on both sides on (N,∧) by p ⋆ n = n/p and
n ⋆ p = p\n. Thus, ((N,∧), ⋆) becomes a (P,∨, ·, 1)-bimodule. This
split matches the notion of polarity. It also extends to

∨
,
∧
.

The bimodule can be viewed as a two-sorted algebra
(P,∨, ·, 1, N,∧, \, /).
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Let’s assume that P = N is the underlying set of a residuated lattice.

■ x · 1 = x = 1 · x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, (P,∨, ·, 1) is a semiring. [In the complete case, a quantale.]

■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z
■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)

So, (P,∨, ·, 1) acts on both sides on (N,∧) by p ⋆ n = n/p and
n ⋆ p = p\n. Thus, ((N,∧), ⋆) becomes a (P,∨, ·, 1)-bimodule. This
split matches the notion of polarity. It also extends to

∨
,
∧
.

The bimodule can be viewed as a two-sorted algebra
(P,∨, ·, 1, N,∧, \, /).

The absolutely free algebra for P = N generated by P0 = N0 = V ar
(the set of propositional variables) gives the set of all formulas.
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Let’s assume that P = N is the underlying set of a residuated lattice.

■ x · 1 = x = 1 · x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, (P,∨, ·, 1) is a semiring. [In the complete case, a quantale.]

■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z
■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)

So, (P,∨, ·, 1) acts on both sides on (N,∧) by p ⋆ n = n/p and
n ⋆ p = p\n. Thus, ((N,∧), ⋆) becomes a (P,∨, ·, 1)-bimodule. This
split matches the notion of polarity. It also extends to

∨
,
∧
.

The bimodule can be viewed as a two-sorted algebra
(P,∨, ·, 1, N,∧, \, /).

The absolutely free algebra for P = N generated by P0 = N0 = V ar
(the set of propositional variables) gives the set of all formulas. The
steps of the generation process yield the substructural hierarchy.
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■ The sets Pn,Nn of formulas are defined by:
(0) P0 = N0 = the set of variables

(P1) Nn ⊆ Pn+1

(P2) a, b ∈ Pn+1 ⇒ a ∨ b, a · b, 1 ∈ Pn+1

(N1) Pn ⊆ Nn+1

(N2) a, b ∈ Nn+1 ⇒ a ∧ b ∈ Nn+1

(N3) a ∈ Pn+1, b ∈ Nn+1 ⇒ a\b, b/a, 0 ∈ Nn+1

■ Pn+1 = 〈Nn〉∨,
∏ ; Nn+1 = 〈Pn〉∧,Pn+1\,/Pn+1

■ Pn ⊆ Pn+1,Nn ⊆ Nn+1,
⋃
Pn =

⋃
Nn = Fm

■ P1-reduced:
∨∏

pi

■ N1-reduced:
∧
(p1p2 · · · pn\r/q1q2 · · · qm)

p1p2 · · · pnq1q2 · · · qm ≤ r
■ Sequent: a1, a2, . . . , an ⇒ a0 (ai ∈ Fm)
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Given a semiring P = (P,
∨
, ·, 1) and an onto homomorphism f to a

semiring S = f [P], we observe that f is residuated (with residual
f∗ : S→ P).
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Given a semiring P = (P,
∨
, ·, 1) and an onto homomorphism f to a

semiring S = f [P], we observe that f is residuated (with residual
f∗ : S→ P). Note that γ = f∗ ◦ f is a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y); such a map on P is called nucleus.



Submodules and nuclei
Residuated frames

Frames and modules

Designated elements

Actions

Bi-modules

Formula hierarchy

Submodules and nuclei

Frames and modules

Densification

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 18 / 62

Given a semiring P = (P,
∨
, ·, 1) and an onto homomorphism f to a

semiring S = f [P], we observe that f is residuated (with residual
f∗ : S→ P). Note that γ = f∗ ◦ f is a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y); such a map on P is called nucleus.
For Pγ = {γ(x) : x ∈ P},

∨
γ xi = γ(

∨
xi) and x ·γ y = γ(x · y), the

algebra Pγ = (Pγ ,
∨

γ , ·γ , γ(1)) is a semiring and γ becomes a
homomprhism from P to Pγ .
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Given a semiring P = (P,
∨
, ·, 1) and an onto homomorphism f to a

semiring S = f [P], we observe that f is residuated (with residual
f∗ : S→ P). Note that γ = f∗ ◦ f is a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y); such a map on P is called nucleus.
For Pγ = {γ(x) : x ∈ P},

∨
γ xi = γ(

∨
xi) and x ·γ y = γ(x · y), the

algebra Pγ = (Pγ ,
∨

γ , ·γ , γ(1)) is a semiring and γ becomes a
homomprhism from P to Pγ . Nuclei are, up to isomorphism, the
onto homorphisms.
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Given a semiring P = (P,
∨
, ·, 1) and an onto homomorphism f to a

semiring S = f [P], we observe that f is residuated (with residual
f∗ : S→ P). Note that γ = f∗ ◦ f is a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y); such a map on P is called nucleus.
For Pγ = {γ(x) : x ∈ P},

∨
γ xi = γ(

∨
xi) and x ·γ y = γ(x · y), the

algebra Pγ = (Pγ ,
∨

γ , ·γ , γ(1)) is a semiring and γ becomes a
homomprhism from P to Pγ . Nuclei are, up to isomorphism, the
onto homorphisms.

Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each sub-bimodule is

defined by a
∧
-closed subset that is also closed under the actions.
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Given a semiring P = (P,
∨
, ·, 1) and an onto homomorphism f to a

semiring S = f [P], we observe that f is residuated (with residual
f∗ : S→ P). Note that γ = f∗ ◦ f is a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y); such a map on P is called nucleus.
For Pγ = {γ(x) : x ∈ P},

∨
γ xi = γ(

∨
xi) and x ·γ y = γ(x · y), the

algebra Pγ = (Pγ ,
∨

γ , ·γ , γ(1)) is a semiring and γ becomes a
homomprhism from P to Pγ . Nuclei are, up to isomorphism, the
onto homorphisms.

Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each sub-bimodule is

defined by a
∧
-closed subset that is also closed under the actions.

Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .
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Given a semiring P = (P,
∨
, ·, 1) and an onto homomorphism f to a

semiring S = f [P], we observe that f is residuated (with residual
f∗ : S→ P). Note that γ = f∗ ◦ f is a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y); such a map on P is called nucleus.
For Pγ = {γ(x) : x ∈ P},

∨
γ xi = γ(

∨
xi) and x ·γ y = γ(x · y), the

algebra Pγ = (Pγ ,
∨

γ , ·γ , γ(1)) is a semiring and γ becomes a
homomprhism from P to Pγ . Nuclei are, up to isomorphism, the
onto homorphisms.

Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each sub-bimodule is

defined by a
∧
-closed subset that is also closed under the actions.

Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .

If P = N is the underlying set of a residuated lattice
A = (A,∧,∨, ·, \, /, 1) the two notions of nucelus coincide and
Aγ = (Aγ ,∧,∨γ , ·γ , \, /, γ(1)) is also a residuated lattice.
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Given a semiring P = (P,
∨
, ·, 1) and an onto homomorphism f to a

semiring S = f [P], we observe that f is residuated (with residual
f∗ : S→ P). Note that γ = f∗ ◦ f is a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y); such a map on P is called nucleus.
For Pγ = {γ(x) : x ∈ P},

∨
γ xi = γ(

∨
xi) and x ·γ y = γ(x · y), the

algebra Pγ = (Pγ ,
∨

γ , ·γ , γ(1)) is a semiring and γ becomes a
homomprhism from P to Pγ . Nuclei are, up to isomorphism, the
onto homorphisms.

Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each sub-bimodule is

defined by a
∧
-closed subset that is also closed under the actions.

Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .

If P = N is the underlying set of a residuated lattice
A = (A,∧,∨, ·, \, /, 1) the two notions of nucelus coincide and
Aγ = (Aγ ,∧,∨γ , ·γ , \, /, γ(1)) is also a residuated lattice.

Residuated frames arise from studying submodules of P(W), where
W is a monoid, namely nuclei on powersets (of monoids).
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Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.
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Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.

Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:
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Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.

Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:

⋃
Xi 

⋃∂
Zj =

⋃∂
(Xi  Zj) and Y  (X  Z) = (X ◦ Y )  Z.
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Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.

Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:

⋃
Xi 

⋃∂
Zj =

⋃∂
(Xi  Zj) and Y  (X  Z) = (X ◦ Y )  Z.

Note that the map ⊳ : (P(W ′)
⋃
)∂ → (P(W ),

⋂
) is a module

morphism, namely (
⋃∂ Zi)

⊳ =
⋂
Z⊳

i and (X  Z)⊳ = X\Z⊳.
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Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.

Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:

⋃
Xi 

⋃∂
Zj =

⋃∂
(Xi  Zj) and Y  (X  Z) = (X ◦ Y )  Z.

Note that the map ⊳ : (P(W ′)
⋃
)∂ → (P(W ),

⋂
) is a module

morphism, namely (
⋃∂ Zi)

⊳ =
⋂
Z⊳

i and (X  Z)⊳ = X\Z⊳.

The image of this module morphism is exactly the dual algebra.
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Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.

Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:

⋃
Xi 

⋃∂
Zj =

⋃∂
(Xi  Zj) and Y  (X  Z) = (X ◦ Y )  Z.

Note that the map ⊳ : (P(W ′)
⋃
)∂ → (P(W ),

⋂
) is a module

morphism, namely (
⋃∂ Zi)

⊳ =
⋂
Z⊳

i and (X  Z)⊳ = X\Z⊳.

The image of this module morphism is exactly the dual algebra.

Note that for Z ⊆W ′, we have Z⊳ =
⋂

z∈Z{z}
⊳. The sets {z}⊳

are called basic and every closed set is an intersection of basic closed.
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Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.

Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:

⋃
Xi 

⋃∂
Zj =

⋃∂
(Xi  Zj) and Y  (X  Z) = (X ◦ Y )  Z.

Note that the map ⊳ : (P(W ′)
⋃
)∂ → (P(W ),

⋂
) is a module

morphism, namely (
⋃∂ Zi)

⊳ =
⋂
Z⊳

i and (X  Z)⊳ = X\Z⊳.

The image of this module morphism is exactly the dual algebra.

Note that for Z ⊆W ′, we have Z⊳ =
⋂

z∈Z{z}
⊳. The sets {z}⊳

are called basic and every closed set is an intersection of basic closed.

It is important to chose the W-set W ′ wisely.
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Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.

Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:

⋃
Xi 

⋃∂
Zj =

⋃∂
(Xi  Zj) and Y  (X  Z) = (X ◦ Y )  Z.

Note that the map ⊳ : (P(W ′)
⋃
)∂ → (P(W ),

⋂
) is a module

morphism, namely (
⋃∂ Zi)

⊳ =
⋂
Z⊳

i and (X  Z)⊳ = X\Z⊳.

The image of this module morphism is exactly the dual algebra.

Note that for Z ⊆W ′, we have Z⊳ =
⋂

z∈Z{z}
⊳. The sets {z}⊳

are called basic and every closed set is an intersection of basic closed.

