Physiological Research Pre-Press Article

CL316243 induces phosphatidylinositol 3,4,5-triphosphate production in rat adipocytes in an adenosine deaminase-, pertussis toxin-, or wortmannin-sensitive manner

Yasuhito Ohsaka^{1,3,*} and Yasuyuki Nomura^{2,3}

¹Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Chiba, Japan

²Yokohama College of Pharmacy, Yokohama, Kanagawa, Japan

³Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan

*Correspondence: Yasuhito Ohsaka, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan. E-mail: y-ohsaka@live.jp; y-ohsaka@cis.ac.jp

Subtitle: CL316243 effects in modulator-treated or -untreated cells

Summary

The effect of β_3 -adrenoceptor (β_3 -AR) agonists on adipocytes treated or not treated with signaling modulators has not been sufficiently elucidated. Using rat epididymal adipocytes (adipocytes) labeled with [³²P]orthophosphate, we found that treatment with the selective β_3 -AR agonist CL316243 (CL; 1 μ M) induces phosphatidylinositol (PI) 3,4,5-triphosphate (PI[3,4,5]P₃) production and that this response is inhibited by adenosine deaminase (ADA, an adenosine-degrading enzyme; 2 U/ml), pertussis toxin (PTX, an inactivator of inhibitory guanine-nucleotide-binding protein; 1 μ g/ml), or wortmannin (WT, a PI-kinase inhibitor; 3 μ M). The results showed that CL induced PI(3,4,5)P₃ production in intact adipocytes and that this production was affected by signaling modulators. Taken together, our findings indicate that CL produces PI(3,4,5)P₃ in an ADA-sensitive, PTX-sensitive, or WT-sensitive manner and will advance understanding of the effect of β_3 -AR agonists on adipocytes.

Keywords:Adipocytes,CL316243(disodium(*R*,*R*)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate), phosphatidylinositol 3,4,5-triphosphate

Treatment of adipocytes with β_3 -adrenoceptor (β_3 -AR) agonists, including CL316243 (CL), induces various responses, including glucose transport and protein-kinase B phosphorylation (PKB activation) in a signaling modulator-sensitive manner (Ohsaka *et al.* 1998; Zmuda-Trzebiatowska *et al.* 2007). Polymorphic studies have indicated that signaling molecules associated with β_3 -AR can be targeted to improve adipocyte dysregulation (Arner and Hoffstedt 1999). However, the effect of β_3 -AR agonists on adipocytes, including those treated with signaling modulators, has not been fully elucidated.

Phosphatidylinositol (PI) 3,4,5-triphosphate (PI[3,4,5]P₃) is a component of the PI 3-kinase-related pathway and has been shown to activate PKB (Walker *et al.* 1998). Additionally, expression of a PI(3,4,5)P₃-responsive kinase in rat epididymal adipocytes (adipocytes) induces an insulin (INS)-responsive glucose transport-related response (Standaert *et al.* 1997). PI 3-kinase activation is induced in adipocytes treated with CL as well as INS (Ohsaka *et al.* 2014). In a previous study, PI(3,4,5)P₃ was produced by INS treatment (0.1 μ M), which peaked at about 1 min, in adipocytes in a signaling modulator (e.g., wortmannin [WT])-sensitive manner (Takasuga *et al.* 1999). However, it is unclear whether CL treatment produces phosphoinositides in intact adipocytes. The effect of CL treatment for 1 min on PI(3,4,5)P₃ production is unknown.

Adenosine is released from adipocytes and degraded in adenosine deaminase (ADA;

2 U/ml, <10 min)-treated adipocytes (Shirakura and Tokumitsu 1990). Adipocyte membranes treated with adenosine-receptor the inhibitory an agonist modulate guanine-nucleotide-binding (G) protein G_i (which can be affected by pertussis toxin [PTX, Mitchell et al. 1989]) (Soeder et al. 1999). In addition, WT treatment (from 0.1 to <10 µM) inactivates the kinases that produce PI 3- and PI 4-monophosphates (Okada et al. 1994). Previous studies showed that adipocytes treated with ADA (2 U/ml, 30 min), PTX (0.2 µg/ml, 180 min), or WT (0.1 μ M, 10 min) exhibit altered responses to β_3 -AR agonists (0.01–100 μ M, 10-30 min) (Chaudhry et al. 1994; Ohsaka et al. 1997, 1998; Zmuda-Trzebiatowska et al. 2007), including ADA- or PTX-sensitive alteration of β_3 -AR agonist-induced adenosine 3',5'-cyclic monophosphate (cAMP) accumulation. It is unclear whether CL produces PI(3,4,5)P₃ in an ADA-, PTX-, or WT-sensitive manner.

