

Ústav fyzikální chemie Jaroslava Heyrovského, AVČR v.v.i. Dolejškova 3, 182 23 Praha 8

Mikroskopie rastrovací sondou II analytické/optické metody

Pavel Janda Laboratoř mikroskopie rastrovací sondou Odd. elektrochemických materiálů http://www.jh-inst.cas.cz/ <u>http://www.jh-inst.cas.cz/~janda</u> pavel.janda@jh-inst.cas.cz

Mikroskopie rastrovací sondou Scanning Probe Microscopy

 \bullet

۲

۲

۲

۲

•

Rozdělení SPM podle druhu přenášené informace

 \bullet

Přenos náboje Elektrony - tunelová mikroskopie STM Ionty - elektrochemická mikroskopie ECM

Silové interakce - mikroskopie atomárních sil AFM Dlouhého dosahu: magnetické, kulombické Středního dosahu: van der Waals (dipol-dipol, indukce dipol-nepolar., kapilární síly:kapalina-sonda...)

Krátkého dosahu: vazebné interakce (atraktivní)

repulzívní (deformační)

Přenos elektromagnetického záření

-IČ - Termální mikroskopie ThM
-UV/Vis/IČ - optická mikroskopie/spektr. blízkého pole SNOM
- Hrotem zesílená optická mikroskopie/spektr. TERS/TEFS

Mikroskopie rastrovací sondou STM-AFM

Tunelové spektroskopie

<u>Bariérová (distanční) spektroskopie</u> pro nízké V_B je (d*I*_T/d*Z*)/*I*_T ~ (2√2*m*_e)/ħ √(Φ_S + Φ_T) Φ_S , Φ_T lokální výstupní práce

Si-povrch, W-hrot

<u>Napěťová spektroskopie</u> $V_{\rm B}$ < výst. práce hrotu a vzorku, d $I_{\rm T}$ /d $V_{\rm B}$ ~ lokální povrchová hustota stavů (zaplnění, ad-atomy, volné vazby

I_T-V_B křivky Si (UHV) průchod hrotu nad defektem

AFM: Semikontaktní režim: Chemická identifikace atomů

silová křivka před normalizací

křivka normalizovaná na maximum interakce substrát-hrot

Dynamic Force Spectroscopy silová spektroskopie sil blízkého dosahu – chemické interakce

Yoshiaki Sugimoto, Pablo Pou, Masayuki Abe, Pavel Jelinek, Rubén Pérez, Seizo Morita & Óscar Custance: Nature Letters Vol. 446 March 2007

Mikroskopie povrchového náboje

Electrostatic Force Microscopy EFM Kelvin Probe Microscopy KPFM

Mapování: výstupní práce => katalytická aktivita, ohyb pásů polovodičů, povrchové elektronové stavy, povrchové náboje a korozní procesy

Varianty

Bezkontaktní, kontaktní EFM, CFM (mikroskopie kapacitních sil):

 $V_{tip} = V_{DC} + V_{AC}sin(wt),$ $F_{C}(z) = 1/2 (V_{tip} - V_{SURF})^{2}(dC/dz)$ $F_{C2}(z) = (1/2)(dC/dz) V_{AC}^{2}sin(2wt)$

۲

Rozdělení mikroskopických metod podle rozlišení

۲

۲

OPT: optická mikroskopie SNOM: mikroskopie blízkého pole SEM: elektron.rastr.mikroskopie HRTEM: transmisní el.mikroskopie STM,AFM: Tunelová mikroskopie,

mikroskopie atomárních sil

•

Optická mikroskopie a spektroskopie v mikroskopii rastrovací sondou

 \bullet

 \bullet

۲

3D konfokální rastrovací mikroskop

Mikroskopie vzdáleného pole

Mikroskopie blízkého pole

<u>Rozlišení</u> ⇒ Abbeho, Rayleighovo kriterium index lomu, vstupní úhel, difrakční limit

$d = \lambda/(\theta \sin \alpha) \approx \lambda/N_{\rm a}$

- d... rozlišení (min. vzdálenost)
- λ... vlnová délka světla
- *θ*... index lomu prostředí
- α... úhel paprsku (k opt. ose)

N_a... numerická apertura

konstrukce obrazu bod po bodu z fragmentu vlnoplochy <u>Rozlišení</u> ⇒ apertura sondy, vzdálenost od povrchu vzorku

Scanning Near-field Optical Microscopy/Spectroscopy SNOM

Mikroskopie a spektroskopie blízkého pole

Reflexní SNOM

 \bullet

Reflection Path

Transmisní a fluorescenční SNOM

۲

•

Fluorescenční SNOM Zobrazení jednotlivých molekul

Alexa 532 (Exmax 532 nm/Emmax 554 nm, Molecular Probe Inc) v PMMA

۲

۲

H. Muramatsu: Surface Science, Vol. 549, 273, 2004

Zobrazení technikou SNOM

AFM topography (a) and SNOM (b,c) images on ultrathin sections of apoptotic Jurkat cells embedded in araldite resin; SNOM optical reflection(b) transmission(c) images. Scan area $25 \times 25 \mu m$.