It is important to chose the W-set W ′ wisely. Otherwise the module
P(W ′) will either be too far or too close to the dual algebra.
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P(W ′) will either be too far or too close to the dual algebra. We
want W to have a natural description,



Frames and modules
Residuated frames

Frames and modules

Designated elements

Actions

Bi-modules

Formula hierarchy

Submodules and nuclei

Frames and modules

Densification

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 19 / 62

Note that (P(W ),
⋃
, ◦) is a complete semiring and (P(W ),

⋂
) is a

module over it, via \.

Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:

⋃
Xi 

⋃∂
Zj =

⋃∂
(Xi  Zj) and Y  (X  Z) = (X ◦ Y )  Z.

Note that the map ⊳ : (P(W ′)
⋃
)∂ → (P(W ),

⋂
) is a module

morphism, namely (
⋃∂ Zi)

⊳ =
⋂
Z⊳

i and (X  Z)⊳ = X\Z⊳.

The image of this module morphism is exactly the dual algebra.

Note that for Z ⊆W ′, we have Z⊳ =
⋂

z∈Z{z}
⊳. The sets {z}⊳

are called basic and every closed set is an intersection of basic closed.

It is important to chose the W-set W ′ wisely. Otherwise the module
P(W ′) will either be too far or too close to the dual algebra. We
want W to have a natural description, but we don’t want it to have
unnecessary elements.
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Given a W-set (W ′,), we have that (P(W ′),
⋃
)∂ is also a module

over (P(W ),
⋃
, ◦) with lifted action X Z = {x z : x ∈ X, z ∈ Z}:

⋃
Xi 
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Zj =

⋃∂
(Xi  Zj) and Y  (X  Z) = (X ◦ Y )  Z.

Note that the map ⊳ : (P(W ′)
⋃
)∂ → (P(W ),

⋂
) is a module

morphism, namely (
⋃∂ Zi)

⊳ =
⋂
Z⊳

i and (X  Z)⊳ = X\Z⊳.

The image of this module morphism is exactly the dual algebra.

Note that for Z ⊆W ′, we have Z⊳ =
⋂

z∈Z{z}
⊳. The sets {z}⊳

are called basic and every closed set is an intersection of basic closed.

It is important to chose the W-set W ′ wisely. Otherwise the module
P(W ′) will either be too far or too close to the dual algebra. We
want W to have a natural description, but we don’t want it to have
unnecessary elements. So, we want it to be minimal, as given by the
basic closed sets (no two should be equal), but the action should
support this.
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Given an FLe-chain A with a gap g < h, extend it to one where this
is no longer a gap (namely there is a new point p with g < p < h).
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Given an FLe-chain A with a gap g < h, extend it to one where this
is no longer a gap (namely there is a new point p with g < p < h).

We need to embed in an FLe chain the partial algebra A ∪ {p},
where g < p < h.
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Given an FLe-chain A with a gap g < h, extend it to one where this
is no longer a gap (namely there is a new point p with g < p < h).

We need to embed in an FLe chain the partial algebra A ∪ {p},
where g < p < h.

It suffices to construct a residuated frame WA,p from this data such
that (WA,p,A ∪ {p}) is a Gentzen frame and W

+
A,p is linear.
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Given an FLe-chain A with a gap g < h, extend it to one where this
is no longer a gap (namely there is a new point p with g < p < h).

We need to embed in an FLe chain the partial algebra A ∪ {p},
where g < p < h.

It suffices to construct a residuated frame WA,p from this data such
that (WA,p,A ∪ {p}) is a Gentzen frame and W

+
A,p is linear.

If we take W ′ to be unncessarily big, checking that W+
A,p is linear

takes some effort.
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Given an FLe-chain A with a gap g < h, extend it to one where this
is no longer a gap (namely there is a new point p with g < p < h).

We need to embed in an FLe chain the partial algebra A ∪ {p},
where g < p < h.

It suffices to construct a residuated frame WA,p from this data such
that (WA,p,A ∪ {p}) is a Gentzen frame and W

+
A,p is linear.

If we take W ′ to be unncessarily big, checking that W+
A,p is linear

takes some effort. If we take it to be just right, checking linearity is
easy.
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We define the system (plus associativity and exchage for simplicity).

x⇒ a y, a, z⇒ c
y, x, z⇒ c (cut) a⇒ a (Id)

y, a, b, z⇒ c

y, a · b, z⇒ c
(·L)

x⇒ a y⇒ b

x, y⇒ a · b
(·R)
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x⇒ a y, a, z⇒ c
y, x, z⇒ c (cut) a⇒ a (Id)

y, a, b, z⇒ c

y, a · b, z⇒ c
(·L)

x⇒ a y⇒ b

x, y⇒ a · b
(·R)

This logic is complete with respect to commutative posemigroups;
L = (L,≤, ·) where multiplication preserves the order.
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We define the system (plus associativity and exchage for simplicity).

x⇒ a y, a, z⇒ c
y, x, z⇒ c (cut) a⇒ a (Id)

y, a, b, z⇒ c

y, a · b, z⇒ c
(·L)

x⇒ a y⇒ b

x, y⇒ a · b
(·R)

This logic is complete with respect to commutative posemigroups;
L = (L,≤, ·) where multiplication preserves the order.

Is it conservative to extend the logic to one Le with implication?

x⇒ a y, b, z⇒ c

y, x, a→ b, z⇒ a
(→L)

a, x⇒ b

x⇒ a→ b
(→R)

Conservativity: if a sequent/inequality fails in the smaller logic (in a
every commtative posemigroup), then it fails in the bigger logic (in a
commutative residuated posemigroup).
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We define the system (plus associativity and exchage for simplicity).

x⇒ a y, a, z⇒ c
y, x, z⇒ c (cut) a⇒ a (Id)

y, a, b, z⇒ c

y, a · b, z⇒ c
(·L)

x⇒ a y⇒ b

x, y⇒ a · b
(·R)

This logic is complete with respect to commutative posemigroups;
L = (L,≤, ·) where multiplication preserves the order.

Is it conservative to extend the logic to one Le with implication?

x⇒ a y, b, z⇒ c

y, x, a→ b, z⇒ a
(→L)

a, x⇒ b

x⇒ a→ b
(→R)

Conservativity: if a sequent/inequality fails in the smaller logic (in a
every commtative posemigroup), then it fails in the bigger logic (in a
commutative residuated posemigroup).

We can of course define a residuated frame
(Fm∗, Fm∗ × Fm,N, ◦,) based on this system.
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Let S denotes all commutive posemigroups and R all the
posemigroup reducts of the residuatred ones.



Conservativity
Residuated frames

Frames and modules

Frames and display

Adding residuals

Conservativity

Cut elimination via
display

Via algebraic
completions

With disjunction

Distributive frames

Involutive FL

BiFL

Applications

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 23 / 62

Let S denotes all commutive posemigroups and R all the
posemigroup reducts of the residuatred ones. Then S(R) (all
subreducts) forms an (order) quasivariety.
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Let S denotes all commutive posemigroups and R all the
posemigroup reducts of the residuatred ones. Then S(R) (all
subreducts) forms an (order) quasivariety. Conservativity states that
S = H(S(R)). In other words every posemigroup is a homomorphic
image of one that can be embedded to a residuated posemigroup.
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Let S denotes all commutive posemigroups and R all the
posemigroup reducts of the residuatred ones. Then S(R) (all
subreducts) forms an (order) quasivariety. Conservativity states that
S = H(S(R)). In other words every posemigroup is a homomorphic
image of one that can be embedded to a residuated posemigroup.

There are a couple of ways to prove conservativity:
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Let S denotes all commutive posemigroups and R all the
posemigroup reducts of the residuatred ones. Then S(R) (all
subreducts) forms an (order) quasivariety. Conservativity states that
S = H(S(R)). In other words every posemigroup is a homomorphic
image of one that can be embedded to a residuated posemigroup.

There are a couple of ways to prove conservativity:

Proof-theoretically. Prove cut elimination and then use the
subformula property.
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Let S denotes all commutive posemigroups and R all the
posemigroup reducts of the residuatred ones. Then S(R) (all
subreducts) forms an (order) quasivariety. Conservativity states that
S = H(S(R)). In other words every posemigroup is a homomorphic
image of one that can be embedded to a residuated posemigroup.

There are a couple of ways to prove conservativity:

Proof-theoretically. Prove cut elimination and then use the
subformula property.

Algebraically. Show that every commutative posemigroup can be
embedded into a residuated one. In other words we show something
stronger: S = S(R).
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Let S denotes all commutive posemigroups and R all the
posemigroup reducts of the residuatred ones. Then S(R) (all
subreducts) forms an (order) quasivariety. Conservativity states that
S = H(S(R)). In other words every posemigroup is a homomorphic
image of one that can be embedded to a residuated posemigroup.

There are a couple of ways to prove conservativity:

Proof-theoretically. Prove cut elimination and then use the
subformula property.

Algebraically. Show that every commutative posemigroup can be
embedded into a residuated one. In other words we show something
stronger: S = S(R).

Proof-theoretically (2): Via display logic.
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Consider the following display logic system L
δ
e. Here x, y ∈ Fm

∗,
a, b ∈ Fm and z is of the form x1>(x2> . . . (xn>a) . . .).

x⇒ a a⇒ z
x⇒ z (cut) a⇒ a (Id)

x ◦ y⇒ z

y⇒ x>z (dis)

a, b⇒ z

a · b⇒ z
(·L)

x⇒ a y⇒ b

x, y⇒ a · b
(·R)

x⇒ a b⇒ z
a→ b⇒ x>z

(→L)
x⇒ a> b
x⇒ a→ b

(→R)



Cut elimination via display
Residuated frames

Frames and modules

Frames and display

Adding residuals

Conservativity

Cut elimination via
display

Via algebraic
completions

With disjunction

Distributive frames

Involutive FL

BiFL

Applications

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 24 / 62
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δ
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a, b ∈ Fm and z is of the form x1>(x2> . . . (xn>a) . . .).

x⇒ a a⇒ z
x⇒ z (cut) a⇒ a (Id)

x ◦ y⇒ z

y⇒ x>z (dis)

a, b⇒ z

a · b⇒ z
(·L)

x⇒ a y⇒ b

x, y⇒ a · b
(·R)

x⇒ a b⇒ z
a→ b⇒ x>z

(→L)
x⇒ a> b
x⇒ a→ b

(→R)

We could build a residuated frame (W,W ′, ⇒ , {, }, >).
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Consider the following display logic system L
δ
e. Here x, y ∈ Fm

∗,
a, b ∈ Fm and z is of the form x1>(x2> . . . (xn>a) . . .).

x⇒ a a⇒ z
x⇒ z (cut) a⇒ a (Id)

x ◦ y⇒ z

y⇒ x>z (dis)

a, b⇒ z

a · b⇒ z
(·L)

x⇒ a y⇒ b

x, y⇒ a · b
(·R)

x⇒ a b⇒ z
a→ b⇒ x>z

(→L)
x⇒ a> b
x⇒ a→ b

(→R)

We could build a residuated frame (W,W ′, ⇒ , {, }, >).