To investigate the effect of β_3 -AR agonists on signaling modulator-treated or -untreated adipocytes, we examined whether treatment with CL (1 μ M; Lederle Laboratories, Wayne, NJ) for 1 min produces PI(3,4,5)P₃ and whether this response is affected by treatment with ADA (2 U/ml, 10 min; Sigma-Aldrich Co., St. Louis, MO), PTX (1 μ g/ml, 60 min; Kaken Pharmaceutical Co., Tokyo, Japan), or WT (3 μ M, 1 min; Kyowa Hakko Kogyo Co., Tokyo, Japan).

Adipocytes (10^6 cells/ml) were prepared from rat epididymal adipose tissues as described previously (Ohsaka *et al.* 2014); animal experiments, which were approved by the

institutional review board, were conducted in accordance with the guidelines established by the Japanese Association for Laboratory Animal Science (JALAS) (JALAS 1987). The adipocytes were incubated for 2 h in phosphate-free Krebs-Ringer bicarbonate buffer containing 3% bovine serum albumin (Sigma-Aldrich Co.) in the presence of carrier-free [³²P]orthophosphate (DuPont NEN, Boston, MA) at 37°C. [³²P]-labeled adipocytes treated with or without agents were immediately separated from the medium by centrifugation at 500 x g for 20 s, and phospholipids were extracted and separated by thin-layer chromatography (TLC) in a solution of chloroform/acetone/methanol/acetic acid/water (80:30:26:24:14, v/v) as described previously (Arcaro and Wymann 1993). The radioactivity of PI(3,4,5)P₃ was detected and quantified using a Fuji BAS2000 Bioimaging Analyzer (Fuji Photo Film Co., Tokyo, Japan).

To confirm the function of isolated adipocytes, we examined whether treatment with INS (0.7 μ M, 1 min; Sigma-Aldrich Co.) produces PI(3,4,5)P₃ in a WT-sensitive manner and whether ADA or PTX treatment alters CL (1 μ M, 10 min)-induced cAMP accumulation; cAMP accumulation was determined as described previously (Shirakura and Tokumitsu 1990). Treatment of the adipocytes with INS induced WT-sensitive PI(3,4,5)P₃ production (Fig. 1e), and ADA or PTX treatment altered CL-induced cAMP accumulation (Fig. 1f).

 $PI(3,4,5)P_3$ is produced from PI 4,5-bisphosphate ($PI[4,5]P_2$) in a PI 3-kinase p85 regulatory subunit-containing immunocomplex (Kelly and Ruderman 1993). In G-protein subunit β (G β) antibody immunoprecipitates, CL treatment increases the PI 3-kinase p85 subunit level and phosphorylates the 3'-position of the inositol ring (Ohsaka *et al.* 2014). In addition, PI(3,4,5)P₃ is dephosphorylated by a PI(3,4,5)P₃ phosphatase *in vitro*, and this dephosphorylation is enhanced by PI(4,5)P₂ (Campbell *et al.* 2003). As shown in Fig. 1a–e, CL treatment produced PI(3,4,5)P₃. This response is presumed to be regulated by a PI or phospho-PI kinase(s) and/or a phospho-PI phosphatase(s). Production of PI(3,4,5)P₃, which is produced by INS, was induced in CL-treated intact adipocytes.