M. ZWEYER ET AL. Journal of Microscopy, 229 (2008) 440-446

AFM/SNOM

bezkontaktní snímání vibrací buněčných membrán

Time profile of PC12 (neuroendocrine tumor of the medulla) cell recordings for three different cell conditions: normal, Nerve Growth Factor and necrosis. (a) control; (b) 24 hours NGF; (c) 4 hours H_2O_2 (necrosis). Time frame is of 100 seconds total for each recording, Fourier spectrum: (d) control; (e) 24 hours NGF; (f) 4 hours H_2O_2 . Lower frequencies are plotted in the smaller insets for clarity.. Vertical scale Volts for the time profiles and Volts/Frequency (Hz) for the Fourier plots.

R. Piga et al: OPTICS EXPRESS 15 (2007) 5589

Membrane movements associated with the cell physiological condition

SNOM lithografie

 \bullet

۲

۲

 \bullet

- •

Nanočásticový zesilovač světla

Plasmonové resonanční zesílení

Povrchově zesílená Ramanova spektroskopie Surface Enhanced Raman Spectroscopy SERS

Hrotem zesílená Ramanova spektroskopie Tip Enhanced Rama Spectroscopy/Microscopy TERS

Interakce s elmg. polem: Povrchový plasmon a plasmonová resonance

 $E_{\rm p}$ elmg. pole: el. složka polarizovaná paralelně s mezifázím, $\theta_{\rm dopad} > \theta_{\rm odraz}$. $K_{\rm i}$, $K_{\rm p}$ vlnové vektory dopadajícího pole a plasmonu.

Kovová nanočástice = plasmonový rezonátor – zesilovač světla

Nanočásticový plasmon: Min. rozměr částic: > 2 nm => neexistují lokalizované energetické hladiny (pás/oblak)

Interakce se světlem => excitace oscilací e⁻oblaku Malé částice: dipólová radiace (a, b) => emise Velké částice: kvadru-/n-pólová radiace => potlačená emise (c)

ω_P plasmon. frekvence
m^{*} eff.hmotnost vodiv.e⁻
ε₀ permitivita prostředí

 $\omega_{\rm P} \sim \sqrt{(n \ {\rm e}^2/\varepsilon_0 \ m^*)}$

•

Optický mikroskopický snímek (temné pole) světla rozptýleného nanočásticemi Ag (nanosféry) Au (nanosféry) nanotyčky

C. Soennischen: Plasmons in metal nanostructures. Disertace. L.-M. Universiat Mnichov 2001

Využití plasmonové resonance

Ag, Au nanočástice

70% Ag + 30% Au

The Lycurgus Cup, Roman (4th century AD), British Museum (<u>www.thebritishmuseum.ac.uk</u>) R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, Science 294, 1901 (2001).

Využití plasmonové resonance

-zvětšení citlivosti spektroskopických technik
fluorescence, Ramanovy spektroskopie ...
(povrchové zesílení Ramanovy spektroskopie ~ 10¹⁴ – 10¹⁵x umožňuje
identifikaci jediné molekuly)

-posun plasmonové resonance adsorpcí molekul na mezifází (posun ε)
=> měření tloušťky adsorbovaných vrstev, vazebné konstanty ligandů...

Ramanova spektroskopie

<u>Elastický rozptyl</u> světla na molekulárních/atomárních strukturách: $\lambda_{rozptyl} = \lambda_{dopad}$ <u>Neelastický rozptyl</u> (malá část ~ 1/10⁶) => posun λ : $\lambda_{rozptyl} \neq \lambda_{dopad}$ => excituje vibrační a rotační a elektronické stavy

Vibrační/rotační excitace (posun λ) & změna polarizovatelnosti (intenzita) (deformace e-oblaku vzhledem k vibračním koordinátám) => Ramanův posun molekula absorbuje energii – *Stokesův rozptyl* – "*red shift*": $\lambda_{rozptyl}$ > λ_{dopad} molekula (na vyšší hladině) ztratí energii – *anti-Stokesův rozptyl* – "*blue shift*": $\lambda_{rozptyl}$ < λ_{dopad}