Then the system L
δ
e has cut elimination ‘for free’ (by Belnap’s

conditions) and the subformula property (and decidability). So L
δ
e is

conservative over its →-free fragment.
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x⇒ z (cut) a⇒ a (Id)
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(·R)

x⇒ a b⇒ z
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x⇒ a> b
x⇒ a→ b

(→R)

We could build a residuated frame (W,W ′, ⇒ , {, }, >).

Then the system L
δ
e has cut elimination ‘for free’ (by Belnap’s

conditions) and the subformula property (and decidability). So L
δ
e is

conservative over its →-free fragment. But is that the same as the
fragment of cut-free Le? If so, we have conservativity.
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Consider the following display logic system L
δ
e. Here x, y ∈ Fm

∗,
a, b ∈ Fm and z is of the form x1>(x2> . . . (xn>a) . . .).

x⇒ a a⇒ z
x⇒ z (cut) a⇒ a (Id)

x ◦ y⇒ z

y⇒ x>z (dis)

a, b⇒ z

a · b⇒ z
(·L)

x⇒ a y⇒ b

x, y⇒ a · b
(·R)

x⇒ a b⇒ z
a→ b⇒ x>z

(→L)
x⇒ a> b
x⇒ a→ b

(→R)

We could build a residuated frame (W,W ′, ⇒ , {, }, >).

Then the system L
δ
e has cut elimination ‘for free’ (by Belnap’s

conditions) and the subformula property (and decidability). So L
δ
e is

conservative over its →-free fragment. But is that the same as the
fragment of cut-free Le? If so, we have conservativity.

Yes! The two systems are mutually interpretable. (New sequents are
innocent.) First every rule in Le is derivable in δLe. (Using the
display porperty.) Second, given a cut-free proof in L

δ
e of a sequent

free of → and >, we can convert it to a proof in cut-free Le.
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Let L be a commutative posemigroup.
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Let L be a commutative posemigroup.

We consider the frame W
+
L = (L,L× L,N, ·,), where

x  (y, z) = (yx, z) and x N (y, z) iff yx ≤ z.
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Let L be a commutative posemigroup.

We consider the frame W
+
L = (L,L× L,N, ·,), where

x  (y, z) = (yx, z) and x N (y, z) iff yx ≤ z.

We identify (1, z) with z. Then y  z = (y, z), or rather {(y, z)}⊳, is
a ‘formal’ residual.
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Let L be a commutative posemigroup.

We consider the frame W
+
L = (L,L× L,N, ·,), where

x  (y, z) = (yx, z) and x N (y, z) iff yx ≤ z.

We identify (1, z) with z. Then y  z = (y, z), or rather {(y, z)}⊳, is
a ‘formal’ residual.

Then W
+
L

is a commutative residuated posemigroup into which L

embeds.
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Let L be a commutative posemigroup.

We consider the frame W
+
L = (L,L× L,N, ·,), where

x  (y, z) = (yx, z) and x N (y, z) iff yx ≤ z.

We identify (1, z) with z. Then y  z = (y, z), or rather {(y, z)}⊳, is
a ‘formal’ residual.

Then W
+
L

is a commutative residuated posemigroup into which L

embeds.

It is easy to see that if L satisfies contraction x ≤ x2, then so does
WL, and by a previous result so does W+

L
.

x ◦ xNz
xNz

(c)
p
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Let L be a commutative posemigroup.

We consider the frame W
+
L = (L,L× L,N, ·,), where

x  (y, z) = (yx, z) and x N (y, z) iff yx ≤ z.

We identify (1, z) with z. Then y  z = (y, z), or rather {(y, z)}⊳, is
a ‘formal’ residual.

Then W
+
L

is a commutative residuated posemigroup into which L

embeds.

It is easy to see that if L satisfies contraction x ≤ x2, then so does
WL, and by a previous result so does W+

L
.

x ◦ xNz
xNz

(c)
p

If we have join in the language (next page) the same holds for
mingle/expansion x2 ≤ x (xy ≤ x ∨ y)

xNz yNz

x ◦ yNz
(m)

p
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We could now consider posemigroups with joins and ask if it is
conservative to add residuals.
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We could now consider posemigroups with joins and ask if it is
conservative to add residuals. The answer is ‘no’, as we get
x(y ∨ z) = zy ∨ xz. So we take join posemigroups (semirings without
1).
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We could now consider posemigroups with joins and ask if it is
conservative to add residuals. The answer is ‘no’, as we get
x(y ∨ z) = zy ∨ xz. So we take join posemigroups (semirings without
1).

We have completeness for the calculus extended with:

y, a, z⇒ c y, b, z⇒ c

y, a ∨ b, z⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨Rℓ) x⇒ b

x⇒ a ∨ b
(∨Rr)

and in display style

a⇒ z b⇒ z
a ∨ b⇒ z

(∨L) x⇒ a
x⇒ a ∨ b

(∨Rℓ) x⇒ b
x⇒ a ∨ b

(∨Rr)
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We could now consider posemigroups with joins and ask if it is
conservative to add residuals. The answer is ‘no’, as we get
x(y ∨ z) = zy ∨ xz. So we take join posemigroups (semirings without
1).

We have completeness for the calculus extended with:

y, a, z⇒ c y, b, z⇒ c

y, a ∨ b, z⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨Rℓ) x⇒ b

x⇒ a ∨ b
(∨Rr)

and in display style

a⇒ z b⇒ z
a ∨ b⇒ z

(∨L) x⇒ a
x⇒ a ∨ b

(∨Rℓ) x⇒ b
x⇒ a ∨ b

(∨Rr)

If a connective gives an operator (order preserving; if we have join
then it distributes) then it will be residuated at the completion and
we can conservatively add its residual.
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We could now consider posemigroups with joins and ask if it is
conservative to add residuals. The answer is ‘no’, as we get
x(y ∨ z) = zy ∨ xz. So we take join posemigroups (semirings without
1).

We have completeness for the calculus extended with:

y, a, z⇒ c y, b, z⇒ c

y, a ∨ b, z⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨Rℓ) x⇒ b

x⇒ a ∨ b
(∨Rr)

and in display style

a⇒ z b⇒ z
a ∨ b⇒ z

(∨L) x⇒ a
x⇒ a ∨ b

(∨Rℓ) x⇒ b
x⇒ a ∨ b

(∨Rr)

If a connective gives an operator (order preserving; if we have join
then it distributes) then it will be residuated at the completion and
we can conservatively add its residual. Then one could chose to work
in the bigger (and in some sense simpler) logic with no worries.
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We could now consider posemigroups with joins and ask if it is
conservative to add residuals. The answer is ‘no’, as we get
x(y ∨ z) = zy ∨ xz. So we take join posemigroups (semirings without
1).

We have completeness for the calculus extended with:

y, a, z⇒ c y, b, z⇒ c

y, a ∨ b, z⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨Rℓ) x⇒ b

x⇒ a ∨ b
(∨Rr)

and in display style

a⇒ z b⇒ z
a ∨ b⇒ z

(∨L) x⇒ a
x⇒ a ∨ b

(∨Rℓ) x⇒ b
x⇒ a ∨ b

(∨Rr)

If a connective gives an operator (order preserving; if we have join
then it distributes) then it will be residuated at the completion and
we can conservatively add its residual. Then one could chose to work
in the bigger (and in some sense simpler) logic with no worries.

General principle: Let’s be ‘honest’ about it and put the residuals at
the frame level from the very beginning.
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Sequents of DFL have as LHS the elements of (Fmγ , ◦, ε,©∧ ), the
free (monoid) algebra over Fm.
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Sequents of DFL have as LHS the elements of (Fmγ , ◦, ε,©∧ ), the
free (monoid) algebra over Fm.

Also, u is a unary linear polynomial over this signature.
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Sequents of DFL have as LHS the elements of (Fmγ , ◦, ε,©∧ ), the
free (monoid) algebra over Fm.

Also, u is a unary linear polynomial over this signature.

We add the rules:

u[x©∧ (y©∧ z)]⇒ c

u[(x©∧ y)©∧ z]⇒ c
(©∧ a)

u[x©∧ y]⇒ c

u[y©∧ x]⇒ c
(©∧ e)

u[x]⇒ c

u[x©∧ y]⇒ c
(©∧ i)

u[x©∧ x]⇒ c

u[x]⇒ c
(©∧ c)

And replace (∧L) by:

u[a©∧ b]⇒ c

u[a ∧ b]⇒ c
(∧L)
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Recall that ∧ : Nn ×Nn → Nn.
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Recall that ∧ : Nn ×Nn → Nn. If we add ∧ : Pn × Pn → Pn as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to ∧ is denoted by ©∧ . We obtain
distributive sequents and the calculus DFL.
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Recall that ∧ : Nn ×Nn → Nn. If we add ∧ : Pn × Pn → Pn as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to ∧ is denoted by ©∧ . We obtain
distributive sequents and the calculus DFL.

Given a residuated lattice expansion L
′ = (L,©∧ ), a distributive

nucleus γ is ·-nucleus and ©∧ -nucleus on L that satisfies
γ(x©∧ y) = γ(x) ∧ γ(y).
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Recall that ∧ : Nn ×Nn → Nn. If we add ∧ : Pn × Pn → Pn as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to ∧ is denoted by ©∧ . We obtain
distributive sequents and the calculus DFL.

Given a residuated lattice expansion L
′ = (L,©∧ ), a distributive

nucleus γ is ·-nucleus and ©∧ -nucleus on L that satisfies
γ(x©∧ y) = γ(x) ∧ γ(y).

Then ©∧ γ = ∧ on Lγ and

Lγ = (Lγ ,∧,∨γ , ·γ , \, /, γ(1))

is a distributive residuated lattice.
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Recall that ∧ : Nn ×Nn → Nn. If we add ∧ : Pn × Pn → Pn as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to ∧ is denoted by ©∧ . We obtain
distributive sequents and the calculus DFL.

Given a residuated lattice expansion L
′ = (L,©∧ ), a distributive

nucleus γ is ·-nucleus and ©∧ -nucleus on L that satisfies
γ(x©∧ y) = γ(x) ∧ γ(y).

Then ©∧ γ = ∧ on Lγ and

Lγ = (Lγ ,∧,∨γ , ·γ , \, /, γ(1))

is a distributive residuated lattice.

Note that distributive residuated lattices are double semirings.
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Recall that ∧ : Nn ×Nn → Nn. If we add ∧ : Pn × Pn → Pn as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to ∧ is denoted by ©∧ . We obtain
distributive sequents and the calculus DFL.

Given a residuated lattice expansion L
′ = (L,©∧ ), a distributive

nucleus γ is ·-nucleus and ©∧ -nucleus on L that satisfies
γ(x©∧ y) = γ(x) ∧ γ(y).

Then ©∧ γ = ∧ on Lγ and

Lγ = (Lγ ,∧,∨γ , ·γ , \, /, γ(1))

is a distributive residuated lattice.

Note that distributive residuated lattices are double semirings.