PI(3,4,5)P₃ is able to activate PKB isoforms (Walker *et al.* 1998), including PKB-α/-β (which can be phosphorylated). Additionally, treatment of adipocytes with PI(3,4,5)P₃ activates the protein-kinase C (PKC) isoform PKC- ζ (Standaert *et al.* 1997). The number of glucose transporters (GLUT4) in the plasma membrane (PM) is increased by expression of PKB-α (Tanti *et al.* 1997) or PKC- ζ (Standaert *et al.* 1997). CL-induced PI(3,4,5)P₃ production may regulate activation of PKB-α and/or -β (expression of which is observed in adipocytes [Walker *et al.* 1998]) and PKC- ζ and may induce PM GLUT4 expression.

Adipocytes have the G_i-coupled A1 adenosine-receptor (Burnstock 2014). The G-protein subunit G α of G_i1 or G_i2 is modified by PTX (Mitchell *et al.* 1989); PTX inhibits receptor signaling-induced G-protein dissociation of the G α and G $\beta\gamma$ subunits (see [23] and the references therein). ADA or PTX treatment did not induce CL-induced PI(3,4,5)P₃

production (Fig. 1a–c). The CL-induced $PI(3,4,5)P_3$ production may be regulated by adenosine-sensitive molecules including the A1 adenosine-receptor and by a PTX-sensitive G_i isoform(s).

Adipocytes express the PI 3-kinase isoforms p85/p110- α /p110- β (see Ohsaka *et al.* 2014 and Discussion section therein) and PI 4-kinase (Okada *et al.* 1994). The p85/p110- β isoform is activated by G $\beta\gamma$ *in vitro* (Hazeki *et al.* 1998). WT inactivates these kinases. In Fig. 1d, CL-induced PI(3,4,5)P₃ production was inhibited by WT; such an inhibitory effect was not observed when another response (lipolysis) was measured (data not shown). Adipocyte membranes treated with β_3 -AR agonists modulate G proteins (Soeder *et al.* 1999), including G_i (which can regulate p85 complex formation in G β antibody immunoprecipitates [Ohsaka *et al.* 2014]). CL-induced PI(3,4,5)P₃ production may be regulated by WT-sensitive PI kinases, including a PI 3-kinase isoform of p85/p110.

In this study, CL induced the production of $PI(3,4,5)P_3$ in intact adipocytes, and this production was affected by signaling modulators. Our findings indicate that CL produces $PI(3,4,5)P_3$ in an ADA-sensitive, PTX-sensitive, or WT-sensitive manner and will advance understanding of the effect of β_3 -AR agonists on adipocytes.

Acknowledgements

We thank Dr. Y. Tokumitsu (Hokkaido University, Japan) for helpful advice on the measurement of cAMP.

References

- ARCARO A, WYMANN MP: Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. *Biochem J* **296**: 297–301, 1993.
- ARNER P, HOFFSTEDT J: Adrenoceptor genes in human obesity. J Intern Med 245: 667-672, 1999.
- BURNSTOCK G: Purinergic signalling in endocrine organs. *Purinergic Signal* **10**: 189–231, 2014.
- CAMPBELL RB, LIU F, ROSS AH: Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. *J Biol Chem* **278**: 33617–33620, 2003.
- CHAUDHRY A, MACKENZIE RG, GEORGIC LM, GRANNEMAN JG: Differential interaction of β_1 and β_3 -adrenergic receptors with G_i in rat adipocytes. *Cell Signal* **6**: 457–465, 1994.
- HAZEKI O, OKADA T, KUROSU H, TAKASUGA S, SUZUKI T, KATADA T: Activation of PI 3-kinase by G protein βγ subunits. *Life Sci* **62**: 1555–1559, 1998.

JALAS: Guidelines on Animal Experimentation [in Japanese]. Exp Anim 36: 285–288, 1987.

