Mathematica Bohemica, online first, 5 pp.

Cardinalities of DCCC normal spaces with a rank 2-diagonal

Wei-Feng Xuan, Wei-Xue Shi

Received June 6, 2015.   First published August 8, 2016.

Wei-Feng Xuan, College of Science, Nanjing Audit University, 86 YuShan West Road, Nanjing, China, 211815, e-mail: wfxuan@nau.edu.cn; Wei-Xue Shi, Department of Mathematics, Nanjing University, 22 Hankou Road, Nanjing, China, 210093, e-mail: wxshi@nju.edu.cn

Abstract: A topological space $X$ has a rank 2-diagonal if there exists a diagonal sequence on $X$ of rank $2$, that is, there is a countable family $\{\mathcal U_n n\in\omega\}$ of open covers of $X$ such that for each $x \in X$, $\{x\}=\bigcap\{\St^2(x, \mathcal U_n) n \in\omega\}$. We say that a space $X$ satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. We mainly prove that if $X$ is a DCCC normal space with a rank 2-diagonal, then the cardinality of $X$ is at most $\mathfrak c$. Moreover, we prove that if $X$ is a first countable DCCC normal space and has a $G_\delta$-diagonal, then the cardinality of $X$ is at most $\mathfrak c$.

Keywords: cardinality; Discrete Countable Chain Condition; normal space; rank 2-diagonal; $G_\delta$-diagonal

Classification (MSC 2010): 54D20, 54E35

DOI: 10.21136/MB.2016.0027-15

Full text available as PDF.


References:
  [1] A. V. Arhangel'skii, R. Z. Buzyakova: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597. MR 2337413 | Zbl 1150.54335
  [2] R. Z. Buzyakova: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals. Topology Appl. 153 (2006), 1696-1698. DOI 10.1016/j.topol.2005.06.004 | MR 2227022 | Zbl 1094.54001
  [3] R. Engelking: General Topology. Sigma Series in Pure Mathematics 6 Heldermann, Berlin (1989). MR 1039321 | Zbl 0684.54001
  [4] J. Ginsburg, R. G. Woods: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Am. Math. Soc. 64 (1977), 357-360. DOI 10.2307/2041457 | MR 0461407 | Zbl 0398.54002
  [5] R. Hodel: Cardinal functions I. Handbook of Set-Theoretic Topology North-Holland VII, Amsterdam K. Kunen et al. 1-61 North-Holland, Amsterdam (1984). MR 0776620 | Zbl 0559.54003
  [6] M. Matveev: A survey on star covering properties. Topology Atlas (1998), http://at.yorku.ca/v/a/a/a/19.htm.
  [7] D. B. Shakhmatov: No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists. Commentat. Math. Univ. Carol. 25 (1984), 731-746. MR 0782022 | Zbl 0572.54003
  [8] V. V. Uspenskij: A large $F_\sigma$-discrete Frechet space having the Souslin property. Commentat. Math. Univ. Carol. 25 (1984), 257-260. MR 0768812 | Zbl 0553.54001
  [9] M. R. Wiscamb: The discrete countable chain condition. Proc. Am. Math. Soc. 23 (1969), 608-612. DOI 10.2307/2036596 | MR 0248744 | Zbl 0184.26304
  [10] W. F. Xuan, W. X. Shi: A note on spaces with a rank 3-diagonal. Bull. Aust. Math. Soc. 90 (2014), 521-524. DOI 10.1017/S0004972714000318 | MR 3270766 | Zbl 1305.54036
  [11] W. F. Xuan, W. X. Shi: A note on spaces with a rank 2-diagonal. Bull. Aust. Math. Soc. 90 (2014), 141-143. DOI 10.1017/S0004972713001184 | MR 3227139 | Zbl 1300.54034


Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at mathboh@math.cas.cz indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]