We aim for an embedding of distributive residuated lattices to
Heyting residuated lattices.
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A distributive residuated frame is a structure
W = (W,W ′, N, ◦, 1,©∧ ,,�, →֒, ←֓) where W and W ′ are sets
N ⊆W ×W ′,
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A distributive residuated frame is a structure
W = (W,W ′, N, ◦, 1,©∧ ,,�, →֒, ←֓) where W and W ′ are sets
N ⊆W ×W ′,(W, ◦, 1) is a monoid and for all x, y ∈W , w ∈W ′

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

(x©∧ y) N w ⇔ y N (x →֒ w) ⇔ x N (w ←֓ y)

x©∧ (y©∧ w)Nz

(x©∧ y)©∧ wNz
(©∧ a)

x©∧ yNz

y©∧ xNz
(©∧ e)

xNz

x©∧ yNz
(©∧ i)

x©∧ xNz

xNz
(©∧ c)
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A distributive residuated frame is a structure
W = (W,W ′, N, ◦, 1,©∧ ,,�, →֒, ←֓) where W and W ′ are sets
N ⊆W ×W ′,(W, ◦, 1) is a monoid and for all x, y ∈W , w ∈W ′

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

(x©∧ y) N w ⇔ y N (x →֒ w) ⇔ x N (w ←֓ y)

x©∧ (y©∧ w)Nz

(x©∧ y)©∧ wNz
(©∧ a)

x©∧ yNz

y©∧ xNz
(©∧ e)

xNz

x©∧ yNz
(©∧ i)

x©∧ xNz

xNz
(©∧ c)

Theorem. If W is a distributive frame, then γN is a distributive
nucleus on P(W ).

Corollary. If W is a distributive residuated frame then the dual
algebra W

+ is a distributive residuated lattice.
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xNa aNz
xNz

(CUT)
aNa

(Id)

x©∧ (y©∧ w)Nz

(x©∧ y)©∧ wNz
(©∧ a)

x©∧ yNz

y©∧ xNz
(©∧ e)

xNz

x©∧ yNz
(©∧ i)

x©∧ xNz

xNz
(©∧ c)

xNa bNz
x ◦ (a\b)Nz

(\L) a ◦ xNb
xNa\b

(\R)

xNa bNz
(b/a) ◦ xNz

(/L) x ◦ aNb
xNb/a

(/R)

a ◦ bNz
a · bNz

(·L)
xNa yNb

x ◦ yNa · b
(·R) εNz

1Nz
(1L)

εN1
(1R)

a©∧ bNz

a ∧ bNz
(∧Lℓ) xNa xNb

xNa ∧ b
(∧R)

aNz bNz
a ∨ bNz

(∨L) xNa
xNa ∨ b

(∨Rℓ) xNb
xNa ∨ b

(∨Rr)
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We want to add another residuated pair:

z ≤ x+ y ⇔ z −· · y ≤ x⇔ x−· · z ≤ y
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We want to add another residuated pair:

z ≤ x+ y ⇔ z −· · y ≤ x⇔ x−· · z ≤ y

This can/is done easily if the residuated lattice A is involutive: for
some 0 ∈ A, ∼−x = x = −\x, where ∼x = x−0 and −x = 0/x.
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We want to add another residuated pair:

z ≤ x+ y ⇔ z −· · y ≤ x⇔ x−· · z ≤ y

This can/is done easily if the residuated lattice A is involutive: for
some 0 ∈ A, ∼−x = x = −\x, where ∼x = x−0 and −x = 0/x.

Then we can define x+ y := ∼(−y · −x) = −(∼y · ∼x).
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We want to add another residuated pair:

z ≤ x+ y ⇔ z −· · y ≤ x⇔ x−· · z ≤ y

This can/is done easily if the residuated lattice A is involutive: for
some 0 ∈ A, ∼−x = x = −\x, where ∼x = x−0 and −x = 0/x.

Then we can define x+ y := ∼(−y · −x) = −(∼y · ∼x).

Also, we get: x\y = (∼x) + y and y/x = y + (−x),
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We want to add another residuated pair:

z ≤ x+ y ⇔ z −· · y ≤ x⇔ x−· · z ≤ y

This can/is done easily if the residuated lattice A is involutive: for
some 0 ∈ A, ∼−x = x = −\x, where ∼x = x−0 and −x = 0/x.

Then we can define x+ y := ∼(−y · −x) = −(∼y · ∼x).

Also, we get: x\y = (∼x) + y and y/x = y + (−x),

as well as: x−· · y = (∼x) · y and y −· · x = y · (−x).
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Recall that 0 is of type Nn, hence ∼x,−x : Pn → Nn.
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Recall that 0 is of type Nn, hence ∼x,−x : Pn → Nn.

If we add a new type to negations ∼x,−x : Nn → Pn, then we arrive
at a new notion of sequent (multiple conclusion). The operations at
the frame level corresponding to the negations are denoted by {}∼

and {}−.

x ◦ y⇒ z

y⇒ x∼ ◦ z
(∼)

x ◦ y⇒ z

x⇒ z ◦ y−
(−)



Relativizing to InFL
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

Toward BiFL

Relativizing to InFL

InFL

Involutive frames

Quasiembedding

BiFL

Applications

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 34 / 62

Recall that 0 is of type Nn, hence ∼x,−x : Pn → Nn.

If we add a new type to negations ∼x,−x : Nn → Pn, then we arrive
at a new notion of sequent (multiple conclusion). The operations at
the frame level corresponding to the negations are denoted by {}∼

and {}−.

x ◦ y⇒ z

y⇒ x∼ ◦ z
(∼)

x ◦ y⇒ z

x⇒ z ◦ y−
(−)

If a ∈ Fm, we define a∼0 = a and a∼(n+1) = (a∼n)∼. A negated
formula is of the form a∼n or a−n.
We set a∼− = a = a−∼.
We denote by Fmi the free monoid over the set of negated formulas.
A sequent is of the form x ⇒ y for x, y ∈ Fmi.
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Recall that 0 is of type Nn, hence ∼x,−x : Pn → Nn.

If we add a new type to negations ∼x,−x : Nn → Pn, then we arrive
at a new notion of sequent (multiple conclusion). The operations at
the frame level corresponding to the negations are denoted by {}∼

and {}−.

x ◦ y⇒ z

y⇒ x∼ ◦ z
(∼)

x ◦ y⇒ z

x⇒ z ◦ y−
(−)

If a ∈ Fm, we define a∼0 = a and a∼(n+1) = (a∼n)∼. A negated
formula is of the form a∼n or a−n.
We set a∼− = a = a−∼.
We denote by Fmi the free monoid over the set of negated formulas.
A sequent is of the form x ⇒ y for x, y ∈ Fmi.

For x = a1, . . . , an, we define

x∼ = a∼n , . . . , a
∼
1 and x− = a−n , . . . , a

−
1 .

x∼− = x = x−∼, (x ◦ y)∼ = y∼ ◦ x∼, (x ◦ y)− = y− ◦ x−.
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x⇒ a a⇒ z
x⇒ z (CUT) a⇒ a (Id)

x⇒ a b⇒ z
x ◦ (a\b)⇒ z

(\L)
a ◦ x⇒ b
x⇒ a\b

(\R)

x⇒ a b⇒ z
(b/a) ◦ x⇒ z

(/L)
x ◦ a⇒ b
x⇒ b/a

(/R)

a ◦ b⇒ z
a · b⇒ z

(·L)
x⇒ a y ⇒ b

x ◦ y ⇒ a · b
(·R) ε⇒ z

1⇒ z
(1L)

ε⇒ 1
(1R)

a⇒ z
a ∧ b⇒ z

(∧Lℓ)
b⇒ z

a ∧ b⇒ z
(∧Lr)

x⇒ a x⇒ b
x⇒ a ∧ b

(∧R)

a⇒ z b⇒ z
a ∨ b⇒ z

(∨L)
x⇒ a

x⇒ a ∨ b
(∨Rℓ)

x⇒ b
x⇒ a ∨ b

(∨Rr)

aln ⇒ z
∼a⇒ z (∼L)

x⇒ a∼

x⇒∼a (∼R)

a− ⇒ z
−a⇒ z

(−L)
x⇒ a−

x⇒−a
(−R)

x ◦ y ⇒ z

y ⇒ x∼ ◦ z
(∼)

x ◦ y ⇒ z

x⇒ z ◦ y−

(−)
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An involutive (residuated) frame is a structure of the form
W = (W,N, ◦, ε,∼,−), where

■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (y∼ ◦ x∼)− = (y− ◦ x−)∼ [= x⊕ y]
■ x ◦ y N z iff y N x∼ ⊕ z iff x N z ⊕ y−, for all x, y, z ∈W
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An involutive (residuated) frame is a structure of the form
W = (W,N, ◦, ε,∼,−), where

■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (y∼ ◦ x∼)− = (y− ◦ x−)∼ [= x⊕ y]
■ x ◦ y N z iff y N x∼ ⊕ z iff x N z ⊕ y−, for all x, y, z ∈W

If L is an involutive FL-algebra, then WL = (L,≤, ·, 1,∼,−) is an
involutive frame.
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An involutive (residuated) frame is a structure of the form
W = (W,N, ◦, ε,∼,−), where

■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (y∼ ◦ x∼)− = (y− ◦ x−)∼ [= x⊕ y]
■ x ◦ y N z iff y N x∼ ⊕ z iff x N z ⊕ y−, for all x, y, z ∈W

If L is an involutive FL-algebra, then WL = (L,≤, ·, 1,∼,−) is an
involutive frame.

On the dual algebra we define −Y := Y ⊲− = Y −⊳ and
∼Y = Y ⊲∼ = Y ∼⊳ for Y ⊆W .
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An involutive (residuated) frame is a structure of the form
W = (W,N, ◦, ε,∼,−), where

■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (y∼ ◦ x∼)− = (y− ◦ x−)∼ [= x⊕ y]
■ x ◦ y N z iff y N x∼ ⊕ z iff x N z ⊕ y−, for all x, y, z ∈W

If L is an involutive FL-algebra, then WL = (L,≤, ·, 1,∼,−) is an
involutive frame.

On the dual algebra we define −Y := Y ⊲− = Y −⊳ and
∼Y = Y ⊲∼ = Y ∼⊳ for Y ⊆W . Then we have

X ◦ Y ⊆ Z ⇔ Y ⊆ ∼(−Z ◦X) ⇔ X ⊆ −(Y ◦ ∼Z)
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Using the following rules of InFL we can prove the main theorem.

a∼Nz
∼aNz

(∼L) xNa∼

xN∼a
(∼R)

a−Nz
−aNz

(−L) xNa−

xN−a
(−R)

Theorem. For all a ∈ B, in an involutive Genzen frame
∼{a}⊳ = {∼a}⊳ and −{a}⊳ = {−a}⊳.
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We wonder if expansions of FL-algebras with a dual operator +,
x+ (y ∧ z) = (x+ y) ∧ (x+ z), can be conservatively extended with
dual implication.
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We wonder if expansions of FL-algebras with a dual operator +,
x+ (y ∧ z) = (x+ y) ∧ (x+ z), can be conservatively extended with
dual implication.