- KELLY KL, RUDERMAN NB: Insulin-stimulated phosphatidylinositol 3-kinase. J Biol Chem 268: 4391–4398, 1993.
- MITCHELL FM, GRIFFITHS SL, SAGGERSON ED, HOUSLAY MD, KNOWLER JT, MILLIGAN G: Guanine-nucleotide-binding proteins expressed in rat white adipose tissue. *Biochem J* 262: 403–408, 1989.
- OHSAKA Y, MURAKAMI T, YOSHIDA T, TOKUMITSU Y: Comparison of atypical β_3 -adrenoceptor agonists with their respective metabolic activities in rat white adipocytes. *Jpn J Pharmacol* **77**: 41–51, 1998.
- OHSAKA Y, NISHINO H, NOMURA Y: Adipose cells induce phospho-Thr-172 AMPK production by epinephrine or CL316243 in mouse 3T3-L1 adipocytes or MAPK activation and G protein-associated PI3K responses induced by CL316243 or aluminum fluoride in rat white adipocytes. *Folia Biologica (Praha)* **60**: 168–179, 2014.
- OHSAKA Y, TOKUMITSU Y, NOMURA Y: Suppression of insulin-stimulated phosphatidylinositol 3-kinase activity by the β_3 -adrenoceptor agonist CL316243 in rat adipocytes. *FEBS Lett* **402**: 246–250, 1997.
- OKADA T, KAWANO Y, SAKAKIBARA T, HAZEKI O, UI M: Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis

in rat adipocytes. J Biol Chem 269: 3568-3573, 1994.

- SHIRAKURA S, TOKUMITSU Y: Insulin-stimulated glucose transport regulated by adenylyl cyclase system in rat adipocytes. *Comp Biochem Physiol* **96A**: 503–509, 1990.
- SOEDER KJ, SNEDDEN SK, CAO W, DELLA ROCCA GJ, DANIEL KW, LUTTRELL LM, COLLINS S: The β₃-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a G_i-dependent mechanism. *J Biol Chem* **274**: 12017–12022, 1999.
- STANDAERT ML, GALLOWAY L, KARNAM P, BANDYOPADHYAY G, MOSCAT J, FARESE RV: Protein kinase C-ζ as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. *J Biol Chem* **272**: 30075–30082, 1997.
- TAKASUGA S, KATADA T, UI M, HAZEKI O: Enhancement by adenosine of insulin-induced activation of phosphoinoitide 3-kinase and protein kinase B in rat adipocytes. J Biol Chem 274: 19545–19550, 1999.
- TANTI J-F, GRILLO S, GRÉMEAUX T, COFFER PJ, VAN OBBERGHEN E, LE MARCHAND-BRUSTEL Y: Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. *Endocrinology* 138: 2005–2010, 1997.

WALKER KS, DEAK M, PATERSON A, HUDSON K, COHEN P, ALESSI DR: Activation

of protein kinase B β and γ isoforms by insulin *in vivo* and by

3-phosphoinositide-dependent protein kinase-1 *in vitro*: comparison with protein kinase B α. *Biochem J* **331**: 299–308, 1998.

ZMUDA-TRZEBIATOWSKA E, MANGANIELLO V, DEGERMAN E: Novel mechanisms of the regulation of protein kinase B in adipocytes; implications for protein kinase A, Epac, phosphodiesterases 3 and 4. *Cell Signal* **19**: 81–86, 2007.

Figure captions

Figure 1. Effect of CL alone or in combination with ADA, PTX or WT on PI(3,4,5)P₃ production in adipocytes. [³²P]orthophosphate-labeled adipocytes that were treated or not treated with ADA (2U/ml, 10 min) or PTX (1 µg/ml, 60 min) were incubated for 1 min with or without CL (1 µM; a–c). In addition, [³²P]orthophosphate-labeled adipocytes treated with or without WT (3 µM, 1 min) were incubated for 1 min with or without CL (d and e) or INS (0.7 µM; e). Furthermore, adipocytes treated or not treated with ADA or PTX were incubated for 10 min with or without CL (f). The radioactivity of PI(3,4,5)P₃ (PIP₃) that was separated by TLC and the accumulation of cAMP in adipocytes were determined. Values are presented as means ± standard deviation of 3 or 4 experiments. Autoradiographic images represent typical results. The results were analyzed using analysis of variance with Scheffe's test or unpaired Student's *t*-test. [†]*P* < 0.05 vs. cells treated without agents (b–e). **P* < 0.05 vs. cells

treated with CL alone (d and f) or INS (e).

Figure 1