Resonanční Raman:

λ_{dopad} = λ_{excit.e}
zesílení intenzity vibrač.módu
odpovídajícího excit. e-hladiny

Povrchově zesílená Ramanova spektroskopie Surface Enhanced Raman Spectroscopy

Max. zesílení - dopadající i rozptýlené světlo - (Raman) jen pro frekvence s minimálním posunem (velmi posunuté nemohou být obě v rezonanci => menší zesílení)

kombinuje výhody fluorescence => vysoký světelný zisk + Ramanovy spektroskopie => strukturní informace

-Zesílení na nanostrukturách Au, Ag, Cu (NIR-Vis) -,,
-Hot-Spots" (signál není reprezentativní vzhledem k povrchu)

 \bullet

Hrotem zesílená Ramanova spektroskopie

Tip Enhanced Raman Spectroscopy

Od nanočásticové plasmonové resonance (SE) k hrotovému zesílení (TE)

P. Hewageegana, M. I. Stockman: Plasmonics enhancing nanoantennas Infrared Physics & Technology 50 (2007) 177–181

Řez oblastí TER(S) (A = I_{RT}/I_{R0}) λ = 541 nm, d_{T-S} = 4 nm

TERS instrumentace

۲

Příklady použití TERS

 \bullet

Monovrstva barviva adsorbovaného na Au filmu, STM Ag-hrot

G. Picardi, K. Domke, D.Zhang, B. Ren, J. Steidtner B. Pettinger <u>Fritz-Haber-Institut der Max-Planck-Gesellschaft</u>

۲

۲

۲

 \bullet

۲

Srovnání/kombinace SERS a TERS

E-field Au nanosféra 50 nm Hrot r = 20 nm, dist. 2 nm

význam TERS

- + Plasmonová resonance lokalizovaná na povrchu kovového hrotu
- (vyzařující anténa, max.intenzita el.pole na hrotu) => hrot funguje jako téměř ideální bodový zdroj světla
- + Mobilní "hot spot" snímání reprezentativního signálu z celého povrchu vzorku
- + Proces může být laděn (z/do resonance) vkládáním napětí na hrot

- + umožňuje práci in situ
- + zesílení ~ 107
- Vývojové stadium, neúplně definované podmínky: vliv tvaru hrotu, složení hrotu, vliv elektrolytu...

Surface-enhanced and STM-tip-enhanced Raman Spectroscopy at Metal Surfaces Bruno Pettinger, Gennaro Picardi, Rolf Schuster, Gerhard Ertl Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6,

14195 Berlin, Germany Single Molecules, Volume 3, Issue 5-6, Pages 285 - 294 S. Kuwata: Near Field Optics and Surface Plasmon Polariton Springer Verlag, 2001

AFM-TERS: zobrazení + analýza

TERS spectroscopic examination of a single tobacco mosaic virus. (A) Before each TERS measurement, an AFM scan with the silver coated AFM tip is performed in order to position the AFM tip directly on a virus. (B) The TERS spectroscopic fingerprint of a tobacco mosaic virus shows that all TERS bands can be assigned protein and RNA contributions.

Zobrazení v režimu TERS

Svazek SWCNT ve vibračních modech RBM (290 cm⁻¹) D ("disorder" 1300 cm⁻¹) G+ tangenciální C-C stretching (1594 cm⁻¹)

I... "tip off" ("far-field" konfokál) II... "tip on" (TERS)

۲

۲

Nanotechnology 18 (2007) 315502

AFM-TERS: zobrazení + analýza

•

AFM-TERS/SNOM: zobrazení + analýza

AFM-TERS/SNOM: zobrazení + analýza

Raman G-mode

CS TERS – SNOM (MultiView)

System for Concurrent Scanning + SNOM coupling - illumination/light collection/Tip-Enhanced SNOM

Nanonics

Ústav fyzikální chemie Jaroslava Heyrovského, AVČR v.v.i. Dolejškova 3, 182 23 Praha 8

Laboratoř mikroskopie rastrovací sondou

AFM/STM Nanoscope Illa Multimode (Bruker) Pro práci v kapalinách a plynech Rozlišení ~ 0,1 nm

AFM/STM TopoMetrix TMX 2010 Pro práci v kapalinách a plynech Rozlišení ~ 0,1 nm

AFM Dimension (Bruker)

pro práci v kapalinách a plynech

http://www.jh-inst.cas.cz/~janda pavel.janda@jh-inst.cas.cz

- •
- •