In other words is there any interference between a residuated and a
dually residuated pair/triple?
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We wonder if expansions of FL-algebras with a dual operator +,
x+ (y ∧ z) = (x+ y) ∧ (x+ z), can be conservatively extended with
dual implication.

In other words is there any interference between a residuated and a
dually residuated pair/triple?

Note that there was no interference when the two pairs were both
residuated.
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We wonder if expansions of FL-algebras with a dual operator +,
x+ (y ∧ z) = (x+ y) ∧ (x+ z), can be conservatively extended with
dual implication.

In other words is there any interference between a residuated and a
dually residuated pair/triple?

Note that there was no interference when the two pairs were both
residuated.

Can an FL+ algebra be embedded into a bi-FL algebra?
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We wonder if expansions of FL-algebras with a dual operator +,
x+ (y ∧ z) = (x+ y) ∧ (x+ z), can be conservatively extended with
dual implication.

In other words is there any interference between a residuated and a
dually residuated pair/triple?

Note that there was no interference when the two pairs were both
residuated.

Can an FL+ algebra be embedded into a bi-FL algebra?

Is there a cut-free calculus for FL+.
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We wonder if expansions of FL-algebras with a dual operator +,
x+ (y ∧ z) = (x+ y) ∧ (x+ z), can be conservatively extended with
dual implication.

In other words is there any interference between a residuated and a
dually residuated pair/triple?

Note that there was no interference when the two pairs were both
residuated.

Can an FL+ algebra be embedded into a bi-FL algebra?

Is there a cut-free calculus for FL+.

More difficult than one residuated pair, as now there are
non-innocent/bad sequents.
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Given a (commutative) FL+-algebra A we will define a residuated
frame (W,W ′, N, ◦,�,⊕,).
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Given a (commutative) FL+-algebra A we will define a residuated
frame (W,W ′, N, ◦,�,⊕,).

We define the set W by the following grammar:

W :=W,A |W <A | ε
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Given a (commutative) FL+-algebra A we will define a residuated
frame (W,W ′, N, ◦,�,⊕,).

We define the set W by the following grammar:

W :=W,A |W <A | ε

Elements of W of the form w<a and ε are called proper. For
convenience we extend the multiplication of A to a ∈ A ∪ {ε} by
a · ε = ε · a = a (and ε→ a = a). Also, p, ε is simply p.
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Given a (commutative) FL+-algebra A we will define a residuated
frame (W,W ′, N, ◦,�,⊕,).

We define the set W by the following grammar:

W :=W,A |W <A | ε

Elements of W of the form w<a and ε are called proper. For
convenience we extend the multiplication of A to a ∈ A ∪ {ε} by
a · ε = ε · a = a (and ε→ a = a). Also, p, ε is simply p.

Then every element of W is of the form p, a, where p is proper and
a ∈ A ∪ {ε}.
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Given a (commutative) FL+-algebra A we will define a residuated
frame (W,W ′, N, ◦,�,⊕,).

We define the set W by the following grammar:

W :=W,A |W <A | ε

Elements of W of the form w<a and ε are called proper. For
convenience we extend the multiplication of A to a ∈ A ∪ {ε} by
a · ε = ε · a = a (and ε→ a = a). Also, p, ε is simply p.

Then every element of W is of the form p, a, where p is proper and
a ∈ A ∪ {ε}.

We define the set W ′ to be given by the grammar W ′ := P >A,
where P is the set of proper elements of W . We write a for ε > a.
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We define the (hyper)operation ◦ on proper elements by
p ◦ ε = ε ◦ p = p and (w<a) ◦ (w′<a′) = ∅. Then we ‘extend’ it to
arbitrary elements by (p, a) ◦ (p′, a′) = (p ◦ p′), (a · a′).
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We define the (hyper)operation ◦ on proper elements by
p ◦ ε = ε ◦ p = p and (w<a) ◦ (w′<a′) = ∅. Then we ‘extend’ it to
arbitrary elements by (p, a) ◦ (p′, a′) = (p ◦ p′), (a · a′).

We define ⊕ on W ′ by (p>a)⊕ (p′>a′) = a+ a′ if p = p′ = ε; and
∅ otherwise.
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We define the (hyper)operation ◦ on proper elements by
p ◦ ε = ε ◦ p = p and (w<a) ◦ (w′<a′) = ∅. Then we ‘extend’ it to
arbitrary elements by (p, a) ◦ (p′, a′) = (p ◦ p′), (a · a′).

We define ⊕ on W ′ by (p>a)⊕ (p′>a′) = a+ a′ if p = p′ = ε; and
∅ otherwise.

Also, we define (p, a)  (p′>a) = (p ◦ p′)>(a→ a′),
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We define the (hyper)operation ◦ on proper elements by
p ◦ ε = ε ◦ p = p and (w<a) ◦ (w′<a′) = ∅. Then we ‘extend’ it to
arbitrary elements by (p, a) ◦ (p′, a′) = (p ◦ p′), (a · a′).

We define ⊕ on W ′ by (p>a)⊕ (p′>a′) = a+ a′ if p = p′ = ε; and
∅ otherwise.

Also, we define (p, a)  (p′>a) = (p ◦ p′)>(a→ a′),

and (p, a) � (p′>a′) = (p, a)<a′, if p′ = ε; and ∅ otherwise.
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We define the (hyper)operation ◦ on proper elements by
p ◦ ε = ε ◦ p = p and (w<a) ◦ (w′<a′) = ∅. Then we ‘extend’ it to
arbitrary elements by (p, a) ◦ (p′, a′) = (p ◦ p′), (a · a′).

We define ⊕ on W ′ by (p>a)⊕ (p′>a′) = a+ a′ if p = p′ = ε; and
∅ otherwise.

Also, we define (p, a)  (p′>a) = (p ◦ p′)>(a→ a′),

and (p, a) � (p′>a′) = (p, a)<a′, if p′ = ε; and ∅ otherwise.

Finally, for x ∈W and a ∈ A we define x+[a] as follows by induction
on the structure of x.
(ε)+[a] := a,
(x, b)+[a] := x+[b→ a],
(x<b)+[a] := x+[b+ a].
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We define the (hyper)operation ◦ on proper elements by
p ◦ ε = ε ◦ p = p and (w<a) ◦ (w′<a′) = ∅. Then we ‘extend’ it to
arbitrary elements by (p, a) ◦ (p′, a′) = (p ◦ p′), (a · a′).

We define ⊕ on W ′ by (p>a)⊕ (p′>a′) = a+ a′ if p = p′ = ε; and
∅ otherwise.

Also, we define (p, a)  (p′>a) = (p ◦ p′)>(a→ a′),

and (p, a) � (p′>a′) = (p, a)<a′, if p′ = ε; and ∅ otherwise.

Finally, for x ∈W and a ∈ A we define x+[a] as follows by induction
on the structure of x.
(ε)+[a] := a,
(x, b)+[a] := x+[b→ a],
(x<b)+[a] := x+[b+ a].

We also define the set of designated elements of W ′ to be
D = {x>a : 1 ≤ x+[a]} and (p, a) N (p′>a) iff
1 ≤ (p ◦ p′)+[a→ a′].
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We define the (hyper)operation ◦ on proper elements by
p ◦ ε = ε ◦ p = p and (w<a) ◦ (w′<a′) = ∅. Then we ‘extend’ it to
arbitrary elements by (p, a) ◦ (p′, a′) = (p ◦ p′), (a · a′).

We define ⊕ on W ′ by (p>a)⊕ (p′>a′) = a+ a′ if p = p′ = ε; and
∅ otherwise.

Also, we define (p, a)  (p′>a) = (p ◦ p′)>(a→ a′),

and (p, a) � (p′>a′) = (p, a)<a′, if p′ = ε; and ∅ otherwise.

Finally, for x ∈W and a ∈ A we define x+[a] as follows by induction
on the structure of x.
(ε)+[a] := a,
(x, b)+[a] := x+[b→ a],
(x<b)+[a] := x+[b+ a].

We also define the set of designated elements of W ′ to be
D = {x>a : 1 ≤ x+[a]} and (p, a) N (p′>a) iff
1 ≤ (p ◦ p′)+[a→ a′].

Theorem Every FL+-algebra can be embedded into a BiFL-algebra.
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Question: If A satisfies mingle x ≤ x · x, x+ x ≤ x then does W+
A

also satisfy it?
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Question: If A satisfies mingle x ≤ x · x, x+ x ≤ x then does W+
A

also satisfy it?

p, aNz p′, a′Nz

(p, a) ◦ (p′, a′)Nz

xNp>a xNp′>a′

xN(p>a)⊕ (p′>a′)
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Question: If A satisfies mingle x ≤ x · x, x+ x ≤ x then does W+
A

also satisfy it?

p, aNz p′, a′Nz

(p, a) ◦ (p′, a′)Nz

xNp>a xNp′>a′

xN(p>a)⊕ (p′>a′)

Solution: Modify the frame WA. The above conditions holds iff

p, aNz a′Nz

(p, a) ◦ a′Nz
xNa xNa′

xNa⊕ a′
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Question: If A satisfies mingle x ≤ x · x, x+ x ≤ x then does W+
A

also satisfy it?

p, aNz p′, a′Nz

(p, a) ◦ (p′, a′)Nz

xNp>a xNp′>a′

xN(p>a)⊕ (p′>a′)

Solution: Modify the frame WA. The above conditions holds iff

p, aNz a′Nz

(p, a) ◦ a′Nz
xNa xNa′

xNa⊕ a′

Grishin(b): x(y + z) ≤ xy + z gives a stabilizing definition:
(w<a) ◦ (w′<a′) = {((w<a) ◦ w′)<a′, ((w′<a′) ◦ w)<a}.
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■ DM-completion

■ Perfect residuated lattices

■ Completeness of the calculus

■ Cut elimination

■ Finite model property

■ Finite embeddability property

■ (Generalized super-)amalgamation property (Transferable
injections, Congruence extension property)

■ (Craig) Interpolation property

■ Disjunction property

■ Strong separation

■ Stability under linear structural rules/equations over {∨, ·, 1}.

■ Densification

■ Conservativity (via algebraic embeddings)



Examples of frames: FEP
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 45 / 62

Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where
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Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where

■ (W, ·, 1) to be the submonoid of A generated by B,
■ W ′ = SB ×B, where SW is the set of all unary linear
polynomials u[x] = y◦x◦z of (W, ·, 1), and
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Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where

■ (W, ·, 1) to be the submonoid of A generated by B,
■ W ′ = SB ×B, where SW is the set of all unary linear
polynomials u[x] = y◦x◦z of (W, ·, 1), and
■ x N (u, b) by u[x] ≤A b.
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Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where

■ (W, ·, 1) to be the submonoid of A generated by B,
■ W ′ = SB ×B, where SW is the set of all unary linear
polynomials u[x] = y◦x◦z of (W, ·, 1), and
■ x N (u, b) by u[x] ≤A b.

For

(u, a) � x = {(u[ · x], a)} and x  (u, a) = {(u[x · ], a)},

we have

x · yN(u, a) iff u[x · y] ≤ a
iff xN(u[ · y], a)
iff yN(u[x · ], a).
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.

Proof For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.



Simple equations
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 46 / 62

An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.

Proof For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.

Proof For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.

Proof For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.

Proof For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.

Proof For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x21y ∨ x1x2y ∨ x2x1y ∨ x
2
2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.

Proof For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x21y ∨ x1x2y ∨ x2x1y ∨ x
2
2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2
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An equation is called simple if it is of the form t0 ≤ t1 ∨ · · · ∨ tn,
where ti are {·, 1}-terms and t0 is linear.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations.

Proof For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x21y ∨ x1x2y ∨ x2x1y ∨ x
2
2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

More generally, if x appears n-times on the LHS, we substitute
x1 ∨ . . . ∨ xn for x, distribute and retain one representative term on
the LHS (where all the xi’s occur).



Simple rules
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 47 / 62

Let t0, t1, . . . , tn be monoid terms and let t0 be linear. A simple rule
is an expression of the form

t1 N q · · · tn N q

t0 N q
(r)

where q is a variable not occurring in t0, t1, . . . , tn.
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Let t0, t1, . . . , tn be monoid terms and let t0 be linear. A simple rule
is an expression of the form

t1 N q · · · tn N q

t0 N q
(r)

where q is a variable not occurring in t0, t1, . . . , tn.

A Gentzen frame (W,B) satisfies (r) if for all z ∈W ′, and for all
sequences x̄ of elements of W matching the variables involved in
t0, t1, . . . , tn, the conjunction of the conditions tWi (x̄) N z, for
i ∈ {1, . . . , n}, implies tW0 (x̄) N z.
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Let t0, t1, . . . , tn be monoid terms and let t0 be linear. A simple rule
is an expression of the form

t1 N q · · · tn N q

t0 N q
(r)

where q is a variable not occurring in t0, t1, . . . , tn.

A Gentzen frame (W,B) satisfies (r) if for all z ∈W ′, and for all
sequences x̄ of elements of W matching the variables involved in
t0, t1, . . . , tn, the conjunction of the conditions tWi (x̄) N z, for
i ∈ {1, . . . , n}, implies tW0 (x̄) N z.

Given a simple equation t0 ≤ t1 ∨ · · · ∨ tn, we write R(ε) for (r).
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Let t0, t1, . . . , tn be monoid terms and let t0 be linear. A simple rule
is an expression of the form

t1 N q · · · tn N q

t0 N q
(r)

where q is a variable not occurring in t0, t1, . . . , tn.

A Gentzen frame (W,B) satisfies (r) if for all z ∈W ′, and for all
sequences x̄ of elements of W matching the variables involved in
t0, t1, . . . , tn, the conjunction of the conditions tWi (x̄) N z, for
i ∈ {1, . . . , n}, implies tW0 (x̄) N z.

Given a simple equation t0 ≤ t1 ∨ · · · ∨ tn, we write R(ε) for (r).

In the context of (WFL,Fm), R(ε) takes the form

u[t1] ⇒ a · · · u[tn] ⇒ a

u[t0] ⇒ a
(R(ε))

In that sense, we may view basic structural rules as simple rules.
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Lemma. Every equation ε over {∨, ·, 1} is equivalent, relative to RL,
to R(ε). More precisely, for every A ∈ RL, A satisfies ε iff WA

satisfies R(ε).
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Lemma. Every equation ε over {∨, ·, 1} is equivalent, relative to RL,
to R(ε). More precisely, for every A ∈ RL, A satisfies ε iff WA

satisfies R(ε).

Proof. We continue the example.

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2
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Lemma. Every equation ε over {∨, ·, 1} is equivalent, relative to RL,
to R(ε). More precisely, for every A ∈ RL, A satisfies ε iff WA

satisfies R(ε).

Proof. We continue the example.

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ v x2y ≤ v yx1 ≤ v yx2 ≤ v
x1x2y ≤ v



Reduction to simple
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 48 / 62

Lemma. Every equation ε over {∨, ·, 1} is equivalent, relative to RL,
to R(ε). More precisely, for every A ∈ RL, A satisfies ε iff WA

satisfies R(ε).

Proof. We continue the example.

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ v x2y ≤ v yx1 ≤ v yx2 ≤ v
x1x2y ≤ v

x1 ◦ y N z x2 ◦ y N z y ◦ x1 N z y ◦ x2 N z

x1 ◦ x2 ◦ y N z
R(ε)
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Theorem. Let (W,B) be a cf Gentzen frame and let ε be a
{∨, ·, 1}-equation. Then (W,B) satisfies R(ε) iff W

+ satisfies ε.
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Theorem. Let (W,B) be a cf Gentzen frame and let ε be a
{∨, ·, 1}-equation. Then (W,B) satisfies R(ε) iff W

+ satisfies ε.

Theorem. Every system obtained from GL by adding linear rules
has the cut elimination property.
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Theorem. Let (W,B) be a cf Gentzen frame and let ε be a
{∨, ·, 1}-equation. Then (W,B) satisfies R(ε) iff W

+ satisfies ε.

Theorem. Every system obtained from GL by adding linear rules
has the cut elimination property.

Theorem. Every system obtained from GL by adding linear
reducing rules (and also the equational theory of the corresponding
variety) is decidable. (reducing: there is a complexity measure that
decreases with upward applications of the rules).
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For WFL, given (x, z) ∈W ×W ′ (if z = (u, c), then u(x) ⇒ c is a
sequent), we define (x, z)↑ as the smallest subset of W ×W ′ that
contains (x, z) and is closed upwards with respect to the rules of
FL

f . Note that (x, z)↑ is finite.
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For WFL, given (x, z) ∈W ×W ′ (if z = (u, c), then u(x) ⇒ c is a
sequent), we define (x, z)↑ as the smallest subset of W ×W ′ that
contains (x, z) and is closed upwards with respect to the rules of
FL

f . Note that (x, z)↑ is finite.

The new frame W
′ associated with N ′ = N ∪ ((y, v)↑)c is residuated

and Gentzen.
Clearly, (N ′)c is finite, so it has a finite domain Dom((N ′)c) and
codomain Cod((N ′)c).
For every z 6∈ Cod((N ′)c), {z}⊳ =W . So, {{z}⊳ : z ∈W} is finite
and a basis for γN ′ . So, W′+ is finite.
Moreover, if u(x) ⇒ c is not provable in FL, then it is not valid in
W

′+.
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For WFL, given (x, z) ∈W ×W ′ (if z = (u, c), then u(x) ⇒ c is a
sequent), we define (x, z)↑ as the smallest subset of W ×W ′ that
contains (x, z) and is closed upwards with respect to the rules of
FL

f . Note that (x, z)↑ is finite.

The new frame W
′ associated with N ′ = N ∪ ((y, v)↑)c is residuated

and Gentzen.
Clearly, (N ′)c is finite, so it has a finite domain Dom((N ′)c) and
codomain Cod((N ′)c).
For every z 6∈ Cod((N ′)c), {z}⊳ =W . So, {{z}⊳ : z ∈W} is finite
and a basis for γN ′ . So, W′+ is finite.
Moreover, if u(x) ⇒ c is not provable in FL, then it is not valid in
W

′+.

Corollary. The system FL has the finite model property. The same
holds for reducing extensions of GL.
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For WFL, given (x, z) ∈W ×W ′ (if z = (u, c), then u(x) ⇒ c is a
sequent), we define (x, z)↑ as the smallest subset of W ×W ′ that
contains (x, z) and is closed upwards with respect to the rules of
FL

f . Note that (x, z)↑ is finite.

The new frame W
′ associated with N ′ = N ∪ ((y, v)↑)c is residuated

and Gentzen.
Clearly, (N ′)c is finite, so it has a finite domain Dom((N ′)c) and
codomain Cod((N ′)c).
For every z 6∈ Cod((N ′)c), {z}⊳ =W . So, {{z}⊳ : z ∈W} is finite
and a basis for γN ′ . So, W′+ is finite.
Moreover, if u(x) ⇒ c is not provable in FL, then it is not valid in
W

′+.

Corollary. The system FL has the finite model property. The same
holds for reducing extensions of GL.

Corollary. The variety of residuated lattices is generated by its finite
members. The same holds for the subvarieties corresponding to the
above extensions.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

Theorem. Every variety of integral RL’s axiomatized by equartions
over {∨, ·, 1} has the FEP.

■ B embeds in W
+
A,B via { }⊳ : B→W

+

■ W
+
A,B is finite

■ W
+
A,B ∈ V
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

Theorem. Every variety of integral RL’s axiomatized by equartions
over {∨, ·, 1} has the FEP.

■ B embeds in W
+
A,B via { }⊳ : B→W

+

■ W
+
A,B is finite

■ W
+
A,B ∈ V

Corollary. These varieties are generated as quasivarieties by their
finite members.

Corollary. The corresponding logics have the strong finite model
property:
if Φ 6⊢ ψ, for finite Φ, then there is a finite counter-model,
namely there is D ∈ V and a homomorphism f : Fm→ D,
such that f(φ) = 1, for all φ ∈ Φ, but f(ψ) 6= 1.
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings f : A→ B and g : A→ C,
there is a D ∈ K and embeddings f ′ : B→ D and g′ : C→ D such
that f ′ ◦ f = g′ ◦ g.
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings f : A→ B and g : A→ C,
there is a D ∈ K and embeddings f ′ : B→ D and g′ : C→ D such
that f ′ ◦ f = g′ ◦ g.

We will show that CRLn has the AP, where D ⊆ P((B ∪ C)∗).
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings f : A→ B and g : A→ C,
there is a D ∈ K and embeddings f ′ : B→ D and g′ : C→ D such
that f ′ ◦ f = g′ ◦ g.

We will show that CRLn has the AP, where D ⊆ P((B ∪ C)∗).

Note that P((B ∪ C)∗) is a commutative residuated lattice.
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings f : A→ B and g : A→ C,
there is a D ∈ K and embeddings f ′ : B→ D and g′ : C→ D such
that f ′ ◦ f = g′ ◦ g.

We will show that CRLn has the AP, where D ⊆ P((B ∪ C)∗).

Note that P((B ∪ C)∗) is a commutative residuated lattice.

Actually, D = γ[P((B ∪ C)∗)], for some closure operator γ.
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings f : A→ B and g : A→ C,
there is a D ∈ K and embeddings f ′ : B→ D and g′ : C→ D such
that f ′ ◦ f = g′ ◦ g.

We will show that CRLn has the AP, where D ⊆ P((B ∪ C)∗).

Note that P((B ∪ C)∗) is a commutative residuated lattice.

Actually, D = γ[P((B ∪ C)∗)], for some closure operator γ.

We will

■ define γ (by giving an associated Galois connection) and D,
■ prove that D ∈ CRLn,
■ prove that B,C →֒A D.
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We define W = (B ∪ C)∗,
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We define W = (B ∪ C)∗, W ′ = (B ∪ C)∗ × (B ∪ C) and
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We define W = (B ∪ C)∗, W ′ = (B ∪ C)∗ × (B ∪ C) and

x N (u, d) iff for all partitions u · x = wB · wC , with wB ∈ B∗ and
wC ∈ C∗

■ if d ∈ B, then wC ≤C a and wB · a ≤B d, for some a ∈ A and
■ if d ∈ C, then wB ≤B a and wC · a ≤C d, for some a ∈ A.



Maehara frame
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 53 / 62

We define W = (B ∪ C)∗, W ′ = (B ∪ C)∗ × (B ∪ C) and

x N (u, d) iff for all partitions u · x = wB · wC , with wB ∈ B∗ and
wC ∈ C∗

■ if d ∈ B, then wC ≤C a and wB · a ≤B d, for some a ∈ A and
■ if d ∈ C, then wB ≤B a and wC · a ≤C d, for some a ∈ A.

Notational conventions:

■ For d ∈ B ∪ C, we identify (ε, d) with d.
■ For x ∈ B∗, we write simply x for its interpretation in B.
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We define W = (B ∪ C)∗, W ′ = (B ∪ C)∗ × (B ∪ C) and

x N (u, d) iff for all partitions u · x = wB · wC , with wB ∈ B∗ and
wC ∈ C∗

■ if d ∈ B, then wC ≤C a and wB · a ≤B d, for some a ∈ A and
■ if d ∈ C, then wB ≤B a and wC · a ≤C d, for some a ∈ A.

Notational conventions:

■ For d ∈ B ∪ C, we identify (ε, d) with d.
■ For x ∈ B∗, we write simply x for its interpretation in B.

Lemma. W
A

B,C = (W,W ′, N, ◦, ε, ) is a residuated frame (called
the Maehara frame)
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We define W = (B ∪ C)∗, W ′ = (B ∪ C)∗ × (B ∪ C) and

x N (u, d) iff for all partitions u · x = wB · wC , with wB ∈ B∗ and
wC ∈ C∗

■ if d ∈ B, then wC ≤C a and wB · a ≤B d, for some a ∈ A and
■ if d ∈ C, then wB ≤B a and wC · a ≤C d, for some a ∈ A.

Notational conventions:

■ For d ∈ B ∪ C, we identify (ε, d) with d.
■ For x ∈ B∗, we write simply x for its interpretation in B.

Lemma. W
A

B,C = (W,W ′, N, ◦, ε, ) is a residuated frame (called
the Maehara frame)

Proof. We have x ◦ y N (u, b), for b ∈ B, iff for all partitions
x = xB ·xC , y = yB · yC and u = uB ·uC , with xB, yB , uB ∈ B∗ and
xC , yC , uC ∈ C∗, there exists a ∈ A such that uC · xC · yC NC a and
ub · xB · yB · a NB b.
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We define W = (B ∪ C)∗, W ′ = (B ∪ C)∗ × (B ∪ C) and

x N (u, d) iff for all partitions u · x = wB · wC , with wB ∈ B∗ and
wC ∈ C∗

■ if d ∈ B, then wC ≤C a and wB · a ≤B d, for some a ∈ A and
■ if d ∈ C, then wB ≤B a and wC · a ≤C d, for some a ∈ A.

Notational conventions:

■ For d ∈ B ∪ C, we identify (ε, d) with d.
■ For x ∈ B∗, we write simply x for its interpretation in B.

Lemma. W
A

B,C = (W,W ′, N, ◦, ε, ) is a residuated frame (called
the Maehara frame)

Proof. We have x ◦ y N (u, b), for b ∈ B, iff for all partitions
x = xB ·xC , y = yB · yC and u = uB ·uC , with xB, yB , uB ∈ B∗ and
xC , yC , uC ∈ C∗, there exists a ∈ A such that uC · xC · yC NC a and
ub · xB · yB · a NB b. This statement is equivalent to x N (u ◦ y, b).
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We define W = (B ∪ C)∗, W ′ = (B ∪ C)∗ × (B ∪ C) and

x N (u, d) iff for all partitions u · x = wB · wC , with wB ∈ B∗ and
wC ∈ C∗

■ if d ∈ B, then wC ≤C a and wB · a ≤B d, for some a ∈ A and
■ if d ∈ C, then wB ≤B a and wC · a ≤C d, for some a ∈ A.

Notational conventions:

■ For d ∈ B ∪ C, we identify (ε, d) with d.
■ For x ∈ B∗, we write simply x for its interpretation in B.

Lemma. W
A

B,C = (W,W ′, N, ◦, ε, ) is a residuated frame (called
the Maehara frame)

Proof. We have x ◦ y N (u, b), for b ∈ B, iff for all partitions
x = xB ·xC , y = yB · yC and u = uB ·uC , with xB, yB , uB ∈ B∗ and
xC , yC , uC ∈ C∗, there exists a ∈ A such that uC · xC · yC NC a and
ub · xB · yB · a NB b. This statement is equivalent to x N (u ◦ y, b).

Corollary. D = P((B ∪ C)∗)γ is a commutative residuated lattice.
Lemma. W

A

B,C is a Genzen frame.
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We define W = (B ∪ C)∗, W ′ = (B ∪ C)∗ × (B ∪ C) and

x N (u, d) iff for all partitions u · x = wB · wC , with wB ∈ B∗ and
wC ∈ C∗

■ if d ∈ B, then wC ≤C a and wB · a ≤B d, for some a ∈ A and
■ if d ∈ C, then wB ≤B a and wC · a ≤C d, for some a ∈ A.

Notational conventions:

■ For d ∈ B ∪ C, we identify (ε, d) with d.
■ For x ∈ B∗, we write simply x for its interpretation in B.

Lemma. W
A

B,C = (W,W ′, N, ◦, ε, ) is a residuated frame (called
the Maehara frame)

Proof. We have x ◦ y N (u, b), for b ∈ B, iff for all partitions
x = xB ·xC , y = yB · yC and u = uB ·uC , with xB, yB , uB ∈ B∗ and
xC , yC , uC ∈ C∗, there exists a ∈ A such that uC · xC · yC NC a and
ub · xB · yB · a NB b. This statement is equivalent to x N (u ◦ y, b).

Corollary. D = P((B ∪ C)∗)γ is a commutative residuated lattice.
Lemma. W

A

B,C is a Genzen frame.

Corollary. B,C →֒A D.
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Recall that if (W,S) is a Gentzen frame and ε an equation over
{∨, ·, 1}, then (W,S) satisfies R(ε) iff W

+ satisfies ε.



Equations
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 54 / 62

Recall that if (W,S) is a Gentzen frame and ε an equation over
{∨, ·, 1}, then (W,S) satisfies R(ε) iff W

+ satisfies ε.

Moreover, R(x ≤ xn) is the condition [x◦n = x ◦ · · · ◦ x (n times).]

x◦n N z
x N z

(n)
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Recall that if (W,S) is a Gentzen frame and ε an equation over
{∨, ·, 1}, then (W,S) satisfies R(ε) iff W

+ satisfies ε.

Moreover, R(x ≤ xn) is the condition [x◦n = x ◦ · · · ◦ x (n times).]

x◦n N z
x N z

(n)

Lemma. The frame W
A

B,C satisfies condition (n).
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Recall that if (W,S) is a Gentzen frame and ε an equation over
{∨, ·, 1}, then (W,S) satisfies R(ε) iff W

+ satisfies ε.

Moreover, R(x ≤ xn) is the condition [x◦n = x ◦ · · · ◦ x (n times).]

x◦n N z
x N z

(n)

Lemma. The frame W
A

B,C satisfies condition (n).

Proof. For z = (u, b), to show that x N (u, b), let x = xB ◦ xC and
u = uB ◦ uC , where xB, uB ∈ B∗, xC , uC ∈ C∗.
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Recall that if (W,S) is a Gentzen frame and ε an equation over
{∨, ·, 1}, then (W,S) satisfies R(ε) iff W

+ satisfies ε.

Moreover, R(x ≤ xn) is the condition [x◦n = x ◦ · · · ◦ x (n times).]

x◦n N z
x N z

(n)

Lemma. The frame W
A

B,C satisfies condition (n).

Proof. For z = (u, b), to show that x N (u, b), let x = xB ◦ xC and
u = uB ◦ uC , where xB, uB ∈ B∗, xC , uC ∈ C∗. Since x◦n N (u, b),
there exists i ∈ A such that uC ◦ xnC ≤C i and uBx

n
Bi ≤B b. Since

B and C satisfy x ≤ xn, we get uC ◦ xC ≤C i and uBxBi ≤B b
Consequently, x N (u, b).
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Recall that if (W,S) is a Gentzen frame and ε an equation over
{∨, ·, 1}, then (W,S) satisfies R(ε) iff W

+ satisfies ε.

Moreover, R(x ≤ xn) is the condition [x◦n = x ◦ · · · ◦ x (n times).]

x◦n N z
x N z

(n)

Lemma. The frame W
A

B,C satisfies condition (n).

Proof. For z = (u, b), to show that x N (u, b), let x = xB ◦ xC and
u = uB ◦ uC , where xB, uB ∈ B∗, xC , uC ∈ C∗. Since x◦n N (u, b),
there exists i ∈ A such that uC ◦ xnC ≤C i and uBx

n
Bi ≤B b. Since

B and C satisfy x ≤ xn, we get uC ◦ xC ≤C i and uBxBi ≤B b
Consequently, x N (u, b).

Corollary. D ∈ CRLn.
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Recall that if (W,S) is a Gentzen frame and ε an equation over
{∨, ·, 1}, then (W,S) satisfies R(ε) iff W

+ satisfies ε.

Moreover, R(x ≤ xn) is the condition [x◦n = x ◦ · · · ◦ x (n times).]

x◦n N z
x N z

(n)

Lemma. The frame W
A

B,C satisfies condition (n).

Proof. For z = (u, b), to show that x N (u, b), let x = xB ◦ xC and
u = uB ◦ uC , where xB, uB ∈ B∗, xC , uC ∈ C∗. Since x◦n N (u, b),
there exists i ∈ A such that uC ◦ xnC ≤C i and uBx

n
Bi ≤B b. Since

B and C satisfy x ≤ xn, we get uC ◦ xC ≤C i and uBxBi ≤B b
Consequently, x N (u, b).

Corollary. D ∈ CRLn.

Corollary. CRLn has the AP.
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If we do not assume that f, g are injective, instead of

N = 〈(NB ◦NC) ∪ (NC ◦NB)〉,

we take

N = 〈(NB ◦ f ◦ g ◦NC) ∪ (NC ◦ g ◦ f ◦NB)〉.

Then we can prove AP, transferable injections, and transferable
surjections and the congruence extension property all with a single
argument.
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Theorem. FLe has the Craig interpolation property, i.e. if
⊢FLe

φ→ ψ, then there is a χ such that

■ ⊢FLe
φ→ χ and ⊢FLe

χ→ ψ
■ var(χ) ⊆ var(φ) ∩ var(ψ).
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Theorem. FLe has the Craig interpolation property, i.e. if
⊢FLe

φ→ ψ, then there is a χ such that

■ ⊢FLe
φ→ χ and ⊢FLe

χ→ ψ
■ var(χ) ⊆ var(φ) ∩ var(ψ).

Proof sketch. Define a frame with W = Fm∗, W ′ = Fm∗ × Fm
and x N (u, d) iff for X ∪ Y = var(x, u, d), B = Fm(X),
C = Fm(Y ), and for all partitions x = xB ◦ xC , u = uB ◦ uc, with
xB, uB ∈ B∗, xC , uC ∈ C∗

■ if d ∈ B, then ⊢FLe
uC ◦ xC ⇒ a and ⊢FLe

uB ◦ xB ◦ a ⇒ d,
for some a ∈ B ∩ C and
■ if d ∈ C, then ⊢FLe

uB ◦ xB ⇒ a and ⊢FLe
uC ◦ xC ◦ a ⇒ d,

for some a ∈ B ∩ C
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Theorem. FLe has the Craig interpolation property, i.e. if
⊢FLe

φ→ ψ, then there is a χ such that

■ ⊢FLe
φ→ χ and ⊢FLe

χ→ ψ
■ var(χ) ⊆ var(φ) ∩ var(ψ).

Proof sketch. Define a frame with W = Fm∗, W ′ = Fm∗ × Fm
and x N (u, d) iff for X ∪ Y = var(x, u, d), B = Fm(X),
C = Fm(Y ), and for all partitions x = xB ◦ xC , u = uB ◦ uc, with
xB, uB ∈ B∗, xC , uC ∈ C∗

■ if d ∈ B, then ⊢FLe
uC ◦ xC ⇒ a and ⊢FLe

uB ◦ xB ◦ a ⇒ d,
for some a ∈ B ∩ C and
■ if d ∈ C, then ⊢FLe

uB ◦ xB ⇒ a and ⊢FLe
uC ◦ xC ◦ a ⇒ d,

for some a ∈ B ∩ C

Theorem. If (W,S) is a cut-free Gentzen frame, then every sequent
valid in W

+ is also valid in (W,S).
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Theorem. FLe has the Craig interpolation property, i.e. if
⊢FLe

φ→ ψ, then there is a χ such that

■ ⊢FLe
φ→ χ and ⊢FLe

χ→ ψ
■ var(χ) ⊆ var(φ) ∩ var(ψ).

Proof sketch. Define a frame with W = Fm∗, W ′ = Fm∗ × Fm
and x N (u, d) iff for X ∪ Y = var(x, u, d), B = Fm(X),
C = Fm(Y ), and for all partitions x = xB ◦ xC , u = uB ◦ uc, with
xB, uB ∈ B∗, xC , uC ∈ C∗

■ if d ∈ B, then ⊢FLe
uC ◦ xC ⇒ a and ⊢FLe

uB ◦ xB ◦ a ⇒ d,
for some a ∈ B ∩ C and
■ if d ∈ C, then ⊢FLe

uB ◦ xB ⇒ a and ⊢FLe
uC ◦ xC ◦ a ⇒ d,

for some a ∈ B ∩ C

Theorem. If (W,S) is a cut-free Gentzen frame, then every sequent
valid in W

+ is also valid in (W,S).

Corollary. If ⊢FLe
u ◦ x ⇒ d, then u ◦ x N d. I.e., FLe has the IP.
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Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.



Disjunction property
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 57 / 62

Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.

Proof sketch. Define a frame with W = Fm∗,
W ′ = Fm∗ × Fm× Fm and x N (u, a, b) iff

■ if u ◦ x 6= ε, then ⊢FLe
u, x ⇒ a ∨ b

■ if u ◦ x = ε, then ⊢FLe
a or ⊢FLe

b.
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Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.

Proof sketch. Define a frame with W = Fm∗,
W ′ = Fm∗ × Fm× Fm and x N (u, a, b) iff

■ if u ◦ x 6= ε, then ⊢FLe
u, x ⇒ a ∨ b

■ if u ◦ x = ε, then ⊢FLe
a or ⊢FLe

b.

HW23. Work out the details.
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Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.

Proof sketch. Define a frame with W = Fm∗,
W ′ = Fm∗ × Fm× Fm and x N (u, a, b) iff

■ if u ◦ x 6= ε, then ⊢FLe
u, x ⇒ a ∨ b

■ if u ◦ x = ε, then ⊢FLe
a or ⊢FLe

b.

HW23. Work out the details.

The corresponding algebraic property is:
For A ∈ K, there is a D ∈ K and an epimorphism f : D→ A such
that if 1 ≤D a ∨B, then 1 ≤A f(a) or 1 ≤A f(b).
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Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.

Proof sketch. Define a frame with W = Fm∗,
W ′ = Fm∗ × Fm× Fm and x N (u, a, b) iff

■ if u ◦ x 6= ε, then ⊢FLe
u, x ⇒ a ∨ b

■ if u ◦ x = ε, then ⊢FLe
a or ⊢FLe

b.

HW23. Work out the details.

The corresponding algebraic property is:
For A ∈ K, there is a D ∈ K and an epimorphism f : D→ A such
that if 1 ≤D a ∨B, then 1 ≤A f(a) or 1 ≤A f(b).

This property holds for all subvarieties of CRL axiomatized with
equations over {∨, ·, 1}.
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Assume that K is a sublanguage of L that contains \. The system
KFL is defined to be the set of all rules from FL that involve
K-formulas and K-solvable sequents.



Strong separation: syst.
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 58 / 62

Assume that K is a sublanguage of L that contains \. The system
KFL is defined to be the set of all rules from FL that involve
K-formulas and K-solvable sequents.

Given a structure (W,AK) and a meta-rule (r) of KFL, we define
(r)(W,AK). For example, (\L)(W,AK) is

∀a, b, c ∈ A, x ∈W,uSW , if a\
A
b is defined, then x N a and

u[b] N c implies u[x ◦ (a\b)] N c.
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Assume that K is a sublanguage of L that contains \. The system
KFL is defined to be the set of all rules from FL that involve
K-formulas and K-solvable sequents.

Given a structure (W,AK) and a meta-rule (r) of KFL, we define
(r)(W,AK). For example, (\L)(W,AK) is

∀a, b, c ∈ A, x ∈W,uSW , if a\
A
b is defined, then x N a and

u[b] N c implies u[x ◦ (a\b)] N c.

Lemma A structure (W,AK) Gentzen frame iff the interpretation
(r)(W,AK) of every meta-rule (r) of KFL holds.
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Let K be a sublanguage of L that contains the connective \ and let
B ∪ {c} be a set of formulas over K. Also, let AK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}. Consider the
structure (W,AK), where W is the free monoid over AK,
W ′ = SW ×AK and where x N (u, a) iff B ⊢KHL φK(u(x)⇒ a).
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Let K be a sublanguage of L that contains the connective \ and let
B ∪ {c} be a set of formulas over K. Also, let AK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}. Consider the
structure (W,AK), where W is the free monoid over AK,
W ′ = SW ×AK and where x N (u, a) iff B ⊢KHL φK(u(x)⇒ a).

Corollary. Let K be a sublanguage of L that contains the connective
\ and let B ∪ {c} be a set of formulas over K. Then (W,AK) is a
Gentzen frame.
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Let K be a sublanguage of L that contains the connective \ and let
B ∪ {c} be a set of formulas over K. Also, let AK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}. Consider the
structure (W,AK), where W is the free monoid over AK,
W ′ = SW ×AK and where x N (u, a) iff B ⊢KHL φK(u(x)⇒ a).

Corollary. Let K be a sublanguage of L that contains the connective
\ and let B ∪ {c} be a set of formulas over K. Then (W,AK) is a
Gentzen frame.

Corollary If B ∪ {c} is a set of formulas over a sublanguage K of L
that contains \, then B ⊢HL c iff B ⊢K−HL c. In particular, the
Hilbert system HL enjoys the separation property.



Equations for DFL
Residuated frames

Frames and modules

Frames and display

Distributive frames

Involutive FL

BiFL

Applications

Frame applications

Examples of frames:
FEP

Simple equations

Simple rules

Reduction to simple

Simplicity preserved

FMP

FEP

Amalgamation

Maehara frame

Equations

Gen. amalgamation

Interpolation

Disjunction property

Strong separation: syst.

Strong separation

Equations for DFL

Structural rules

FEP for DFL

Nick Galatos, Prague workshop, March, 2014 Residuated frames – 60 / 62

Idea: Express equations over {∧,∨, ·, 1} at the frame level.
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For an equation ε over {∧,∨, ·, 1} we distribute products and meets
over joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : {∧, ·, 1}-terms.
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The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2 ∧ y ≤ (x ∧ y) ∨ yx
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2
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Given an equation ε of the form t0 ≤ t1 ∨ · · · ∨ tn, where ti are
{∧, ·, 1}-terms we construct the rule R(ε)

u[t1] ⇒ a · · · u[tn] ⇒ a

u[t0] ⇒ a
(R(ε))

where the ti’s are evaluated in (W, ◦, ε). Such a rule is called
analytic if all variables in t0 are distinct.
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u[t1] ⇒ a · · · u[tn] ⇒ a

u[t0] ⇒ a
(R(ε))

where the ti’s are evaluated in (W, ◦, ε). Such a rule is called
analytic if all variables in t0 are distinct.

Theorem. If (W,B) is a Gentzen frame and ε an equation over
{∧,∨, ·, 1}, then (W,B) satisfies R(ε) iff W

+ satisfies ε.

(The linearity of the denominator of R(ε) plays an important role in
the proof.)
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Given an equation ε of the form t0 ≤ t1 ∨ · · · ∨ tn, where ti are
{∧, ·, 1}-terms we construct the rule R(ε)

u[t1] ⇒ a · · · u[tn] ⇒ a

u[t0] ⇒ a
(R(ε))

where the ti’s are evaluated in (W, ◦, ε). Such a rule is called
analytic if all variables in t0 are distinct.

Theorem. If (W,B) is a Gentzen frame and ε an equation over
{∧,∨, ·, 1}, then (W,B) satisfies R(ε) iff W

+ satisfies ε.

(The linearity of the denominator of R(ε) plays an important role in
the proof.)

Theorem. Every system obtained from FL by adding analytic rules
has the cut elimination property.
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Let V be a subvariety of DIRL axiomatized over {∨,∧, ·, 1}. To
establish the FEP for V , for every A in V and B a finite partial
subalgebra of A, we construct an algebra D = W

+
A,B such that

■ W
+
A,B ∈ V

■ B embeds in W
+
A,B

■ W
+
A,B is finite
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Let V be a subvariety of DIRL axiomatized over {∨,∧, ·, 1}. To
establish the FEP for V , for every A in V and B a finite partial
subalgebra of A, we construct an algebra D = W

+
A,B such that

■ W
+
A,B ∈ V

■ B embeds in W
+
A,B

■ W
+
A,B is finite

W
+
A,B is defined by taking (W, ◦,©∧ , 1) to be the {·,∧, 1}-subreduct

of A generated by B, W ′ = SW ×B and x N (u, b) iff u(x) ≤A b.

Theorem. Every subvariety of DIRL axiomatized over {∨,∧, ·, 1} has
the FEP.
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